/******************************************************************************* * This function is the handler registered for S-EL1 interrupts by the * OPTEED. It validates the interrupt and upon success arranges entry into * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. ******************************************************************************/ static uint64_t opteed_sel1_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { uint32_t linear_id; optee_context_t *optee_ctx; /* Check the security state when the exception was generated */ assert(get_interrupt_src_ss(flags) == NON_SECURE); /* Sanity check the pointer to this cpu's context */ assert(handle == cm_get_context(NON_SECURE)); /* Save the non-secure context before entering the OPTEE */ cm_el1_sysregs_context_save(NON_SECURE); /* Get a reference to this cpu's OPTEE context */ linear_id = plat_my_core_pos(); optee_ctx = &opteed_sp_context[linear_id]; assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry); cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); /* * Tell the OPTEE that it has to handle an FIQ (synchronously). * Also the instruction in normal world where the interrupt was * generated is passed for debugging purposes. It is safe to * retrieve this address from ELR_EL3 as the secure context will * not take effect until el3_exit(). */ SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); }
/******************************************************************************* * This cpu is being turned off. Allow the OPTEED/OPTEE to perform any actions * needed ******************************************************************************/ static int32_t opteed_cpu_off_handler(uint64_t unused) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; assert(optee_vectors); assert(get_optee_pstate(optee_ctx->state) == OPTEE_PSTATE_ON); /* Program the entry point and enter OPTEE */ cm_set_elr_el3(SECURE, (uint64_t) &optee_vectors->cpu_off_entry); rc = opteed_synchronous_sp_entry(optee_ctx); /* * Read the response from OPTEE. A non-zero return means that * something went wrong while communicating with OPTEE. */ if (rc != 0) panic(); /* * Reset OPTEE's context for a fresh start when this cpu is turned on * subsequently. */ set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_OFF); return 0; }
/******************************************************************************* * This cpu is being turned off. Allow the TSPD/TSP to perform any actions * needed ******************************************************************************/ static int32_t tspd_cpu_off_handler(uint64_t unused) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); /* Program the entry point and enter the TSP */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_off_entry); rc = tspd_synchronous_sp_entry(tsp_ctx); /* * Read the response from the TSP. A non-zero return means that * something went wrong while communicating with the TSP. */ if (rc != 0) panic(); /* * Reset TSP's context for a fresh start when this cpu is turned on * subsequently. */ set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_OFF); return 0; }
/******************************************************************************* * This cpu has resumed from suspend. The SPD saved the TSP context when it * completed the preceding suspend call. Use that context to program an entry * into the TSP to allow it to do any remaining book keeping ******************************************************************************/ static void tspd_cpu_suspend_finish_handler(uint64_t max_off_pwrlvl) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_SUSPEND); /* Program the entry point, max_off_pwrlvl and enter the SP */ write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx), CTX_GPREG_X0, max_off_pwrlvl); cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_resume_entry); rc = tspd_synchronous_sp_entry(tsp_ctx); /* * Read the response from the TSP. A non-zero return means that * something went wrong while communicating with the TSP. */ if (rc != 0) panic(); /* Update its context to reflect the state the SP is in */ set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); }
/******************************************************************************* * System is about to be reset. Allow the TSPD/TSP to perform * any actions needed. ******************************************************************************/ static void tspd_system_reset(void) { uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); /* Program the entry point */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->system_reset_entry); /* Enter the TSP. We do not care about the return value because we * must continue the reset anyway */ tspd_synchronous_sp_entry(tsp_ctx); }
/******************************************************************************* * System is about to be reset. Allow the OPTEED/OPTEE to perform * any actions needed. ******************************************************************************/ static void opteed_system_reset(void) { uint32_t linear_id = plat_my_core_pos(); optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; assert(optee_vectors); assert(get_optee_pstate(optee_ctx->state) == OPTEE_PSTATE_ON); /* Program the entry point */ cm_set_elr_el3(SECURE, (uint64_t) &optee_vectors->system_reset_entry); /* Enter OPTEE. We do not care about the return value because we * must continue the reset anyway */ opteed_synchronous_sp_entry(optee_ctx); }
static void tbase_setup_entry_common( cpu_context_t *s_context, cpu_context_t *ns_context, uint32_t call_offset) { // Set up registers gp_regs_t *s_gpregs = get_gpregs_ctx(s_context); // NWd spsr uint64_t ns_spsr = read_ctx_reg(get_el3state_ctx(ns_context), CTX_SPSR_EL3); write_ctx_reg(s_gpregs, CTX_GPREG_X2, ns_spsr); // Entry to tbase el3_state_t *el3sysregs = get_el3state_ctx(s_context); write_ctx_reg(el3sysregs, CTX_SPSR_EL3, tbaseEntrySpsr); cm_set_elr_el3(SECURE,tbaseEntryBase+call_offset); }
/******************************************************************************* * This function takes an SP context pointer and abort any preempted SMC * request. * Return 1 if there was a preempted SMC request, 0 otherwise. ******************************************************************************/ int tspd_abort_preempted_smc(tsp_context_t *tsp_ctx) { if (!get_yield_smc_active_flag(tsp_ctx->state)) return 0; /* Abort any preempted SMC request */ clr_yield_smc_active_flag(tsp_ctx->state); /* * Arrange for an entry into the test secure payload. It will * be returned via TSP_ABORT_DONE case in tspd_smc_handler. */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->abort_yield_smc_entry); uint64_t rc = tspd_synchronous_sp_entry(tsp_ctx); if (rc != 0) panic(); return 1; }
/******************************************************************************* * This cpu is being suspended. S-EL1 state must have been saved in the * resident cpu (mpidr format) if it is a UP/UP migratable OPTEE. ******************************************************************************/ static void opteed_cpu_suspend_handler(uint64_t max_off_pwrlvl) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; assert(optee_vectors); assert(get_optee_pstate(optee_ctx->state) == OPTEE_PSTATE_ON); /* Program the entry point and enter OPTEE */ cm_set_elr_el3(SECURE, (uint64_t) &optee_vectors->cpu_suspend_entry); rc = opteed_synchronous_sp_entry(optee_ctx); /* * Read the response from OPTEE. A non-zero return means that * something went wrong while communicating with OPTEE. */ if (rc != 0) panic(); /* Update its context to reflect the state OPTEE is in */ set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_SUSPEND); }
/******************************************************************************* * This function is responsible for handling all SMCs in the Trusted OS/App * range from the non-secure state as defined in the SMC Calling Convention * Document. It is also responsible for communicating with the Secure payload * to delegate work and return results back to the non-secure state. Lastly it * will also return any information that the secure payload needs to do the * work assigned to it. ******************************************************************************/ uint64_t tspd_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { cpu_context_t *ns_cpu_context; uint32_t linear_id = plat_my_core_pos(), ns; tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; uint64_t rc; #if TSP_INIT_ASYNC entry_point_info_t *next_image_info; #endif /* Determine which security state this SMC originated from */ ns = is_caller_non_secure(flags); switch (smc_fid) { /* * This function ID is used by TSP to indicate that it was * preempted by a normal world IRQ. * */ case TSP_PREEMPTED: if (ns) SMC_RET1(handle, SMC_UNK); return tspd_handle_sp_preemption(handle); /* * This function ID is used only by the TSP to indicate that it has * finished handling a S-EL1 FIQ interrupt. Execution should resume * in the normal world. */ case TSP_HANDLED_S_EL1_FIQ: if (ns) SMC_RET1(handle, SMC_UNK); assert(handle == cm_get_context(SECURE)); /* * Restore the relevant EL3 state which saved to service * this SMC. */ if (get_std_smc_active_flag(tsp_ctx->state)) { SMC_SET_EL3(&tsp_ctx->cpu_ctx, CTX_SPSR_EL3, tsp_ctx->saved_spsr_el3); SMC_SET_EL3(&tsp_ctx->cpu_ctx, CTX_ELR_EL3, tsp_ctx->saved_elr_el3); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Need to restore the previously interrupted * secure context. */ memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx, TSPD_SP_CTX_SIZE); #endif } /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* * Restore non-secure state. There is no need to save the * secure system register context since the TSP was supposed * to preserve it during S-EL1 interrupt handling. */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET0((uint64_t) ns_cpu_context); /* * This function ID is used only by the TSP to indicate that it was * interrupted due to a EL3 FIQ interrupt. Execution should resume * in the normal world. */ case TSP_EL3_FIQ: if (ns) SMC_RET1(handle, SMC_UNK); assert(handle == cm_get_context(SECURE)); /* Assert that standard SMC execution has been preempted */ assert(get_std_smc_active_flag(tsp_ctx->state)); /* Save the secure system register state */ cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* Restore non-secure state */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET1(ns_cpu_context, TSP_EL3_FIQ); /* * This function ID is used only by the SP to indicate it has * finished initialising itself after a cold boot */ case TSP_ENTRY_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * Stash the SP entry points information. This is done * only once on the primary cpu */ assert(tsp_vectors == NULL); tsp_vectors = (tsp_vectors_t *) x1; if (tsp_vectors) { set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); /* * TSP has been successfully initialized. Register power * managemnt hooks with PSCI */ psci_register_spd_pm_hook(&tspd_pm); /* * Register an interrupt handler for S-EL1 interrupts * when generated during code executing in the * non-secure state. */ flags = 0; set_interrupt_rm_flag(flags, NON_SECURE); rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, tspd_sel1_interrupt_handler, flags); if (rc) panic(); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Register an interrupt handler for NS interrupts when * generated during code executing in secure state are * routed to EL3. */ flags = 0; set_interrupt_rm_flag(flags, SECURE); rc = register_interrupt_type_handler(INTR_TYPE_NS, tspd_ns_interrupt_handler, flags); if (rc) panic(); /* * Disable the interrupt NS locally since it will be enabled globally * within cm_init_my_context. */ disable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif } #if TSP_INIT_ASYNC /* Save the Secure EL1 system register context */ assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx); cm_el1_sysregs_context_save(SECURE); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE); assert(next_image_info); assert(NON_SECURE == GET_SECURITY_STATE(next_image_info->h.attr)); cm_init_my_context(next_image_info); cm_prepare_el3_exit(NON_SECURE); SMC_RET0(cm_get_context(NON_SECURE)); #else /* * SP reports completion. The SPD must have initiated * the original request through a synchronous entry * into the SP. Jump back to the original C runtime * context. */ tspd_synchronous_sp_exit(tsp_ctx, x1); #endif /* * These function IDs is used only by the SP to indicate it has * finished: * 1. turning itself on in response to an earlier psci * cpu_on request * 2. resuming itself after an earlier psci cpu_suspend * request. */ case TSP_ON_DONE: case TSP_RESUME_DONE: /* * These function IDs is used only by the SP to indicate it has * finished: * 1. suspending itself after an earlier psci cpu_suspend * request. * 2. turning itself off in response to an earlier psci * cpu_off request. */ case TSP_OFF_DONE: case TSP_SUSPEND_DONE: case TSP_SYSTEM_OFF_DONE: case TSP_SYSTEM_RESET_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * SP reports completion. The SPD must have initiated the * original request through a synchronous entry into the SP. * Jump back to the original C runtime context, and pass x1 as * return value to the caller */ tspd_synchronous_sp_exit(tsp_ctx, x1); /* * Request from non-secure client to perform an * arithmetic operation or response from secure * payload to an earlier request. */ case TSP_FAST_FID(TSP_ADD): case TSP_FAST_FID(TSP_SUB): case TSP_FAST_FID(TSP_MUL): case TSP_FAST_FID(TSP_DIV): case TSP_STD_FID(TSP_ADD): case TSP_STD_FID(TSP_SUB): case TSP_STD_FID(TSP_MUL): case TSP_STD_FID(TSP_DIV): if (ns) { /* * This is a fresh request from the non-secure client. * The parameters are in x1 and x2. Figure out which * registers need to be preserved, save the non-secure * state and send the request to the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); /* Check if we are already preempted */ if (get_std_smc_active_flag(tsp_ctx->state)) SMC_RET1(handle, SMC_UNK); cm_el1_sysregs_context_save(NON_SECURE); /* Save x1 and x2 for use by TSP_GET_ARGS call below */ store_tsp_args(tsp_ctx, x1, x2); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ /* * Verify if there is a valid context to use, copy the * operation type and parameters to the secure context * and jump to the fast smc entry point in the secure * payload. Entry into S-EL1 will take place upon exit * from this function. */ assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); /* Set appropriate entry for SMC. * We expect the TSP to manage the PSTATE.I and PSTATE.F * flags as appropriate. */ if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->fast_smc_entry); } else { set_std_smc_active_flag(tsp_ctx->state); cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->std_smc_entry); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Enable the routing of NS interrupts to EL3 * during STD SMC processing on this core. */ enable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif } cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2); } else { /* * This is the result from the secure client of an * earlier request. The results are in x1-x3. Copy it * into the non-secure context, save the secure state * and return to the non-secure state. */ assert(handle == cm_get_context(SECURE)); cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* Restore non-secure state */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD) { clr_std_smc_active_flag(tsp_ctx->state); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Disable the routing of NS interrupts to EL3 * after STD SMC processing is finished on this * core. */ disable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif } SMC_RET3(ns_cpu_context, x1, x2, x3); } break; /* * Request from non secure world to resume the preempted * Standard SMC call. */ case TSP_FID_RESUME: /* RESUME should be invoked only by normal world */ if (!ns) { assert(0); break; } /* * This is a resume request from the non-secure client. * save the non-secure state and send the request to * the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); /* Check if we are already preempted before resume */ if (!get_std_smc_active_flag(tsp_ctx->state)) SMC_RET1(handle, SMC_UNK); cm_el1_sysregs_context_save(NON_SECURE); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ #if TSPD_ROUTE_IRQ_TO_EL3 /* * Enable the routing of NS interrupts to EL3 during resumption * of STD SMC call on this core. */ enable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif /* We just need to return to the preempted point in * TSP and the execution will resume as normal. */ cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); SMC_RET0(&tsp_ctx->cpu_ctx); /* * This is a request from the secure payload for more arguments * for an ongoing arithmetic operation requested by the * non-secure world. Simply return the arguments from the non- * secure client in the original call. */ case TSP_GET_ARGS: if (ns) SMC_RET1(handle, SMC_UNK); get_tsp_args(tsp_ctx, x1, x2); SMC_RET2(handle, x1, x2); case TOS_CALL_COUNT: /* * Return the number of service function IDs implemented to * provide service to non-secure */ SMC_RET1(handle, TSP_NUM_FID); case TOS_UID: /* Return TSP UID to the caller */ SMC_UUID_RET(handle, tsp_uuid); case TOS_CALL_VERSION: /* Return the version of current implementation */ SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR); default: break; } SMC_RET1(handle, SMC_UNK); }
/******************************************************************************* * This function is responsible for handling all SMCs in the Trusted OS/App * range from the non-secure state as defined in the SMC Calling Convention * Document. It is also responsible for communicating with the Secure * payload to delegate work and return results back to the non-secure * state. Lastly it will also return any information that OPTEE needs to do * the work assigned to it. ******************************************************************************/ uint64_t opteed_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { cpu_context_t *ns_cpu_context; unsigned long mpidr = read_mpidr(); uint32_t linear_id = platform_get_core_pos(mpidr); optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; uint64_t rc; /* * Determine which security state this SMC originated from */ if (is_caller_non_secure(flags)) { /* * This is a fresh request from the non-secure client. * The parameters are in x1 and x2. Figure out which * registers need to be preserved, save the non-secure * state and send the request to the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); cm_el1_sysregs_context_save(NON_SECURE); /* * We are done stashing the non-secure context. Ask the * OPTEE to do the work now. */ /* * Verify if there is a valid context to use, copy the * operation type and parameters to the secure context * and jump to the fast smc entry point in the secure * payload. Entry into S-EL1 will take place upon exit * from this function. */ assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); /* Set appropriate entry for SMC. * We expect OPTEE to manage the PSTATE.I and PSTATE.F * flags as appropriate. */ if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { cm_set_elr_el3(SECURE, (uint64_t) &optee_vectors->fast_smc_entry); } else { cm_set_elr_el3(SECURE, (uint64_t) &optee_vectors->std_smc_entry); } cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); /* Propagate hypervisor client ID */ write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), CTX_GPREG_X7, read_ctx_reg(get_gpregs_ctx(handle), CTX_GPREG_X7)); SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); } /* * Returning from OPTEE */ switch (smc_fid) { /* * OPTEE has finished initialising itself after a cold boot */ case TEESMC_OPTEED_RETURN_ENTRY_DONE: /* * Stash the OPTEE entry points information. This is done * only once on the primary cpu */ assert(optee_vectors == NULL); optee_vectors = (optee_vectors_t *) x1; if (optee_vectors) { set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); /* * OPTEE has been successfully initialized. * Register power management hooks with PSCI */ psci_register_spd_pm_hook(&opteed_pm); /* * Register an interrupt handler for S-EL1 interrupts * when generated during code executing in the * non-secure state. */ flags = 0; set_interrupt_rm_flag(flags, NON_SECURE); rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, opteed_sel1_interrupt_handler, flags); if (rc) panic(); } /* * OPTEE reports completion. The OPTEED must have initiated * the original request through a synchronous entry into * OPTEE. Jump back to the original C runtime context. */ opteed_synchronous_sp_exit(optee_ctx, x1); /* * These function IDs is used only by OP-TEE to indicate it has * finished: * 1. turning itself on in response to an earlier psci * cpu_on request * 2. resuming itself after an earlier psci cpu_suspend * request. */ case TEESMC_OPTEED_RETURN_ON_DONE: case TEESMC_OPTEED_RETURN_RESUME_DONE: /* * These function IDs is used only by the SP to indicate it has * finished: * 1. suspending itself after an earlier psci cpu_suspend * request. * 2. turning itself off in response to an earlier psci * cpu_off request. */ case TEESMC_OPTEED_RETURN_OFF_DONE: case TEESMC_OPTEED_RETURN_SUSPEND_DONE: case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: /* * OPTEE reports completion. The OPTEED must have initiated the * original request through a synchronous entry into OPTEE. * Jump back to the original C runtime context, and pass x1 as * return value to the caller */ opteed_synchronous_sp_exit(optee_ctx, x1); /* * OPTEE is returning from a call or being preempted from a call, in * either case execution should resume in the normal world. */ case TEESMC_OPTEED_RETURN_CALL_DONE: /* * This is the result from the secure client of an * earlier request. The results are in x0-x3. Copy it * into the non-secure context, save the secure state * and return to the non-secure state. */ assert(handle == cm_get_context(SECURE)); cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* Restore non-secure state */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET4(ns_cpu_context, x1, x2, x3, x4); /* * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution * should resume in the normal world. */ case TEESMC_OPTEED_RETURN_FIQ_DONE: /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* * Restore non-secure state. There is no need to save the * secure system register context since OPTEE was supposed * to preserve it during S-EL1 interrupt handling. */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET0((uint64_t) ns_cpu_context); default: panic(); } }
/******************************************************************************* * This function is responsible for handling all SMCs in the Trusted OS/App * range from the non-secure state as defined in the SMC Calling Convention * Document. It is also responsible for communicating with the XILSP to * delegate work and return results back to the non-secure state. Lastly it * will also return any information that the XILSP needs to do the work * assigned to it. ******************************************************************************/ uint64_t xilspd_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { cpu_context_t *ns_cpu_context; uint32_t linear_id = plat_my_core_pos(), ns; xilsp_context_t *xilsp_ctx = &xilspd_sp_context[linear_id]; /* Determine which security state this SMC originated from */ ns = is_caller_non_secure(flags); switch (smc_fid) { /* * This function ID is used only by the SP to indicate it has * finished initialising itself after a cold boot */ case XILSP_ENTRY_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * Stash the SP entry points information. This is done * only once on the primary cpu */ assert(xilsp_vectors == NULL); xilsp_vectors = (xilsp_vectors_t *) x1; if (xilsp_vectors) set_xilsp_pstate(xilsp_ctx->state, XILSP_PSTATE_ON); /* * SP reports completion. The SPD must have initiated * the original request through a synchronous entry * into the SP. Jump back to the original C runtime * context. */ xilspd_synchronous_sp_exit(xilsp_ctx, x1); break; case XILSP_ARITH: if (ns) { /* * This is a fresh request from the non-secure client. * Figure out which registers need to be preserved, save * the non-secure state and send the request to the * secure payload. */ assert(handle == cm_get_context(NON_SECURE)); cm_el1_sysregs_context_save(NON_SECURE); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ /* * Verify if there is a valid context to use, copy the * operation type and parameters to the secure context * and jump to the fast smc entry point in the secure * payload. Entry into S-EL1 will take place upon exit * from this function. */ assert(&xilsp_ctx->cpu_ctx == cm_get_context(SECURE)); /* Set appropriate entry for SMC. * We expect the XILSP to manage the PSTATE.I and * PSTATE.F flags as appropriate. */ cm_set_elr_el3(SECURE, (uint64_t) &xilsp_vectors->fast_smc_entry); cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx), CTX_GPREG_X4, read_ctx_reg(get_gpregs_ctx(handle), CTX_GPREG_X4)); write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx), CTX_GPREG_X5, read_ctx_reg(get_gpregs_ctx(handle), CTX_GPREG_X5)); write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx), CTX_GPREG_X6, read_ctx_reg(get_gpregs_ctx(handle), CTX_GPREG_X6)); /* Propagate hypervisor client ID */ write_ctx_reg(get_gpregs_ctx(&xilsp_ctx->cpu_ctx), CTX_GPREG_X7, read_ctx_reg(get_gpregs_ctx(handle), CTX_GPREG_X7)); SMC_RET4(&xilsp_ctx->cpu_ctx, smc_fid, x1, x2, x3); } else { /* * This is the result from the secure client of an * earlier request. The results are in x1-x4. Copy it * into the non-secure context, save the secure state * and return to the non-secure state. */ assert(handle == cm_get_context(SECURE)); cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* Restore non-secure state */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET4(ns_cpu_context, x1, x2, x3, x4); } break; default: break; } SMC_RET1(handle, SMC_UNK); }