示例#1
0
static void
_update_aggregated_state_frechet_matrices(
        cross_site_ws_t csw, model_and_data_t m,
        nd_axis_struct *edge_axis, nd_axis_struct *trans_axis,
        const int *first_idx, const int *second_idx, slong prec)
{
    arb_mat_t P, L, Q;
    arb_t rate;
    slong first_state, second_state;
    slong cat, trans_idx;

    slong state_count = model_and_data_state_count(m);
    slong edge_count = model_and_data_edge_count(m);
    slong rate_category_count = model_and_data_rate_category_count(m);

    arb_init(rate);
    arb_mat_init(P, state_count, state_count);
    arb_mat_init(L, state_count, state_count);
    arb_mat_init(Q, state_count, state_count);

    /* set entries of L to the requested transition weights */
    for (trans_idx = 0; trans_idx < trans_axis->n; trans_idx++)
    {
        first_state = first_idx[trans_idx];
        second_state = second_idx[trans_idx];
        arb_add(arb_mat_entry(L, first_state, second_state),
                arb_mat_entry(L, first_state, second_state),
                trans_axis->agg_weights + trans_idx, prec);
    }

    /* multiply entries of L by the rate matrix entries */
    arb_mat_mul_entrywise(L, L, csw->rate_matrix, prec);

    /* divide L by the global weight divisor */
    arb_mat_scalar_div_arb(L, L, trans_axis->agg_weight_divisor, prec);

    for (cat = 0; cat < rate_category_count; cat++)
    {
        slong edge;
        const arb_struct * cat_rate = csw->rate_mix_rates + cat;
        for (edge = 0; edge < edge_count; edge++)
        {
            slong idx = m->edge_map->order[edge];
            const arb_struct * edge_rate = csw->edge_rates + idx;
            arb_mat_struct *fmat;
            if (!edge_axis->request_update[edge]) continue;
            fmat = cross_site_ws_trans_frechet_matrix(csw, cat, idx);
            arb_mul(rate, edge_rate, cat_rate, prec);
            arb_mat_scalar_mul_arb(Q, csw->rate_matrix, rate, prec);
            _arb_mat_exp_frechet(P, fmat, Q, L, prec);
        }
    }

    arb_clear(rate);
    arb_mat_clear(P);
    arb_mat_clear(L);
    arb_mat_clear(Q);
}
示例#2
0
void arb_mat_L2norm(arb_t out, const arb_mat_t in, slong prec) {
    int nrows = arb_mat_nrows(in);
    int ncols = arb_mat_ncols(in);
    arb_zero(out);
    for(int i = 0; i < nrows; i++) {
        for(int j = 0; j < ncols; j++) {
            arb_addmul(out, arb_mat_entry(in, i, j), arb_mat_entry(in, i, j), prec);
        }
    }
    arb_sqrtpos(out, out, prec);
}
示例#3
0
文件: sub.c 项目: argriffing/arb
void
arb_mat_sub(arb_mat_t res,
        const arb_mat_t mat1, const arb_mat_t mat2, slong prec)
{
    slong i, j;

    for (i = 0; i < arb_mat_nrows(mat1); i++)
        for (j = 0; j < arb_mat_ncols(mat1); j++)
            arb_sub(arb_mat_entry(res, i, j),
                arb_mat_entry(mat1, i, j),
                arb_mat_entry(mat2, i, j), prec);
}
示例#4
0
文件: randtest.c 项目: isuruf/arb
void
arb_mat_randtest(arb_mat_t mat, flint_rand_t state, slong prec, slong mag_bits)
{
    slong i, j;

    if (n_randint(state, 2))
        for (i = 0; i < arb_mat_nrows(mat); i++)
            for (j = 0; j < arb_mat_ncols(mat); j++)
                arb_randtest(arb_mat_entry(mat, i, j), state, prec, mag_bits);
    else
        for (i = 0; i < arb_mat_nrows(mat); i++)
            for (j = 0; j < arb_mat_ncols(mat); j++)
                arb_randtest_precise(arb_mat_entry(mat, i, j), state, prec, mag_bits);
}
示例#5
0
文件: pow_ui.c 项目: isuruf/arb
void
arb_mat_pow_ui(arb_mat_t B, const arb_mat_t A, ulong exp, slong prec)
{
    slong d = arb_mat_nrows(A);

    if (exp <= 2 || d <= 1)
    {
        if (exp == 0 || d == 0)
        {
            arb_mat_one(B);
        }
        else if (d == 1)
        {
            arb_pow_ui(arb_mat_entry(B, 0, 0),
                 arb_mat_entry(A, 0, 0), exp, prec);
        }
        else if (exp == 1)
        {
            arb_mat_set(B, A);
        }
        else if (exp == 2)
        {
            arb_mat_sqr(B, A, prec);
        }
    }
    else
    {
        arb_mat_t T, U;
        slong i;

        arb_mat_init(T, d, d);
        arb_mat_set(T, A);
        arb_mat_init(U, d, d);

        for (i = ((slong) FLINT_BIT_COUNT(exp)) - 2; i >= 0; i--)
        {
            arb_mat_sqr(U, T, prec);

            if (exp & (WORD(1) << i))
                arb_mat_mul(T, U, A, prec);
            else
                arb_mat_swap(T, U);
        }

        arb_mat_swap(B, T);
        arb_mat_clear(T);
        arb_mat_clear(U);
    }
}
示例#6
0
文件: contains.c 项目: isuruf/arb
int
arb_mat_contains(const arb_mat_t mat1, const arb_mat_t mat2)
{
    slong i, j;

    if ((arb_mat_nrows(mat1) != arb_mat_nrows(mat2)) ||
            (arb_mat_ncols(mat1) != arb_mat_ncols(mat2)))
        return 0;

    for (i = 0; i < arb_mat_nrows(mat1); i++)
        for (j = 0; j < arb_mat_ncols(mat1); j++)
            if (!arb_contains(arb_mat_entry(mat1, i, j), arb_mat_entry(mat2, i, j)))
                return 0;

    return 1;
}
示例#7
0
void
arb_mat_bound_inf_norm(mag_t b, const arb_mat_t A)
{
    slong i, j, r, c;

    mag_t s, t;

    r = arb_mat_nrows(A);
    c = arb_mat_ncols(A);

    mag_zero(b);

    if (r == 0 || c == 0)
        return;

    mag_init(s);
    mag_init(t);

    for (i = 0; i < r; i++)
    {
        mag_zero(s);

        for (j = 0; j < c; j++)
        {
            arb_get_mag(t, arb_mat_entry(A, i, j));
            mag_add(s, s, t);
        }

        mag_max(b, b, s);
    }

    mag_clear(s);
    mag_clear(t);
}
示例#8
0
void arb_mat_cholesky(arb_mat_t out, const arb_mat_t in, slong prec) {
    int nrows = arb_mat_nrows(in);
    for(int j = 0; j < nrows; j++) {
        for(int i = j; i < nrows; i++) {
            arb_set(arb_mat_entry(out, i, j), arb_mat_entry(in, i, j));
            for(int k = 0; k < j; k++) {
                arb_submul(arb_mat_entry(out, i, j), arb_mat_entry(out, i, k), arb_mat_entry(out, j, k), prec);
            }
            if(i == j) {
                arb_sqrt(arb_mat_entry(out, i, j), arb_mat_entry(out, i, j), prec);
            }
            else {
                arb_div(arb_mat_entry(out, i, j), arb_mat_entry(out, i, j), arb_mat_entry(out, j, j), prec);
            }
        }
    }
}
示例#9
0
文件: zero.c 项目: isuruf/arb
void
arb_mat_zero(arb_mat_t mat)
{
    slong i, j;

    for (i = 0; i < arb_mat_nrows(mat); i++)
        for (j = 0; j < arb_mat_ncols(mat); j++)
            arb_zero(arb_mat_entry(mat, i, j));
}
示例#10
0
void arb_mat_set_exact(arb_mat_t A) {
    int nrows = arb_mat_nrows(A);
    int ncols = arb_mat_nrows(A);
    for(int i = 0; i < nrows; i++) {
        for(int j = 0; j < ncols; j++) {
            arb_set_exact(arb_mat_entry(A, i, j));
        }
    }
}
示例#11
0
/*
 * Update the frechet matrix for each rate category and edge.
 * At this point the rate matrix has been normalized
 * to have zero row sums, but it has not been scaled
 * by the edge rate coefficients.
 * The frechet matrices must already have been initialized.
 */
static void
_update_state_pair_frechet_matrices(
        cross_site_ws_t csw, model_and_data_t m,
        nd_axis_struct *edge_axis,
        slong first_state, slong second_state, slong prec)
{
    arb_mat_t P, L, Q;
    slong cat;
    arb_t rate;

    slong state_count = model_and_data_state_count(m);
    slong edge_count = model_and_data_edge_count(m);
    slong rate_category_count = model_and_data_rate_category_count(m);

    arb_init(rate);
    arb_mat_init(P, state_count, state_count);
    arb_mat_init(L, state_count, state_count);
    arb_mat_init(Q, state_count, state_count);
    arb_set(arb_mat_entry(L, first_state, second_state),
            arb_mat_entry(csw->rate_matrix, first_state, second_state));

    for (cat = 0; cat < rate_category_count; cat++)
    {
        slong edge;
        const arb_struct * cat_rate = csw->rate_mix_rates + cat;
        for (edge = 0; edge < edge_count; edge++)
        {
            slong idx = m->edge_map->order[edge];
            const arb_struct * edge_rate = csw->edge_rates + idx;
            arb_mat_struct *fmat;
            if (!edge_axis->request_update[edge]) continue;
            fmat = cross_site_ws_trans_frechet_matrix(csw, cat, idx);
            arb_mul(rate, edge_rate, cat_rate, prec);
            arb_mat_scalar_mul_arb(Q, csw->rate_matrix, rate, prec);
            _arb_mat_exp_frechet(P, fmat, Q, L, prec);
        }
    }

    arb_clear(rate);
    arb_mat_clear(P);
    arb_mat_clear(L);
    arb_mat_clear(Q);
}
示例#12
0
void
arb_mat_ones(arb_mat_t mat)
{
    slong R, C, i, j;

    R = arb_mat_nrows(mat);
    C = arb_mat_ncols(mat);

    for (i = 0; i < R; i++)
        for (j = 0; j < C; j++)
            arb_one(arb_mat_entry(mat, i, j));
}
示例#13
0
void
evaluate_site_frechet(
        arb_struct *lhood_scaled_edge_expectations,
        const arb_mat_struct *lhood_node_vectors,
        const arb_mat_struct *forward_edge_vectors,
        const arb_mat_struct *frechet_matrices,
        const csr_graph_t g, int *preorder,
        int node_count, int state_count, slong prec)
{
    slong u, idx, state;
    arb_mat_t fvec;

    arb_mat_init(fvec, state_count, 1);

    for (u = 0; u < node_count; u++)
    {
        slong a = preorder[u];
        slong start = g->indptr[a];
        slong stop = g->indptr[a+1];

        for (idx = start; idx < stop; idx++)
        {
            slong b = g->indices[idx];
            const arb_mat_struct *lvec = lhood_node_vectors + b;
            const arb_mat_struct *evec = forward_edge_vectors + idx;

            arb_zero(lhood_scaled_edge_expectations + idx);
            arb_mat_mul(fvec, frechet_matrices + idx, lvec, prec);
            for (state = 0; state < state_count; state++)
            {
                arb_addmul(lhood_scaled_edge_expectations + idx,
                        arb_mat_entry(fvec, state, 0),
                        arb_mat_entry(evec, state, 0), prec);
            }
        }
    }

    arb_mat_clear(fvec);
}
示例#14
0
void
arb_mat_set_round_fmpz_mat(arb_mat_t dest, const fmpz_mat_t src, slong prec)
{
    slong i, j;

    if (arb_mat_ncols(dest) != 0)
    {
        for (i = 0; i < arb_mat_nrows(dest); i++)
            for (j = 0; j < arb_mat_ncols(dest); j++)
                arb_set_round_fmpz(arb_mat_entry(dest, i, j),
                    fmpz_mat_entry(src, i, j), prec);
    }
}
示例#15
0
void
arb_mat_trace(arb_t trace, const arb_mat_t mat, slong prec)
{
    slong i;

    if (!arb_mat_is_square(mat))
    {
        flint_printf("arb_mat_trace: a square matrix is required!\n");
        abort();
    }

    if (arb_mat_is_empty(mat))
    {
        arb_zero(trace);
        return;
    }

    arb_set(trace, arb_mat_entry(mat, 0, 0));
    for (i = 1; i < arb_mat_nrows(mat); i++)
    {
        arb_add(trace, trace, arb_mat_entry(mat, i, i), prec);
    }
}
示例#16
0
int
arb_mat_is_triu(const arb_mat_t A)
{
    slong i, j, n, m;

    n = arb_mat_nrows(A);
    m = arb_mat_ncols(A);

    for (i = 1; i < n; i++)
        for (j = 0; j < FLINT_MIN(i, m); j++)
            if (!arb_is_zero(arb_mat_entry(A, i, j)))
                return 0;

    return 1;
}
示例#17
0
void
arb_mat_approx_solve_triu_classical(arb_mat_t X, const arb_mat_t U,
    const arb_mat_t B, int unit, slong prec)
{
    slong i, j, n, m;
    arb_ptr tmp;
    arb_t s;

    n = U->r;
    m = B->c;

    arb_init(s);
    tmp = flint_malloc(sizeof(arb_struct) * n);

    for (i = 0; i < m; i++)
    {
        for (j = 0; j < n; j++)
            tmp[j] = *arb_mat_entry(X, j, i);

        for (j = n - 1; j >= 0; j--)
        {
            arb_approx_dot(s, arb_mat_entry(B, j, i), 1, U->rows[j] + j + 1, 1, tmp + j + 1, 1, n - j - 1, prec);

            if (!unit)
                arb_approx_div(tmp + j, s, arb_mat_entry(U, j, j), prec);
            else
                arb_swap(tmp + j, s);
        }

        for (j = 0; j < n; j++)
            *arb_mat_entry(X, j, i) = tmp[j];
    }

    flint_free(tmp);
    arb_clear(s);
}
示例#18
0
void arb_mat_print_sage_float(const arb_mat_t A) {
    int nrows = arb_mat_nrows(A);
    int ncols = arb_mat_ncols(A);
    printf("[");
    for(int j = 0; j < nrows; j++) {
        printf("[");
        for(int k = 0; k < ncols; k++) {
            double x = arf_get_d(arb_midref(arb_mat_entry(A, j, k)), ARF_RND_NEAR);
            printf("%e", x);
            if(k < nrows - 1)
                printf(", ");
        }
        printf("],\n");
    }
    printf("]\n");
}
示例#19
0
void
arb_mat_mul_classical(arb_mat_t C, const arb_mat_t A, const arb_mat_t B, long prec)
{
    long ar, ac, br, bc, i, j, k;

    ar = arb_mat_nrows(A);
    ac = arb_mat_ncols(A);
    br = arb_mat_nrows(B);
    bc = arb_mat_ncols(B);

    if (ac != br || ar != arb_mat_nrows(C) || bc != arb_mat_ncols(C))
    {
        printf("arb_mat_mul: incompatible dimensions\n");
        abort();
    }

    if (br == 0)
    {
        arb_mat_zero(C);
        return;
    }

    if (A == C || B == C)
    {
        arb_mat_t T;
        arb_mat_init(T, ar, bc);
        arb_mat_mul(T, A, B, prec);
        arb_mat_swap(T, C);
        arb_mat_clear(T);
        return;
    }

    for (i = 0; i < ar; i++)
    {
        for (j = 0; j < bc; j++)
        {
            arb_mul(arb_mat_entry(C, i, j),
                      arb_mat_entry(A, i, 0),
                      arb_mat_entry(B, 0, j), prec);

            for (k = 1; k < br; k++)
            {
                arb_addmul(arb_mat_entry(C, i, j),
                             arb_mat_entry(A, i, k),
                             arb_mat_entry(B, k, j), prec);
            }
        }
    }
}
示例#20
0
void
arb_mat_frobenius_norm(arb_t res, const arb_mat_t A, slong prec)
{
    slong i, j, r, c;

    r = arb_mat_nrows(A);
    c = arb_mat_ncols(A);

    arb_zero(res);

    if (r == 0 || c == 0)
        return;

    for (i = 0; i < r; i++)
    {
        for (j = 0; j < c; j++)
        {
            arb_srcptr x = arb_mat_entry(A, i, j);
            arb_addmul(res, x, x, prec);
        }
    }

    arb_sqrtpos(res, res, prec);
}
示例#21
0
文件: t-lu.c 项目: isuruf/arb
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("lu....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100000; iter++)
    {
        fmpq_mat_t Q;
        arb_mat_t A, LU, P, L, U, T;
        slong i, j, n, qbits, prec, *perm;
        int q_invertible, r_invertible;

        n = n_randint(state, 8);
        qbits = 1 + n_randint(state, 100);
        prec = 2 + n_randint(state, 202);

        fmpq_mat_init(Q, n, n);
        arb_mat_init(A, n, n);
        arb_mat_init(LU, n, n);
        arb_mat_init(P, n, n);
        arb_mat_init(L, n, n);
        arb_mat_init(U, n, n);
        arb_mat_init(T, n, n);
        perm = _perm_init(n);

        fmpq_mat_randtest(Q, state, qbits);
        q_invertible = fmpq_mat_is_invertible(Q);

        if (!q_invertible)
        {
            arb_mat_set_fmpq_mat(A, Q, prec);
            r_invertible = arb_mat_lu(perm, LU, A, prec);
            if (r_invertible)
            {
                flint_printf("FAIL: matrix is singular over Q but not over R\n");
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("LU = \n"); arb_mat_printd(LU, 15); flint_printf("\n\n");
            }
        }
        else
        {
            /* now this must converge */
            while (1)
            {
                arb_mat_set_fmpq_mat(A, Q, prec);
                r_invertible = arb_mat_lu(perm, LU, A, prec);
                if (r_invertible)
                {
                    break;
                }
                else
                {
                    if (prec > 10000)
                    {
                        flint_printf("FAIL: failed to converge at 10000 bits\n");
                        abort();
                    }
                    prec *= 2;
                }
            }

            arb_mat_one(L);
            for (i = 0; i < n; i++)
                for (j = 0; j < i; j++)
                    arb_set(arb_mat_entry(L, i, j),
                        arb_mat_entry(LU, i, j));

            for (i = 0; i < n; i++)
                for (j = i; j < n; j++)
                    arb_set(arb_mat_entry(U, i, j),
                        arb_mat_entry(LU, i, j));

            for (i = 0; i < n; i++)
                arb_one(arb_mat_entry(P, perm[i], i));

            arb_mat_mul(T, P, L, prec);
            arb_mat_mul(T, T, U, prec);

            if (!arb_mat_contains_fmpq_mat(T, Q))
            {
                flint_printf("FAIL (containment, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("LU = \n"); arb_mat_printd(LU, 15); flint_printf("\n\n");
                flint_printf("L = \n"); arb_mat_printd(L, 15); flint_printf("\n\n");
                flint_printf("U = \n"); arb_mat_printd(U, 15); flint_printf("\n\n");
                flint_printf("P*L*U = \n"); arb_mat_printd(T, 15); flint_printf("\n\n");

                abort();
            }
        }

        fmpq_mat_clear(Q);
        arb_mat_clear(A);
        arb_mat_clear(LU);
        arb_mat_clear(P);
        arb_mat_clear(L);
        arb_mat_clear(U);
        arb_mat_clear(T);
        _perm_clear(perm);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
示例#22
0
文件: t-ldl.c 项目: argriffing/arb
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("ldl....");
    fflush(stdout);

    flint_randinit(state);

    /* check special matrices */
    {
        slong n;
        for (n = 1; n < 10; n++)
        {
            slong lprec;
            arb_mat_t L, A;
            arb_mat_init(L, n, n);
            arb_mat_init(A, n, n);
            for (lprec = 2; lprec < 10; lprec++)
            {
                int result;
                slong prec;
                prec = 1 << lprec;

                /* zero */
                arb_mat_zero(A);
                result = arb_mat_ldl(L, A, prec);
                if (result)
                {
                    flint_printf("FAIL (zero):\n");
                    flint_printf("n = %wd, prec = %wd\n", n, prec);
                    flint_printf("L = \n"); arb_mat_printd(L, 15);
                    flint_printf("\n\n");
                }

                /* negative identity */
                arb_mat_one(A);
                arb_mat_neg(A, A);
                result = arb_mat_ldl(L, A, prec);
                if (result)
                {
                    flint_printf("FAIL (negative identity):\n");
                    flint_printf("n = %wd, prec = %wd\n", n, prec);
                    flint_printf("L = \n"); arb_mat_printd(L, 15);
                    flint_printf("\n\n");
                }

                /* identity */
                arb_mat_one(A);
                result = arb_mat_ldl(L, A, prec);
                if (!result || !arb_mat_equal(L, A))
                {
                    flint_printf("FAIL (identity):\n");
                    flint_printf("n = %wd, prec = %wd\n", n, prec);
                    flint_printf("L = \n"); arb_mat_printd(L, 15);
                    flint_printf("\n\n");
                }
            }
            arb_mat_clear(L);
            arb_mat_clear(A);
        }
    }

    for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++)
    {
        fmpq_mat_t Q;
        arb_mat_t A, L, D, U, T;
        slong n, qbits, prec;
        int q_invertible, r_invertible;

        n = n_randint(state, 8);
        qbits = 1 + n_randint(state, 100);
        prec = 2 + n_randint(state, 202);

        fmpq_mat_init(Q, n, n);
        arb_mat_init(A, n, n);
        arb_mat_init(L, n, n);
        arb_mat_init(D, n, n);
        arb_mat_init(U, n, n);
        arb_mat_init(T, n, n);

        _fmpq_mat_randtest_positive_semidefinite(Q, state, qbits);
        q_invertible = fmpq_mat_is_invertible(Q);

        if (!q_invertible)
        {
            arb_mat_set_fmpq_mat(A, Q, prec);
            r_invertible = arb_mat_ldl(L, A, prec);
            if (r_invertible)
            {
                flint_printf("FAIL: matrix is singular over Q but not over R\n");
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("L = \n"); arb_mat_printd(L, 15); flint_printf("\n\n");
            }
        }
        else
        {
            /* now this must converge */
            while (1)
            {
                arb_mat_set_fmpq_mat(A, Q, prec);
                r_invertible = arb_mat_ldl(L, A, prec);
                if (r_invertible)
                {
                    break;
                }
                else
                {
                    if (prec > 10000)
                    {
                        flint_printf("FAIL: failed to converge at 10000 bits\n");
                        flint_printf("n = %wd, prec = %wd\n", n, prec);
                        flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                        flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                        abort();
                    }
                    prec *= 2;
                }
            }

            /* multiply out the decomposition */
            {
                slong i;
                arb_mat_zero(D);
                arb_mat_transpose(U, L);
                for (i = 0; i < n; i++)
                {
                    arb_set(arb_mat_entry(D, i, i), arb_mat_entry(L, i, i));
                    arb_one(arb_mat_entry(L, i, i));
                    arb_one(arb_mat_entry(U, i, i));
                }
                arb_mat_mul(T, L, D, prec);
                arb_mat_mul(T, T, U, prec);
            }

            if (!arb_mat_contains_fmpq_mat(T, Q))
            {
                flint_printf("FAIL (containment, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("L = \n"); arb_mat_printd(L, 15); flint_printf("\n\n");
                flint_printf("U = \n"); arb_mat_printd(U, 15); flint_printf("\n\n");
                flint_printf("L*U = \n"); arb_mat_printd(T, 15); flint_printf("\n\n");

                abort();
            }
        }

        fmpq_mat_clear(Q);
        arb_mat_clear(A);
        arb_mat_clear(L);
        arb_mat_clear(D);
        arb_mat_clear(U);
        arb_mat_clear(T);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
示例#23
0
void
arb_mat_solve_cho_precomp(arb_mat_t X,
    const arb_mat_t L, const arb_mat_t B, slong prec)
{
    slong i, j, c, n, m;

    n = arb_mat_nrows(X);
    m = arb_mat_ncols(X);

    arb_mat_set(X, B);

    for (c = 0; c < m; c++)
    {
        /* solve Ly = b */
        for (i = 0; i < n; i++)
        {
            for (j = 0; j < i; j++)
            {
                arb_submul(arb_mat_entry(X, i, c),
                    arb_mat_entry(L, i, j), arb_mat_entry(X, j, c), prec);
            }
            arb_div(arb_mat_entry(X, i, c), arb_mat_entry(X, i, c),
                arb_mat_entry(L, i, i), prec);
        }

        /* solve Ux = y */
        for (i = n - 1; i >= 0; i--)
        {
            for (j = i + 1; j < n; j++)
            {
                arb_submul(arb_mat_entry(X, i, c),
                    arb_mat_entry(L, j, i), arb_mat_entry(X, j, c), prec);
            }
            arb_div(arb_mat_entry(X, i, c), arb_mat_entry(X, i, c),
                arb_mat_entry(L, i, i), prec);
        }
    }
}
示例#24
0
void
arb_mat_inv_cho_precomp(arb_mat_t X, const arb_mat_t L, slong prec)
{
    slong n;

    if (arb_mat_nrows(X) != arb_mat_nrows(L) ||
        arb_mat_ncols(X) != arb_mat_ncols(L))
    {
        flint_printf("arb_mat_inv_cho_precomp: incompatible dimensions\n");
        abort();
    }

    if (arb_mat_is_empty(L))
        return;

    n = arb_mat_nrows(L);

    if (n == 1)
    {
        arb_inv(arb_mat_entry(X, 0, 0), arb_mat_entry(L, 0, 0), prec);
        _arb_sqr(arb_mat_entry(X, 0, 0), arb_mat_entry(X, 0, 0), prec);
        return;
    }

    if (X == L)
    {
        flint_printf("arb_mat_inv_cho_precomp: unsupported aliasing\n");
        abort();
    }

    /* invert a 2x2 or larger matrix given its L * L^T decomposition */
    {
        slong i, j, k;
        arb_struct *s;
        arb_mat_zero(X);
        s = _arb_vec_init(n);
        for (i = 0; i < n; i++)
        {
            arb_inv(s + i, arb_mat_entry(L, i, i), prec);
        }
        for (j = n-1; j >= 0; j--)
        {
            for (i = j; i >= 0; i--)
            {
                if (i == j)
                {
                    arb_set(arb_mat_entry(X, i, j), s + i);
                }
                else
                {
                    arb_zero(arb_mat_entry(X, i, j));
                }
                for (k = i + 1; k < n; k++)
                {
                    arb_submul(arb_mat_entry(X, i, j),
                               arb_mat_entry(L, k, i),
                               arb_mat_entry(X, k, j), prec);
                }
                arb_div(arb_mat_entry(X, i, j),
                        arb_mat_entry(X, i, j),
                        arb_mat_entry(L, i, i), prec);
                arb_set(arb_mat_entry(X, j, i),
                        arb_mat_entry(X, i, j));
            }
        }
        _arb_vec_clear(s, n);
    }
}
示例#25
0
int arb_mat_jacobi(arb_mat_t D, arb_mat_t P, const arb_mat_t A, slong prec) {
    //
    // Given a d x d real symmetric matrix A, compute an orthogonal matrix
    // P and a diagonal D such that A = P D P^t = P D P^(-1).
    //
    // D should have already been initialized as a d x 1 matrix, and Pp
    // should have already been initialized as a d x d matrix.
    //
    // If the eigenvalues can be certified as unique, then a nonzero int is
    // returned, and the eigenvectors should have reasonable error bounds. If
    // the eigenvalues cannot be certified as unique, then some of the
    // eigenvectors will have infinite error radius.

#define B(i,j) arb_mat_entry(B, i, j)
#define D(i) arb_mat_entry(D, i, 0)
#define P(i,j) arb_mat_entry(P, i, j)
    int dim = arb_mat_nrows(A);
    if(dim == 1) {
        arb_mat_set(D, A);
        arb_mat_one(P);
        return 0;
    }
    arb_mat_t B;
    arb_mat_init(B, dim, dim);

    arf_t * B1 = (arf_t*)malloc(dim * sizeof(arf_t));
    arf_t * B2 = (arf_t*)malloc(dim * sizeof(arf_t));
    arf_t * row_max = (arf_t*)malloc((dim - 1) * sizeof(arf_t));
    int * row_max_indices = (int*)malloc((dim - 1) * sizeof(int));

    for(int k = 0; k < dim; k++) {
        arf_init(B1[k]);
        arf_init(B2[k]);
    }
    for(int k = 0; k < dim - 1; k++) {
        arf_init(row_max[k]);
    }

    arf_t x1, x2;
    arf_init(x1);
    arf_init(x2);

    arf_t Gii, Gij, Gji, Gjj;
    arf_init(Gii);
    arf_init(Gij);
    arf_init(Gji);
    arf_init(Gjj);

    arb_mat_set(B, A);
    arb_mat_one(P);

    for(int i = 0; i < dim - 1; i++) {
        for(int j = i + 1; j < dim; j++) {
            arf_abs(x1, arb_midref(B(i,j)));
            if(arf_cmp(row_max[i], x1) < 0) {
                arf_set(row_max[i], x1);
                row_max_indices[i] = j;
            }
        }
    }


    int finished = 0;

    while(!finished) {
        arf_zero(x1);
        int i = 0;
        int j = 0;
        for(int k = 0; k < dim - 1; k++) {
            if(arf_cmp(x1, row_max[k]) < 0) {
                arf_set(x1, row_max[k]);
                i = k;
            }
        }
        j = row_max_indices[i];

        slong bound = arf_abs_bound_lt_2exp_si(x1);
        if(bound < -prec * .9) {
            finished = 1;
            break;
        }
        else {
            //printf("%ld\n", arf_abs_bound_lt_2exp_si(x1));
            //arb_mat_printd(B, 10);
            //printf("\n");
        }

        arf_twobytwo_diag(Gii, Gij, arb_midref(B(i,i)), arb_midref(B(i,j)), arb_midref(B(j,j)), 2*prec);
        arf_neg(Gji, Gij);
        arf_set(Gjj, Gii);

        //printf("%d %d\n", i, j);
        //arf_printd(Gii, 100);
        //printf(" ");
        //arf_printd(Gij, 100);
        //printf("\n");
        if(arf_is_zero(Gij)) {  // If this happens, we're
            finished = 1;       // not going to do any better
            break;              // without increasing the precision.
        }

        for(int k = 0; k < dim; k++) {
            arf_mul(B1[k], Gii, arb_midref(B(i,k)), prec, ARF_RND_NEAR);
            arf_addmul(B1[k], Gji, arb_midref(B(j,k)), prec, ARF_RND_NEAR);

            arf_mul(B2[k], Gij, arb_midref(B(i,k)), prec, ARF_RND_NEAR);
            arf_addmul(B2[k], Gjj, arb_midref(B(j,k)), prec, ARF_RND_NEAR);
        }
        for(int k = 0; k < dim; k++) {
            arf_set(arb_midref(B(i,k)), B1[k]);
            arf_set(arb_midref(B(j,k)), B2[k]);
        }
        for(int k = 0; k < dim; k++) {
            arf_mul(B1[k], Gii, arb_midref(B(k,i)), prec, ARF_RND_NEAR);
            arf_addmul(B1[k], Gji, arb_midref(B(k,j)), prec, ARF_RND_NEAR);

            arf_mul(B2[k], Gij, arb_midref(B(k,i)), prec, ARF_RND_NEAR);
            arf_addmul(B2[k], Gjj, arb_midref(B(k,j)), prec, ARF_RND_NEAR);
        }
        for(int k = 0; k < dim; k++) {
            arf_set(arb_midref(B(k,i)), B1[k]);
            arf_set(arb_midref(B(k,j)), B2[k]);
        }

        for(int k = 0; k < dim; k++) {
            arf_mul(B1[k], Gii, arb_midref(P(k,i)), prec, ARF_RND_NEAR);
            arf_addmul(B1[k], Gji, arb_midref(P(k,j)), prec, ARF_RND_NEAR);

            arf_mul(B2[k], Gij, arb_midref(P(k,i)), prec, ARF_RND_NEAR);
            arf_addmul(B2[k], Gjj, arb_midref(P(k,j)), prec, ARF_RND_NEAR);
        }
        for(int k = 0; k < dim; k++) {
            arf_set(arb_midref(P(k,i)), B1[k]);
            arf_set(arb_midref(P(k,j)), B2[k]);
        }

        if(i < dim - 1)
            arf_set_ui(row_max[i], 0);
        if(j < dim - 1)
            arf_set_ui(row_max[j], 0);

        // Update the max in any row where the maximum
        // was in a column that changed.
        for(int k = 0; k < dim - 1; k++) {
            if(row_max_indices[k] == j || row_max_indices[k] == i) {
                arf_abs(row_max[k], arb_midref(B(k,k+1)));
                row_max_indices[k] = k+1;
                for(int l = k+2; l < dim; l++) {
                    arf_abs(x1, arb_midref(B(k,l)));
                    if(arf_cmp(row_max[k], x1) < 0) {
                        arf_set(row_max[k], x1);
                        row_max_indices[k] = l;
                    }
                }
            }
        }

        // Update the max in the ith row.
        for(int k = i + 1; k < dim; k++) {
            arf_abs(x1, arb_midref(B(i, k)));
            if(arf_cmp(row_max[i], x1) < 0) {
                arf_set(row_max[i], x1);
                row_max_indices[i] = k;
            }
        }

        // Update the max in the jth row.
        for(int k = j + 1; k < dim; k++) {
            arf_abs(x1, arb_midref(B(j, k)));
            if(arf_cmp(row_max[j], x1) < 0) {
                arf_set(row_max[j], x1);
                row_max_indices[j] = k;
            }
        }

        // Go through column i to see if any of
        // the new entries are larger than the
        // max of their row.
        for(int k = 0; k < i; k++) {
            if(k == dim) continue;
            arf_abs(x1, arb_midref(B(k, i)));
            if(arf_cmp(row_max[k], x1) < 0) {
                arf_set(row_max[k], x1);
                row_max_indices[k] = i;
            }
        }

        // And then column j.
        for(int k = 0; k < j; k++) {
            if(k == dim) continue;
            arf_abs(x1, arb_midref(B(k, j)));
            if(arf_cmp(row_max[k], x1) < 0) {
                arf_set(row_max[k], x1);
                row_max_indices[k] = j;
            }
        }
    }

    for(int k = 0; k < dim; k++) {
        arb_set(D(k), B(k,k));
        arb_set_exact(D(k));
    }

    // At this point we've done that diagonalization and all that remains is
    // to certify the correctness and compute error bounds.

    arb_mat_t e;

    arb_t error_norms[dim];
    for(int k = 0; k < dim; k++) arb_init(error_norms[k]);

    arb_mat_init(e, dim, 1);

    arb_t z1, z2;
    arb_init(z1);
    arb_init(z2);
    for(int j = 0; j < dim; j++) {
        arb_mat_set(B, A);
        for(int k = 0; k < dim; k++) {
            arb_sub(B(k, k), B(k, k), D(j), prec);
        }
        for(int k = 0; k < dim; k++) {
            arb_set(arb_mat_entry(e, k, 0), P(k, j));
        }
        arb_mat_L2norm(z2, e, prec);
        arb_mat_mul(e, B, e, prec);
        arb_mat_L2norm(error_norms[j], e, prec);

        arb_div(z2, error_norms[j], z2, prec); // and now z1 is an upper bound for the
                                               // error in the eigenvalue
        arb_add_error(D(j), z2);
    }

    int unique_eigenvalues = 1;
    for(int j = 0; j < dim; j++) {
        if(j == 0) {
            arb_sub(z1, D(j), D(1), prec);
        }
        else {
            arb_sub(z1, D(j), D(0), prec);
        }
        arb_get_abs_lbound_arf(x1, z1, prec);
        for(int k = 1; k < dim; k++) {
            if(k == j) continue;
            arb_sub(z1, D(j), D(k), prec);
            arb_get_abs_lbound_arf(x2, z1, prec);
            if(arf_cmp(x2, x1) < 0) {
                arf_set(x1, x2);
            }
        }
        if(arf_is_zero(x1)) {
            unique_eigenvalues = 0;
        }
        arb_div_arf(z1, error_norms[j], x1, prec);
        for(int k = 0; k < dim; k++) {
            arb_add_error(P(k, j), z1);
        }
    }

    arb_mat_clear(e);
    arb_clear(z1);
    arb_clear(z2);
    for(int k = 0; k < dim; k++) arb_clear(error_norms[k]);

    arf_clear(x1);
    arf_clear(x2);
    arb_mat_clear(B);
    for(int k = 0; k < dim; k++) {
        arf_clear(B1[k]);
        arf_clear(B2[k]);
    }
    for(int k = 0; k < dim - 1; k++) {
        arf_clear(row_max[k]);
    }
    arf_clear(Gii);
    arf_clear(Gij);
    arf_clear(Gji);
    arf_clear(Gjj);
    free(B1);
    free(B2);
    free(row_max);
    free(row_max_indices);

    if(unique_eigenvalues) return 0;
    else return 1;
#undef B
#undef D
#undef P
}
示例#26
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("solve_tril....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++)
    {
        arb_mat_t A, X, B, Y;
        slong rows, cols, prec, i, j;
        int unit;

        prec = 2 + n_randint(state, 200);
        if (n_randint(state, 10) == 0)
        {
            rows = n_randint(state, 60);
            cols = n_randint(state, 60);
        }
        else
        {
            rows = n_randint(state, 10);
            cols = n_randint(state, 10);
        }
        unit = n_randint(state, 2);

        arb_mat_init(A, rows, rows);
        arb_mat_init(B, rows, cols);
        arb_mat_init(X, rows, cols);
        arb_mat_init(Y, rows, cols);

        arb_mat_randtest(A, state, prec, 10);
        arb_mat_randtest(X, state, prec, 10);
        arb_mat_randtest(Y, state, prec, 10);

        for (i = 0; i < rows; i++)
        {
            if (unit)
                arb_one(arb_mat_entry(A, i, i));
            else
                arb_set_ui(arb_mat_entry(A, i, i), 1 + n_randint(state, 100));

            for (j = i + 1; j < rows; j++)
                arb_zero(arb_mat_entry(A, i, j));
        }

        arb_mat_mul(B, A, X, prec);

        if (unit)  /* check that diagonal entries are ignored */
        {
            for (i = 0; i < rows; i++)
                arb_set_ui(arb_mat_entry(A, i, i), 1 + n_randint(state, 100));
        }

        /* Check Y = A^(-1) * (A * X) = X */
        arb_mat_solve_tril(Y, A, B, unit, prec);

        if (!arb_mat_overlaps(Y, X))
        {
            flint_printf("FAIL\n");
            flint_printf("A = \n"); arb_mat_printd(A, 10); flint_printf("\n\n");
            flint_printf("B = \n"); arb_mat_printd(B, 10); flint_printf("\n\n");
            flint_printf("X = \n"); arb_mat_printd(X, 10); flint_printf("\n\n");
            flint_printf("Y = \n"); arb_mat_printd(Y, 10); flint_printf("\n\n");
            flint_abort();
        }

        /* Check aliasing */
        arb_mat_solve_tril(B, A, B, unit, prec);
        if (!arb_mat_equal(B, Y))
        {
            flint_printf("FAIL (aliasing)\n");
            flint_printf("A = \n"); arb_mat_printd(A, 10); flint_printf("\n\n");
            flint_printf("B = \n"); arb_mat_printd(B, 10); flint_printf("\n\n");
            flint_printf("X = \n"); arb_mat_printd(X, 10); flint_printf("\n\n");
            flint_printf("Y = \n"); arb_mat_printd(Y, 10); flint_printf("\n\n");
            flint_abort();
        }

        arb_mat_clear(A);
        arb_mat_clear(B);
        arb_mat_clear(X);
        arb_mat_clear(Y);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
示例#27
0
文件: exp.c 项目: wbhart/arb
void
arb_mat_exp(arb_mat_t B, const arb_mat_t A, slong prec)
{
    slong i, j, dim, wp, N, q, r;
    mag_t norm, err;
    arb_mat_t T;

    dim = arb_mat_nrows(A);

    if (dim != arb_mat_ncols(A))
    {
        flint_printf("arb_mat_exp: a square matrix is required!\n");
        abort();
    }

    if (dim == 0)
    {
        return;
    }
    else if (dim == 1)
    {
        arb_exp(arb_mat_entry(B, 0, 0), arb_mat_entry(A, 0, 0), prec);
        return;
    }

    wp = prec + 3 * FLINT_BIT_COUNT(prec);

    mag_init(norm);
    mag_init(err);
    arb_mat_init(T, dim, dim);

    arb_mat_bound_inf_norm(norm, A);

    if (mag_is_zero(norm))
    {
        arb_mat_one(B);
    }
    else
    {
        q = pow(wp, 0.25);  /* wanted magnitude */

        if (mag_cmp_2exp_si(norm, 2 * wp) > 0) /* too big */
            r = 2 * wp;
        else if (mag_cmp_2exp_si(norm, -q) < 0) /* tiny, no need to reduce */
            r = 0;
        else
            r = FLINT_MAX(0, q + MAG_EXP(norm)); /* reduce to magnitude 2^(-r) */

        arb_mat_scalar_mul_2exp_si(T, A, -r);
        mag_mul_2exp_si(norm, norm, -r);

        N = _arb_mat_exp_choose_N(norm, wp);
        mag_exp_tail(err, norm, N);

        _arb_mat_exp_taylor(B, T, N, wp);

        for (i = 0; i < dim; i++)
            for (j = 0; j < dim; j++)
                arb_add_error_mag(arb_mat_entry(B, i, j), err);

        for (i = 0; i < r; i++)
        {
            arb_mat_mul(T, B, B, wp);
            arb_mat_swap(T, B);
        }

        for (i = 0; i < dim; i++)
            for (j = 0; j < dim; j++)
                arb_set_round(arb_mat_entry(B, i, j),
                    arb_mat_entry(B, i, j), prec);
    }

    mag_clear(norm);
    mag_clear(err);
    arb_mat_clear(T);
}
示例#28
0
文件: UseArb.cpp 项目: duhadler/C
void Lib_Arb_Mat_Set_Ui(ArbMatPtr A, int32_t i, int32_t j, int32_t u)
{
    arb_set_ui ( arb_mat_entry ((arb_mat_struct*)A, i, j), u);
}