示例#1
0
int
MPU9250::ioctl(struct file *filp, int cmd, unsigned long arg)
{
	switch (cmd) {

	case SENSORIOCRESET:
		return reset();

	case SENSORIOCSPOLLRATE: {
			switch (arg) {

			/* switching to manual polling */
			case SENSOR_POLLRATE_MANUAL:
				stop();
				_call_interval = 0;
				return OK;

			/* external signalling not supported */
			case SENSOR_POLLRATE_EXTERNAL:

			/* zero would be bad */
			case 0:
				return -EINVAL;

			/* set default/max polling rate */
			case SENSOR_POLLRATE_MAX:
				return ioctl(filp, SENSORIOCSPOLLRATE, 1000);

			case SENSOR_POLLRATE_DEFAULT:
				return ioctl(filp, SENSORIOCSPOLLRATE, MPU9250_ACCEL_DEFAULT_RATE);

			/* adjust to a legal polling interval in Hz */
			default: {
					/* do we need to start internal polling? */
					bool want_start = (_call_interval == 0);

					/* convert hz to hrt interval via microseconds */
					unsigned ticks = 1000000 / arg;

					/* check against maximum sane rate */
					if (ticks < 1000) {
						return -EINVAL;
					}

					// adjust filters
					float cutoff_freq_hz = _accel_filter_x.get_cutoff_freq();
					float sample_rate = 1.0e6f / ticks;
					_set_dlpf_filter(cutoff_freq_hz);
					_accel_filter_x.set_cutoff_frequency(sample_rate, cutoff_freq_hz);
					_accel_filter_y.set_cutoff_frequency(sample_rate, cutoff_freq_hz);
					_accel_filter_z.set_cutoff_frequency(sample_rate, cutoff_freq_hz);


					float cutoff_freq_hz_gyro = _gyro_filter_x.get_cutoff_freq();
					_set_dlpf_filter(cutoff_freq_hz_gyro);
					_gyro_filter_x.set_cutoff_frequency(sample_rate, cutoff_freq_hz_gyro);
					_gyro_filter_y.set_cutoff_frequency(sample_rate, cutoff_freq_hz_gyro);
					_gyro_filter_z.set_cutoff_frequency(sample_rate, cutoff_freq_hz_gyro);

					/* update interval for next measurement */
					/* XXX this is a bit shady, but no other way to adjust... */
					_call_interval = ticks;

					/*
					  set call interval faster than the sample time. We
					  then detect when we have duplicate samples and reject
					  them. This prevents aliasing due to a beat between the
					  stm32 clock and the mpu9250 clock
					 */
					_call.period = _call_interval - MPU9250_TIMER_REDUCTION;

					/* if we need to start the poll state machine, do it */
					if (want_start) {
						start();
					}

					return OK;
				}
			}
		}

	case SENSORIOCGPOLLRATE:
		if (_call_interval == 0) {
			return SENSOR_POLLRATE_MANUAL;
		}

		return 1000000 / _call_interval;

	case SENSORIOCSQUEUEDEPTH: {
			/* lower bound is mandatory, upper bound is a sanity check */
			if ((arg < 1) || (arg > 100)) {
				return -EINVAL;
			}

			irqstate_t flags = px4_enter_critical_section();

			if (!_accel_reports->resize(arg)) {
				px4_leave_critical_section(flags);
				return -ENOMEM;
			}

			px4_leave_critical_section(flags);

			return OK;
		}

	case SENSORIOCGQUEUEDEPTH:
		return _accel_reports->size();

	case ACCELIOCGSAMPLERATE:
		return _sample_rate;

	case ACCELIOCSSAMPLERATE:
		_set_sample_rate(arg);
		return OK;

	case ACCELIOCGLOWPASS:
		return _accel_filter_x.get_cutoff_freq();

	case ACCELIOCSLOWPASS:
		// set software filtering
		_accel_filter_x.set_cutoff_frequency(1.0e6f / _call_interval, arg);
		_accel_filter_y.set_cutoff_frequency(1.0e6f / _call_interval, arg);
		_accel_filter_z.set_cutoff_frequency(1.0e6f / _call_interval, arg);
		return OK;

	case ACCELIOCSSCALE: {
			/* copy scale, but only if off by a few percent */
			struct accel_calibration_s *s = (struct accel_calibration_s *) arg;
			float sum = s->x_scale + s->y_scale + s->z_scale;

			if (sum > 2.0f && sum < 4.0f) {
				memcpy(&_accel_scale, s, sizeof(_accel_scale));
				return OK;

			} else {
				return -EINVAL;
			}
		}

	case ACCELIOCGSCALE:
		/* copy scale out */
		memcpy((struct accel_calibration_s *) arg, &_accel_scale, sizeof(_accel_scale));
		return OK;

	case ACCELIOCSRANGE:
		return set_accel_range(arg);

	case ACCELIOCGRANGE:
		return (unsigned long)((_accel_range_m_s2) / MPU9250_ONE_G + 0.5f);

	case ACCELIOCSELFTEST:
		return accel_self_test();

#ifdef ACCELIOCSHWLOWPASS

	case ACCELIOCSHWLOWPASS:
		_set_dlpf_filter(arg);
		return OK;
#endif

#ifdef ACCELIOCGHWLOWPASS

	case ACCELIOCGHWLOWPASS:
		return _dlpf_freq;
#endif

	default:
		/* give it to the superclass */
		return CDev::ioctl(filp, cmd, arg);
	}
}
示例#2
0
int
LSM303D::ioctl(struct file *filp, int cmd, unsigned long arg)
{
	switch (cmd) {

	case SENSORIOCSPOLLRATE: {
		switch (arg) {

			/* switching to manual polling */
			case SENSOR_POLLRATE_MANUAL:
				stop();
				_call_accel_interval = 0;
				return OK;

			/* external signalling not supported */
			case SENSOR_POLLRATE_EXTERNAL:

			/* zero would be bad */
			case 0:
				return -EINVAL;

			/* set default/max polling rate */
			case SENSOR_POLLRATE_MAX:
				return ioctl(filp, SENSORIOCSPOLLRATE, 1600);

			case SENSOR_POLLRATE_DEFAULT:
				return ioctl(filp, SENSORIOCSPOLLRATE, LSM303D_ACCEL_DEFAULT_RATE);

				/* adjust to a legal polling interval in Hz */
			default: {
				/* do we need to start internal polling? */
				bool want_start = (_call_accel_interval == 0);

				/* convert hz to hrt interval via microseconds */
				unsigned ticks = 1000000 / arg;

				/* check against maximum sane rate */
				if (ticks < 500)
					return -EINVAL;

				/* adjust filters */
				accel_set_driver_lowpass_filter((float)arg, _accel_filter_x.get_cutoff_freq());

				/* update interval for next measurement */
				/* XXX this is a bit shady, but no other way to adjust... */
				_accel_call.period = _call_accel_interval = ticks;

				/* if we need to start the poll state machine, do it */
				if (want_start)
					start();

				return OK;
			}
		}
	}

	case SENSORIOCGPOLLRATE:
		if (_call_accel_interval == 0)
			return SENSOR_POLLRATE_MANUAL;

		return 1000000 / _call_accel_interval;

	case SENSORIOCSQUEUEDEPTH: {
		/* lower bound is mandatory, upper bound is a sanity check */
		if ((arg < 1) || (arg > 100))
			return -EINVAL;

		irqstate_t flags = irqsave();
		if (!_accel_reports->resize(arg)) {
			irqrestore(flags);
			return -ENOMEM;
		}
		irqrestore(flags);

		return OK;
	}

	case SENSORIOCGQUEUEDEPTH:
		return _accel_reports->size();

	case SENSORIOCRESET:
		reset();
		return OK;

	case ACCELIOCSSAMPLERATE:
		return accel_set_samplerate(arg);

	case ACCELIOCGSAMPLERATE:
		return _accel_samplerate;

	case ACCELIOCSLOWPASS: {
		return accel_set_driver_lowpass_filter((float)_accel_samplerate, (float)arg);
	}

	case ACCELIOCGLOWPASS:
		return _accel_filter_x.get_cutoff_freq();

	case ACCELIOCSSCALE: {
		/* copy scale, but only if off by a few percent */
		struct accel_scale *s = (struct accel_scale *) arg;
		float sum = s->x_scale + s->y_scale + s->z_scale;
		if (sum > 2.0f && sum < 4.0f) {
			memcpy(&_accel_scale, s, sizeof(_accel_scale));
			return OK;
		} else {
			return -EINVAL;
		}
	}

	case ACCELIOCSRANGE:
		/* arg needs to be in G */
		return accel_set_range(arg);

	case ACCELIOCGRANGE:
		/* convert to m/s^2 and return rounded in G */
		return (unsigned long)((_accel_range_m_s2)/LSM303D_ONE_G + 0.5f);

	case ACCELIOCGSCALE:
		/* copy scale out */
		memcpy((struct accel_scale *) arg, &_accel_scale, sizeof(_accel_scale));
		return OK;

	case ACCELIOCSELFTEST:
		return accel_self_test();

	default:
		/* give it to the superclass */
		return SPI::ioctl(filp, cmd, arg);
	}
}