/**
 * \ingroup freertos_uart_peripheral_control_group
 * \brief Initiate a completely asynchronous multi-byte write operation on a
 * UART peripheral.
 *
 * freertos_uart_write_packet_async() is an ASF specific FreeRTOS driver
 * function.  It configures the UART peripheral DMA controller (PDC) to
 * transmit data on the UART port, then returns.
 * freertos_uart_write_packet_async() does not wait for the transmission to
 * complete before returning.
 *
 * The FreeRTOS UART driver is initialized using a call to
 * freertos_uart_serial_init().  The freertos_driver_parameters.options_flags
 * parameter passed into the initialization function defines the driver behavior.
 * freertos_uart_write_packet_async() can only be used if the
 * freertos_driver_parameters.options_flags parameter passed to the initialization
 * function had the WAIT_TX_COMPLETE bit clear.
 *
 * freertos_uart_write_packet_async() is an advanced function and readers are
 * recommended to also reference the application note and examples that
 * accompany the FreeRTOS ASF drivers.  freertos_uart_write_packet() is a
 * version that does not exit until the PDC transfer is complete, but still
 * allows other RTOS tasks to execute while the transmission is in progress.
 *
 * The FreeRTOS ASF driver both installs and handles the UART PDC interrupts.
 * Users do not need to concern themselves with interrupt handling, and must
 * not install their own interrupt handler.
 *
 * \param p_uart    The handle to the UART peripheral returned by the
 *     freertos_uart_serial_init() call used to initialise the peripheral.
 * \param data    A pointer to the data to be transmitted.
 * \param len    The number of bytes to transmit.
 * \param block_time_ticks    The FreeRTOS ASF UART driver is initialized using
 *     a call to freertos_uart_serial_init().  The
 *     freertos_driver_parameters.options_flags parameter passed to the
 *     initialization function defines the driver behavior.  If
 *     freertos_driver_parameters.options_flags had the USE_TX_ACCESS_MUTEX bit
 *     set, then the driver will only write to the UART peripheral if it has
 *     first gained exclusive access to it.  block_time_ticks specifies the
 *     maximum amount of time the driver will wait to get exclusive access
 *     before aborting the write operation.  Other tasks will execute during any
 *     waiting time.  block_time_ticks is specified in RTOS tick periods.  To
 *     specify a block time in milliseconds, divide the milliseconds value by
 *     portTICK_RATE_MS, and pass the result in block_time_ticks.
 *     portTICK_RATE_MS is defined by FreeRTOS.
 * \param notification_semaphore    The RTOS task that calls the transmit
 *     function exits the transmit function as soon as the transmission starts.
 *     The data being transmitted by the PDC must not be modified until after
 *     the transmission has completed.  The PDC interrupt (handled internally by
 *     the FreeRTOS ASF driver) 'gives' the semaphore when the PDC transfer
 *     completes.  The notification_semaphore therefore provides a mechanism for
 *     the calling task to know when the PDC has finished accessing the data.
 *     The calling task can call standard FreeRTOS functions to block on the
 *     semaphore until the PDC interrupt occurs.  Other RTOS tasks will execute
 *     while the the calling task is in the Blocked state.  The semaphore must
 *     be created using the FreeRTOS vSemaphoreCreateBinary() API function
 *     before it is used as a parameter.
 *
 * \return     ERR_INVALID_ARG is returned if an input parameter is invalid.
 *     ERR_TIMEOUT is returned if block_time_ticks passed before exclusive
 *     access to the UART peripheral could be obtained.  STATUS_OK is returned
 *     if the PDC was successfully configured to perform the UART write
 *     operation.
 */
status_code_t freertos_uart_write_packet_async(freertos_uart_if p_uart,
		const uint8_t *data, size_t len, portTickType block_time_ticks,
		xSemaphoreHandle notification_semaphore)
{
	status_code_t return_value;
	portBASE_TYPE uart_index;
	Uart *uart_base;

	uart_base = (Uart *) p_uart;
	uart_index = get_pdc_peripheral_details(all_uart_definitions,
			MAX_UARTS,
			(void *) uart_base);

	/* Don't do anything unless a valid UART pointer was used. */
	if (uart_index < MAX_UARTS) {
		return_value = freertos_obtain_peripheral_access_mutex(
				&(tx_dma_control[uart_index]),
				&block_time_ticks);

		if (return_value == STATUS_OK) {
			freertos_start_pdc_tx(&(tx_dma_control[uart_index]),
					data, len,
					all_uart_definitions[uart_index].pdc_base_address,
					notification_semaphore);

			/* Catch the end of transmission so the access mutex can be
			returned, and the task notified (if it supplied a notification
			semaphore).  The interrupt can be enabled here because the ENDTX
			signal from the PDC to the UART will have been de-asserted when
			the next transfer was configured. */
			uart_enable_interrupt(uart_base, UART_IER_ENDTX);

			return_value = freertos_optionally_wait_transfer_completion(
					&(tx_dma_control[uart_index]),
					notification_semaphore,
					block_time_ticks);
		}
	} else {
		return_value = ERR_INVALID_ARG;
	}

	return return_value;
}
示例#2
0
/**
 * \ingroup freertos_spi_peripheral_control_group
 * \brief Initiate a completely asynchronous multi-byte read operation on an SPI
 * peripheral.
 *
 * freertos_spi_read_packet_async() is an ASF specific FreeRTOS driver function.
 * It configures the SPI peripheral DMA controller (PDC) to read data from the
 * SPI port, then returns.  freertos_spi_read_packet_async() does not wait for
 * the reception to complete before returning.
 *
 * The FreeRTOS ASF SPI driver is initialized using a call to
 * freertos_spi_master_init().  The freertos_driver_parameters.options_flags
 * parameter passed into the initialization function defines the driver behavior.
 * freertos_spi_read_packet_async() can only be used if the
 * freertos_driver_parameters.options_flags parameter passed to the initialization
 * function had the WAIT_RX_COMPLETE bit clear.
 *
 * freertos_spi_read_packet_async() is an advanced function and readers are
 * recommended to also reference the application note and examples that
 * accompany the FreeRTOS ASF drivers.  freertos_spi_read_packet() is a version
 * that does not exit until the PDC transfer is complete, but still allows other
 * RTOS tasks to execute while the transmission is in progress.
 *
 * The FreeRTOS ASF driver both installs and handles the SPI PDC interrupts.
 * Users do not need to concern themselves with interrupt handling, and must
 * not install their own interrupt handler.
 *
 * \param p_spi    The handle to the SPI port returned by the
 *     freertos_spi_master_init() call used to initialise the port.
 * \param data    A pointer to the buffer into which received data is to be
 *     written.
 * \param len    The number of bytes to receive.
 * \param block_time_ticks    The FreeRTOS ASF SPI driver is initialized using a
 *     call to freertos_spi_master_init().  The
 *     freertos_driver_parameters.options_flags parameter passed to the
 *     initialization function defines the driver behavior.  If
 *     freertos_driver_parameters.options_flags had the USE_RX_ACCESS_MUTEX bit
 *     set, then the driver will only read from the SPI peripheral if it has
 *     first gained exclusive access to it.  block_time_ticks specifies the
 *     maximum amount of time the driver will wait to get exclusive access
 *     before aborting the read operation.  Other tasks will execute during any
 *     waiting time.  block_time_ticks is specified in RTOS tick periods.  To
 *     specify a block time in milliseconds, divide the milliseconds value by
 *     portTICK_RATE_MS, and pass the result in block_time_ticks.
 *     portTICK_RATE_MS is defined by FreeRTOS.
 * \param notification_semaphore    The RTOS task that calls the receive
 *     function exits the receive function as soon as the reception starts.
 *     The data being received by the PDC cannot normally be processed until
 *     after the reception has completed.  The PDC interrupt (handled internally
 *     by the FreeRTOS ASF driver) 'gives' the semaphore when the PDC transfer
 *     completes.  The notification_semaphore therefore provides a mechanism for
 *     the calling task to know when the PDC has read the requested number of
 *     bytes.  The calling task can call standard FreeRTOS functions to block on
 *     the semaphore until the PDC interrupt occurs.  Other RTOS tasks will
 *     execute while the the calling task is in the Blocked state.  The
 *     semaphore must be created using the FreeRTOS vSemaphoreCreateBinary() API
 *     function before it is used as a parameter.
 *
 * \return     ERR_INVALID_ARG is returned if an input parameter is invalid.
 *     ERR_TIMEOUT is returned if block_time_ticks passed before exclusive
 *     access to the SPI peripheral could be obtained.  STATUS_OK is returned if
 *     the PDC was successfully configured to perform the SPI read operation.
 */
status_code_t freertos_spi_read_packet_async(freertos_spi_if p_spi,
		uint8_t *data, uint32_t len, portTickType block_time_ticks,
		xSemaphoreHandle notification_semaphore)
{
	status_code_t return_value;
	pdc_packet_t pdc_tx_packet;
	portBASE_TYPE spi_index;
	Spi *spi_base;
	volatile uint16_t junk_value;

	spi_base = (Spi *) p_spi;
	spi_index = get_pdc_peripheral_details(all_spi_definitions, MAX_SPIS,
			(void *) spi_base);

	/* Don't do anything unless a valid SPI pointer was used. */
	if (spi_index < MAX_SPIS) {
		/* Because the peripheral is half duplex, there is only one access mutex
		and the rx uses the tx mutex. */
		return_value = freertos_obtain_peripheral_access_mutex(
				&(tx_dma_control[spi_index]), &block_time_ticks);

		if (return_value == STATUS_OK) {
			/* Data must be sent for data to be received.  Set the receive
			buffer to all 0xffs so it can also be used as the send buffer. */
			memset((void *)data, 0xff, (size_t)len);

			/* Ensure Rx is already empty. */
			while(spi_is_rx_full(all_spi_definitions[spi_index].peripheral_base_address) != 0) {
				junk_value = ((Spi*) all_spi_definitions[spi_index].peripheral_base_address)->SPI_RDR;
				(void) junk_value;
			}

			/* Start the PDC reception, although nothing is received until the
			SPI is also transmitting. */
			freertos_start_pdc_rx(&(rx_dma_control[spi_index]),
					data, len,
					all_spi_definitions[spi_index].pdc_base_address,
					notification_semaphore);

			/* Start the transmit so data is also received. */
			pdc_tx_packet.ul_addr = (uint32_t)data;
			pdc_tx_packet.ul_size = (uint32_t)len;
			pdc_disable_transfer(
					all_spi_definitions[spi_index].pdc_base_address,
					PERIPH_PTCR_TXTDIS);
			pdc_tx_init(
					all_spi_definitions[spi_index].pdc_base_address, &pdc_tx_packet,
					NULL);
			pdc_enable_transfer(
					all_spi_definitions[spi_index].pdc_base_address,
					PERIPH_PTCR_TXTEN);

			/* Catch the end of reception so the access mutex can be returned,
			and the task notified (if it supplied a notification semaphore).
			The interrupt can be enabled here because the ENDRX	signal from the
			PDC to the peripheral will have been de-asserted when the next
			transfer was configured. */
			spi_enable_interrupt(spi_base, SPI_IER_ENDRX);

			return_value = freertos_optionally_wait_transfer_completion(
					&(rx_dma_control[spi_index]),
					notification_semaphore,
					block_time_ticks);
		}
	} else {
		return_value = ERR_INVALID_ARG;
	}

	return return_value;
}
示例#3
0
/**
 * \ingroup freertos_twi_peripheral_control_group
 * \brief Initiate a completely asynchronous multi-byte read operation on an TWI
 * peripheral.
 *
 * freertos_twi_read_packet_async() is an ASF specific FreeRTOS driver function.
 * It configures the TWI peripheral DMA controller (PDC) to read data from the
 * TWI port, then returns.  freertos_twi_read_packet_async() does not wait for
 * the reception to complete before returning.
 *
 * The FreeRTOS ASF TWI driver is initialized using a call to
 * freertos_twi_master_init().  The freertos_driver_parameters.options_flags
 * parameter passed into the initialization function defines the driver behavior.
 * freertos_twi_read_packet_async() can only be used if the
 * freertos_driver_parameters.options_flags parameter passed to the initialization
 * function had the WAIT_RX_COMPLETE bit clear. The function can also only be used
 * if the length of the packet is more that two. If less, it will block until the
 * transfer is done.
 *
 * freertos_twi_read_packet_async() is an advanced function and readers are
 * recommended to also reference the application note and examples that
 * accompany the FreeRTOS ASF drivers.  freertos_twi_read_packet() is a version
 * that does not exit until the PDC transfer is complete, but still allows other
 * RTOS tasks to execute while the transmission is in progress.
 *
 * The FreeRTOS ASF driver both installs and handles the TWI PDC interrupts.
 * Users do not need to concern themselves with interrupt handling, and must
 * not install their own interrupt handler.
 *
 * \param p_twi    The handle to the TWI port returned by the
 *     freertos_twi_master_init() call used to initialise the port.
 * \param p_packet    Structure that defines the TWI transfer parameters, such
 *     as the I2C chip being addressed, the destination for the data being read,
 *     and the number of bytes to read.  twi_packet_t is a standard ASF type (it
 *     is not FreeRTOS specific).
 * \param block_time_ticks    The FreeRTOS ASF TWI driver is initialized using a
 *     call to freertos_twi_master_init().  The
 *     freertos_driver_parameters.options_flags parameter passed to the
 *     initialization function defines the driver behavior.  If
 *     freertos_driver_parameters.options_flags had the USE_RX_ACCESS_MUTEX bit
 *     set, then the driver will only read from the TWI peripheral if it has
 *     first gained exclusive access to it.  block_time_ticks specifies the
 *     maximum amount of time the driver will wait to get exclusive access
 *     before aborting the read operation.  Other tasks will execute during any
 *     waiting time.  block_time_ticks is specified in RTOS tick periods.  To
 *     specify a block time in milliseconds, divide the milliseconds value by
 *     portTICK_RATE_MS, and pass the result in block_time_ticks.
 *     portTICK_RATE_MS is defined by FreeRTOS.
 * \param notification_semaphore    The RTOS task that calls the receive
 *     function exits the receive function as soon as the reception starts.
 *     The data being received by the PDC cannot normally be processed until
 *     after the reception has completed.  The PDC interrupt (handled internally
 *     by the FreeRTOS ASF driver) 'gives' the semaphore when the PDC transfer
 *     completes.  The notification_semaphore therefore provides a mechanism for
 *     the calling task to know when the PDC has read the requested number of
 *     bytes.  The calling task can call standard FreeRTOS functions to block on
 *     the semaphore until the PDC interrupt occurs.  Other RTOS tasks will
 *     execute while the the calling task is in the Blocked state.  The
 *     semaphore must be created using the FreeRTOS vSemaphoreCreateBinary() API
 *     function before it is used as a parameter.
 *
 * \return     ERR_INVALID_ARG is returned if an input parameter is invalid.
 *     ERR_TIMEOUT is returned if block_time_ticks passed before exclusive
 *     access to the TWI peripheral could be obtained.  STATUS_OK is returned if
 *     the PDC was successfully configured to perform the TWI read operation.
 */
status_code_t freertos_twi_read_packet_async(freertos_twi_if p_twi,
		twi_packet_t *p_packet, portTickType block_time_ticks,
		xSemaphoreHandle notification_semaphore)
{
	status_code_t return_value;
	portBASE_TYPE twi_index;
	Twi *twi_base;
	uint32_t internal_address = 0;

	twi_base = (Twi *) p_twi;
	twi_index = get_pdc_peripheral_details(all_twi_definitions, MAX_TWIS,
			(void *) twi_base);

	/* Don't do anything unless a valid TWI pointer was used. */
	if ((twi_index < MAX_TWIS) && (p_packet->length > 0)) {
		/* Because the peripheral is half duplex, there is only one access mutex
		and the rx uses the tx mutex. */
		return_value = freertos_obtain_peripheral_access_mutex(
				&(tx_dma_control[twi_index]), &block_time_ticks);

		if (return_value == STATUS_OK) {
			/* Ensure Rx is already empty. */
			twi_read_byte(twi_base);

			/* Set read mode and slave address. */
			twi_base->TWI_MMR = 0;
			twi_base->TWI_MMR = TWI_MMR_MREAD | TWI_MMR_DADR(
					p_packet->chip) |
					((p_packet->addr_length <<
					TWI_MMR_IADRSZ_Pos) &
					TWI_MMR_IADRSZ_Msk);

			/* Set internal address if any. */
			if (p_packet->addr_length) {
				internal_address = p_packet->addr [0];
				if (p_packet->addr_length > 1) {
					internal_address <<= 8;
					internal_address |= p_packet->addr[1];
				}

				if (p_packet->addr_length > 2) {
					internal_address <<= 8;
					internal_address |= p_packet->addr[2];
				}
			}
			twi_base->TWI_IADR = internal_address;

			if (p_packet->length <= 2) {
				/* Do not handle errors for short packets in interrupt handler */
				twi_disable_interrupt(
						all_twi_definitions[twi_index].peripheral_base_address,
						IER_ERROR_INTERRUPTS);

				/* Cannot use PDC transfer, use normal transfer */
				uint8_t stop_sent = 0;
				uint32_t cnt = p_packet->length;
				uint32_t status;
				uint8_t *buffer = p_packet->buffer;
				uint32_t timeout_counter = 0;

				/* Start the transfer. */
				if (cnt == 1) {
					twi_base->TWI_CR = TWI_CR_START | TWI_CR_STOP;
					stop_sent = 1;
				} else {
					twi_base->TWI_CR = TWI_CR_START;
				}

				while (cnt > 0) {
					status = twi_base->TWI_SR;
					if (status & TWI_SR_NACK) {
						/* Re-enable interrupts */
						twi_enable_interrupt(
								all_twi_definitions[twi_index].peripheral_base_address,
								IER_ERROR_INTERRUPTS);
						/* Release semaphore */
						xSemaphoreGive(tx_dma_control[twi_index].peripheral_access_mutex);
						return ERR_BUSY;
					}
					/* Last byte ? */
					if (cnt == 1 && !stop_sent) {
						twi_base->TWI_CR = TWI_CR_STOP;
						stop_sent = 1;
					}
					if (!(status & TWI_SR_RXRDY)) {
						if (++timeout_counter >= TWI_TIMEOUT_COUNTER) {
							return_value = ERR_TIMEOUT;
							break;
						}
						continue;
					}
					*buffer++ = twi_base->TWI_RHR;
					cnt--;
					timeout_counter = 0;
				}

				timeout_counter = 0;
				/* Wait for stop to be sent */
				while (!(twi_base->TWI_SR & TWI_SR_TXCOMP)) {
					/* Check timeout condition. */
					if (++timeout_counter >= TWI_TIMEOUT_COUNTER) {
						return_value = ERR_TIMEOUT;
						break;
					}
				}
				/* Re-enable interrupts */
				twi_enable_interrupt(
						all_twi_definitions[twi_index].peripheral_base_address,
						IER_ERROR_INTERRUPTS);
				/* Release semaphores */
				xSemaphoreGive(tx_dma_control[twi_index].peripheral_access_mutex);
				if (return_value != ERR_TIMEOUT) {
					if (rx_dma_control[twi_index].transaction_complete_notification_semaphore != NULL) {
						xSemaphoreGive(rx_dma_control[twi_index].transaction_complete_notification_semaphore);
					}
				}
			} else {
				/* Start the PDC reception. */
				twis[twi_index].buffer = p_packet->buffer;
				twis[twi_index].length = p_packet->length;
				freertos_start_pdc_rx(&(rx_dma_control[twi_index]),
						p_packet->buffer, (p_packet->length)-2,
						all_twi_definitions[twi_index].pdc_base_address,
						notification_semaphore);

				/* Start the transfer. */
				twi_base->TWI_CR = TWI_CR_START;

				/* Catch the end of reception so the access mutex can be returned,
				and the task notified (if it supplied a notification semaphore).
				The interrupt can be enabled here because the ENDRX	signal from the
				PDC to the peripheral will have been de-asserted when the next
				transfer was configured. */
				twi_enable_interrupt(twi_base, TWI_IER_ENDRX);

				return_value = freertos_optionally_wait_transfer_completion(
						&(rx_dma_control[twi_index]),
						notification_semaphore,
						block_time_ticks);
			}
		}
	} else {
		return_value = ERR_INVALID_ARG;
	}

	return return_value;
}
示例#4
0
/**
 * \ingroup freertos_twi_peripheral_control_group
 * \brief Initiate a completely asynchronous multi-byte write operation on a TWI
 * peripheral.
 *
 * freertos_twi_write_packet_async() is an ASF specific FreeRTOS driver function.
 * It configures the TWI peripheral DMA controller (PDC) to transmit data on the
 * TWI port, then returns.  freertos_twi_write_packet_async() does not wait for
 * the transmission to complete before returning.
 *
 * The FreeRTOS TWI driver is initialized using a call to
 * freertos_twi_master_init().  The freertos_driver_parameters.options_flags
 * parameter passed into the initialization function defines the driver behavior.
 * freertos_twi_write_packet_async() can only be used if the
 * freertos_driver_parameters.options_flags parameter passed to the initialization
 * function had the WAIT_TX_COMPLETE bit clear. It can also only be used if packet
 * length is more than 1.
 *
 * freertos_twi_write_packet_async() is an advanced function and readers are
 * recommended to also reference the application note and examples that
 * accompany the FreeRTOS ASF drivers.  freertos_twi_write_packet() is a version
 * that does not exit until the PDC transfer is complete, but still allows other
 * RTOS tasks to execute while the transmission is in progress.
 *
 * The FreeRTOS ASF driver both installs and handles the TWI PDC interrupts.
 * Users do not need to concern themselves with interrupt handling, and must
 * not install their own interrupt handler.
 *
 * \param p_twi    The handle to the TWI peripheral returned by the
 *     freertos_twi_master_init() call used to initialise the peripheral.
 * \param p_packet    Structure that defines the TWI transfer parameters, such
 *     as the I2C chip being addressed, the source data location, and the number
 *     of bytes to transmit.  twi_packet_t is a standard ASF type (it is not
 *     FreeRTOS specific).
 * \param block_time_ticks    The FreeRTOS ASF TWI driver is initialized using a
 *     call to freertos_twi_master_init().  The
 *     freertos_driver_parameters.options_flags parameter passed to the
 *     initialization function defines the driver behavior.  If
 *     freertos_driver_parameters.options_flags had the USE_TX_ACCESS_MUTEX bit
 *     set, then the driver will only write to the TWI peripheral if it has
 *     first gained exclusive access to it.  block_time_ticks specifies the
 *     maximum amount of time the driver will wait to get exclusive access
 *     before aborting the write operation.  Other tasks will execute during any
 *     waiting time.  block_time_ticks is specified in RTOS tick periods.  To
 *     specify a block time in milliseconds, divide the milliseconds value by
 *     portTICK_RATE_MS, and pass the result in block_time_ticks.
 *     portTICK_RATE_MS is defined by FreeRTOS.
 * \param notification_semaphore    The RTOS task that calls the transmit
 *     function exits the transmit function as soon as the transmission starts.
 *     The data being transmitted by the PDC must not be modified until after
 *     the transmission has completed.  The PDC interrupt (handled internally by
 *     the FreeRTOS ASF driver) 'gives' the semaphore when the PDC transfer
 *     completes.  The notification_semaphore therefore provides a mechanism for
 *     the calling task to know when the PDC has finished accessing the data.
 *     The calling task can call standard FreeRTOS functions to block on the
 *     semaphore until the PDC interrupt occurs.  Other RTOS tasks will execute
 *     while the the calling task is in the Blocked state.  The semaphore must
 *     be created using the FreeRTOS vSemaphoreCreateBinary() API function
 *     before it is used as a parameter.
 *
 * \return     ERR_INVALID_ARG is returned if an input parameter is invalid.
 *     ERR_TIMEOUT is returned if block_time_ticks passed before exclusive
 *     access to the TWI peripheral could be obtained.  STATUS_OK is returned if
 *     the PDC was successfully configured to perform the TWI write operation.
 */
status_code_t freertos_twi_write_packet_async(freertos_twi_if p_twi,
		twi_packet_t *p_packet, portTickType block_time_ticks,
		xSemaphoreHandle notification_semaphore)
{
	status_code_t return_value;
	portBASE_TYPE twi_index;
	Twi *twi_base;
	uint32_t internal_address = 0;

	twi_base = (Twi *) p_twi;
	twi_index = get_pdc_peripheral_details(all_twi_definitions, MAX_TWIS,
			(void *) twi_base);

	/* Don't do anything unless a valid TWI pointer was used. */
	if ((twi_index < MAX_TWIS) && (p_packet->length > 0)) {
		return_value = freertos_obtain_peripheral_access_mutex(
				&(tx_dma_control[twi_index]), &block_time_ticks);

		if (return_value == STATUS_OK) {
			/* Set write mode and slave address. */
			twi_base->TWI_MMR = 0;
			twi_base->TWI_MMR = TWI_MMR_DADR(p_packet->chip) |
					((p_packet->addr_length <<
					TWI_MMR_IADRSZ_Pos) &
					TWI_MMR_IADRSZ_Msk);

			/* Set internal address if any. */
			if (p_packet->addr_length > 0) {
				internal_address = p_packet->addr[0];
				if (p_packet->addr_length > 1) {
					internal_address <<= 8;
					internal_address |= p_packet->addr[1];
				}

				if (p_packet->addr_length > 2) {
					internal_address <<= 8;
					internal_address |= p_packet->addr[2];
				}
			}
			twi_base->TWI_IADR = internal_address;

			if (p_packet->length == 1) {
				uint32_t status;
				uint32_t timeout_counter = 0;
				/* Do not handle errors for short packets in interrupt handler */
				twi_disable_interrupt(
						all_twi_definitions[twi_index].peripheral_base_address,
						IER_ERROR_INTERRUPTS);
				/* Send start condition */
				twi_base->TWI_THR = *((uint8_t*)(p_packet->buffer));
				while (1) {
					status = twi_base->TWI_SR;
					if (status & TWI_SR_NACK) {
						/* Re-enable interrupts */
						twi_enable_interrupt(
								all_twi_definitions[twi_index].peripheral_base_address,
								IER_ERROR_INTERRUPTS);
						/* Release semaphore */
						xSemaphoreGive(tx_dma_control[twi_index].peripheral_access_mutex);
						return ERR_BUSY;
					}
					if (status & TWI_SR_TXRDY) {
						break;
					}
					/* Check timeout condition. */
					if (++timeout_counter >= TWI_TIMEOUT_COUNTER) {
						return_value = ERR_TIMEOUT;
						break;
					}
				}
				twi_base->TWI_CR = TWI_CR_STOP;
				/* Wait for TX complete */
				while (!(twi_base->TWI_SR & TWI_SR_TXCOMP)) {
					/* Check timeout condition. */
					if (++timeout_counter >= TWI_TIMEOUT_COUNTER) {
						return_value = ERR_TIMEOUT;
						break;
					}
				}

				/* Re-enable interrupts */
				twi_enable_interrupt(
						all_twi_definitions[twi_index].peripheral_base_address,
						IER_ERROR_INTERRUPTS);
				/* Release semaphores */
				xSemaphoreGive(tx_dma_control[twi_index].peripheral_access_mutex);
				if (return_value != ERR_TIMEOUT) {
					if (tx_dma_control[twi_index].transaction_complete_notification_semaphore != NULL) {
						xSemaphoreGive(tx_dma_control[twi_index].transaction_complete_notification_semaphore);
					}
				}

			} else {

				twis[twi_index].buffer = p_packet->buffer;
				twis[twi_index].length = p_packet->length;

				freertos_start_pdc_tx(&(tx_dma_control[twi_index]),
						p_packet->buffer, p_packet->length - 1,
						all_twi_definitions[twi_index].pdc_base_address,
						notification_semaphore);

				/* Catch the end of transmission so the access mutex can be
				returned, and the task notified (if it supplied a notification
				semaphore).  The interrupt can be enabled here because the ENDTX
				signal from the PDC to the peripheral will have been de-asserted when
				the next transfer was configured. */
				twi_enable_interrupt(twi_base, TWI_IER_ENDTX);

				return_value = freertos_optionally_wait_transfer_completion(
						&(tx_dma_control[twi_index]),
						notification_semaphore,
						block_time_ticks);
			}
		}
	} else {
		return_value = ERR_INVALID_ARG;
	}

	return return_value;
}