int igraph_i_cb_components(igraph_t *graph, const igraph_vector_bool_t *excluded, igraph_vector_long_t *components, long int *no, /* working area follows */ igraph_vector_long_t *compid, igraph_dqueue_t *Q, igraph_vector_t *neis) { long int no_of_nodes=igraph_vcount(graph); long int i; long int cno=0; igraph_vector_long_clear(components); igraph_dqueue_clear(Q); IGRAPH_CHECK(igraph_vector_long_resize(compid, no_of_nodes)); igraph_vector_long_null(compid); for (i=0; i<no_of_nodes; i++) { if (VECTOR(*compid)[i]) { continue; } if (VECTOR(*excluded)[i]) { continue; } IGRAPH_CHECK(igraph_dqueue_push(Q, i)); IGRAPH_CHECK(igraph_vector_long_push_back(components, i)); VECTOR(*compid)[i] = ++cno; while (!igraph_dqueue_empty(Q)) { igraph_integer_t node=(igraph_integer_t) igraph_dqueue_pop(Q); long int j, n; IGRAPH_CHECK(igraph_neighbors(graph, neis, node, IGRAPH_ALL)); n=igraph_vector_size(neis); for (j=0; j<n; j++) { long int v=(long int) VECTOR(*neis)[j]; if (VECTOR(*excluded)[v]) { if (VECTOR(*compid)[v] != cno) { VECTOR(*compid)[v] = cno; IGRAPH_CHECK(igraph_vector_long_push_back(components, v)); } } else { if (!VECTOR(*compid)[v]) { VECTOR(*compid)[v] = cno; /* could be anything positive */ IGRAPH_CHECK(igraph_vector_long_push_back(components, v)); IGRAPH_CHECK(igraph_dqueue_push(Q, v)); } } } } /* while !igraph_dqueue_empty */ IGRAPH_CHECK(igraph_vector_long_push_back(components, -1)); } /* for i<no_of_nodes */ *no=cno; return 0; }
int igraph_is_connected_weak(const igraph_t *graph, igraph_bool_t *res) { long int no_of_nodes=igraph_vcount(graph); char *already_added; igraph_vector_t neis=IGRAPH_VECTOR_NULL; igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; long int i, j; if (no_of_nodes == 0) { *res = 1; return IGRAPH_SUCCESS; } already_added=igraph_Calloc(no_of_nodes, char); if (already_added==0) { IGRAPH_ERROR("is connected (weak) failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(free, already_added); /* TODO: hack */ IGRAPH_DQUEUE_INIT_FINALLY(&q, 10); IGRAPH_VECTOR_INIT_FINALLY(&neis, 0); /* Try to find at least two clusters */ already_added[0]=1; IGRAPH_CHECK(igraph_dqueue_push(&q, 0)); j=1; while ( !igraph_dqueue_empty(&q)) { long int actnode=(long int) igraph_dqueue_pop(&q); IGRAPH_ALLOW_INTERRUPTION(); IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) actnode, IGRAPH_ALL)); for (i=0; i <igraph_vector_size(&neis); i++) { long int neighbor=(long int) VECTOR(neis)[i]; if (already_added[neighbor] != 0) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); j++; already_added[neighbor]++; } } /* Connected? */ *res = (j == no_of_nodes); igraph_Free(already_added); igraph_dqueue_destroy(&q); igraph_vector_destroy(&neis); IGRAPH_FINALLY_CLEAN(3); return 0; }
int igraph_i_clusters_leaveout(const igraph_adjlist_t *adjlist, igraph_vector_t *components, igraph_vector_t *leaveout, unsigned long int *mark, igraph_dqueue_t *Q) { /* Another trick: we use the same 'leaveout' vector to mark the * vertices that were already found in the BFS */ long int i, no_of_nodes=igraph_adjlist_size(adjlist); igraph_dqueue_clear(Q); igraph_vector_clear(components); for (i=0; i<no_of_nodes; i++) { if (VECTOR(*leaveout)[i] == *mark) continue; VECTOR(*leaveout)[i]= *mark; igraph_dqueue_push(Q, i); igraph_vector_push_back(components, i); while (!igraph_dqueue_empty(Q)) { long int act_node=(long int) igraph_dqueue_pop(Q); igraph_vector_int_t *neis=igraph_adjlist_get(adjlist, act_node); long int j, n=igraph_vector_int_size(neis); for (j=0; j<n; j++) { long int nei=(long int) VECTOR(*neis)[j]; if (VECTOR(*leaveout)[nei]== *mark) continue; IGRAPH_CHECK(igraph_dqueue_push(Q, nei)); VECTOR(*leaveout)[nei]= *mark; igraph_vector_push_back(components, nei); } } igraph_vector_push_back(components, -1); } UPDATEMARK(); return 0; }
/* #include "igraph_visitor.h" #include "igraph_memory.h" #include "igraph_adjlist.h" #include "igraph_interface.h" #include "igraph_dqueue.h" #include "igraph_stack.h" #include "config.h"*/ int igraph_bfsr(const igraph_t *graph, igraph_integer_t root,igraph_vector_t *roots, igraph_neimode_t mode, igraph_bool_t unreachable, const igraph_vector_t *restricted, igraph_vector_t *order, igraph_vector_t *rank, igraph_vector_t *father, igraph_vector_t *pred, igraph_vector_t *succ, igraph_vector_t *dist, igraph_bfshandler_t *callback, void *extra) { igraph_dqueue_t Q; long int no_of_nodes=igraph_vcount(graph); long int actroot=0; igraph_vector_char_t added; igraph_lazy_adjlist_t adjlist; long int act_rank=0; long int pred_vec=-1; long int rootpos=0; long int noroots= roots ? igraph_vector_size(roots) : 1; if (!roots && (root < 0 || root >= no_of_nodes)) { IGRAPH_ERROR("Invalid root vertex in BFS", IGRAPH_EINVAL); } if (roots) { igraph_real_t min, max; igraph_vector_minmax(roots, &min, &max); if (min < 0 || max >= no_of_nodes) { IGRAPH_ERROR("Invalid root vertex in BFS", IGRAPH_EINVAL); } } if (restricted) { igraph_real_t min, max; igraph_vector_minmax(restricted, &min, &max); if (min < 0 || max >= no_of_nodes) { IGRAPH_ERROR("Invalid vertex id in restricted set", IGRAPH_EINVAL); } } if (mode != IGRAPH_OUT && mode != IGRAPH_IN && mode != IGRAPH_ALL) { IGRAPH_ERROR("Invalid mode argument", IGRAPH_EINVMODE); } if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; } IGRAPH_CHECK(igraph_vector_char_init(&added, no_of_nodes)); IGRAPH_FINALLY(igraph_vector_char_destroy, &added); IGRAPH_CHECK(igraph_dqueue_init(&Q, 100)); IGRAPH_FINALLY(igraph_dqueue_destroy, &Q); IGRAPH_CHECK(igraph_lazy_adjlist_init(graph, &adjlist, mode, /*simplify=*/ 0)); IGRAPH_FINALLY(igraph_lazy_adjlist_destroy, &adjlist); /* Mark the vertices that are not in the restricted set, as already found. Special care must be taken for vertices that are not in the restricted set, but are to be used as 'root' vertices. */ if (restricted) { long int i, n=igraph_vector_size(restricted); igraph_vector_char_fill(&added, 1); for (i=0; i<n; i++) { long int v=(long int) VECTOR(*restricted)[i]; VECTOR(added)[v]=0; } } /* Resize result vectors, and fill them with IGRAPH_NAN */ # define VINIT(v) if (v) { \ igraph_vector_resize((v), no_of_nodes); \ igraph_vector_fill((v), IGRAPH_NAN); } VINIT(order); VINIT(rank); VINIT(father); VINIT(pred); VINIT(succ); VINIT(dist); # undef VINIT while (1) { /* Get the next root vertex, if any */ if (roots && rootpos < noroots) { /* We are still going through the 'roots' vector */ actroot=(long int) VECTOR(*roots)[rootpos++]; } else if (!roots && rootpos==0) { /* We have a single root vertex given, and start now */ actroot=root; rootpos++; } else if (rootpos==noroots && unreachable) { /* We finished the given root(s), but other vertices are also tried as root */ actroot=0; rootpos++; } else if (unreachable && actroot+1 < no_of_nodes) { /* We are already doing the other vertices, take the next one */ actroot++; } else { /* No more root nodes to do */ break; } /* OK, we have a new root, start BFS */ if (VECTOR(added)[actroot]) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&Q, actroot)); IGRAPH_CHECK(igraph_dqueue_push(&Q, 0)); VECTOR(added)[actroot] = 1; if (father) { VECTOR(*father)[actroot] = -1; } pred_vec=-1; while (!igraph_dqueue_empty(&Q)) { long int actvect=(long int) igraph_dqueue_pop(&Q); long int actdist=(long int) igraph_dqueue_pop(&Q); long int succ_vec; igraph_vector_t *neis=igraph_lazy_adjlist_get(&adjlist, (igraph_integer_t) actvect); long int i, n=igraph_vector_size(neis); if (pred) { VECTOR(*pred)[actvect] = pred_vec; } if (rank) { VECTOR(*rank) [actvect] = act_rank; } if (order) { VECTOR(*order)[act_rank++] = actvect; } if (dist) { VECTOR(*dist)[actvect] = actdist; } igraph_vector_shuffle(neis); for (i=0; i<n; i++) { long int nei=(long int) VECTOR(*neis)[i]; if (! VECTOR(added)[nei]) { VECTOR(added)[nei] = 1; IGRAPH_CHECK(igraph_dqueue_push(&Q, nei)); IGRAPH_CHECK(igraph_dqueue_push(&Q, actdist+1)); if (father) { VECTOR(*father)[nei] = actvect; } } } succ_vec = igraph_dqueue_empty(&Q) ? -1L : (long int) igraph_dqueue_head(&Q); if (callback) { igraph_bool_t terminate= callback(graph, (igraph_integer_t) actvect, (igraph_integer_t) pred_vec, (igraph_integer_t) succ_vec, (igraph_integer_t) act_rank-1, (igraph_integer_t) actdist, extra); if (terminate) { igraph_lazy_adjlist_destroy(&adjlist); igraph_dqueue_destroy(&Q); igraph_vector_char_destroy(&added); IGRAPH_FINALLY_CLEAN(3); return 0; } } if (succ) { VECTOR(*succ)[actvect] = succ_vec; } pred_vec=actvect; } /* while Q !empty */ } /* for actroot < no_of_nodes */ igraph_lazy_adjlist_destroy(&adjlist); igraph_dqueue_destroy(&Q); igraph_vector_char_destroy(&added); IGRAPH_FINALLY_CLEAN(3); return 0; }
int igraph_clusters_weak(const igraph_t *graph, igraph_vector_t *membership, igraph_vector_t *csize, igraph_integer_t *no) { long int no_of_nodes=igraph_vcount(graph); char *already_added; long int first_node, act_cluster_size=0, no_of_clusters=1; igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; long int i; igraph_vector_t neis=IGRAPH_VECTOR_NULL; already_added=igraph_Calloc(no_of_nodes,char); if (already_added==0) { IGRAPH_ERROR("Cannot calculate clusters", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, already_added); IGRAPH_DQUEUE_INIT_FINALLY(&q, no_of_nodes > 100000 ? 10000 : no_of_nodes/10); IGRAPH_VECTOR_INIT_FINALLY(&neis, 0); /* Memory for result, csize is dynamically allocated */ if (membership) { IGRAPH_CHECK(igraph_vector_resize(membership, no_of_nodes)); } if (csize) { igraph_vector_clear(csize); } /* The algorithm */ for (first_node=0; first_node < no_of_nodes; ++first_node) { if (already_added[first_node]==1) continue; IGRAPH_ALLOW_INTERRUPTION(); already_added[first_node]=1; act_cluster_size=1; if (membership) { VECTOR(*membership)[first_node]=no_of_clusters-1; } IGRAPH_CHECK(igraph_dqueue_push(&q, first_node)); while ( !igraph_dqueue_empty(&q) ) { long int act_node=(long int) igraph_dqueue_pop(&q); IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) act_node, IGRAPH_ALL)); for (i=0; i<igraph_vector_size(&neis); i++) { long int neighbor=(long int) VECTOR(neis)[i]; if (already_added[neighbor]==1) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); already_added[neighbor]=1; act_cluster_size++; if (membership) { VECTOR(*membership)[neighbor]=no_of_clusters-1; } } } no_of_clusters++; if (csize) { IGRAPH_CHECK(igraph_vector_push_back(csize, act_cluster_size)); } } /* Cleaning up */ if (no) { *no = (igraph_integer_t) no_of_clusters-1; } igraph_Free(already_added); igraph_dqueue_destroy(&q); igraph_vector_destroy(&neis); IGRAPH_FINALLY_CLEAN(3); return 0; }
int igraph_decompose(const igraph_t *graph, igraph_vector_ptr_t *components, igraph_connectedness_t mode, long int maxcompno, long int minelements) { long int actstart; long int no_of_nodes=igraph_vcount(graph); long int resco=0; /* number of graphs created so far */ char *already_added; igraph_dqueue_t q; igraph_vector_t verts; igraph_vector_t neis; long int i; igraph_t *newg; if (!igraph_is_directed(graph)) { mode=IGRAPH_WEAK; } if (mode != IGRAPH_WEAK) { IGRAPH_ERROR("only 'IGRAPH_WEAK' is implemented", IGRAPH_EINVAL); } if (maxcompno<0) { maxcompno=LONG_MAX; } igraph_vector_ptr_clear(components); IGRAPH_FINALLY(igraph_decompose_destroy, components); already_added=igraph_Calloc(no_of_nodes, char); if (already_added==0) { IGRAPH_ERROR("Cannot decompose graph", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, already_added); IGRAPH_CHECK(igraph_dqueue_init(&q, 100)); IGRAPH_FINALLY(igraph_dqueue_destroy, &q); IGRAPH_VECTOR_INIT_FINALLY(&verts, 0); IGRAPH_VECTOR_INIT_FINALLY(&neis, 0); for(actstart=0; resco<maxcompno && actstart < no_of_nodes; actstart++) { if (already_added[actstart]) { continue; } IGRAPH_ALLOW_INTERRUPTION(); igraph_vector_clear(&verts); already_added[actstart]=1; IGRAPH_CHECK(igraph_vector_push_back(&verts, actstart)); IGRAPH_CHECK(igraph_dqueue_push(&q, actstart)); while (!igraph_dqueue_empty(&q) ) { long int actvert=(long int) igraph_dqueue_pop(&q); IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) actvert, IGRAPH_ALL)); for (i=0; i<igraph_vector_size(&neis); i++) { long int neighbor=(long int) VECTOR(neis)[i]; if (already_added[neighbor]==1) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); IGRAPH_CHECK(igraph_vector_push_back(&verts, neighbor)); already_added[neighbor]=1; } } /* ok, we have a component */ if (igraph_vector_size(&verts)<minelements) { continue; } newg=igraph_Calloc(1, igraph_t); if (newg==0) { IGRAPH_ERROR("Cannot decompose graph", IGRAPH_ENOMEM); } IGRAPH_CHECK(igraph_vector_ptr_push_back(components, newg)); IGRAPH_CHECK(igraph_induced_subgraph(graph, newg, igraph_vss_vector(&verts), IGRAPH_SUBGRAPH_AUTO)); resco++; } /* for actstart++ */ igraph_vector_destroy(&neis); igraph_vector_destroy(&verts); igraph_dqueue_destroy(&q); igraph_free(already_added); IGRAPH_FINALLY_CLEAN(5); /* + components */ return 0; }
int igraph_clusters_strong(const igraph_t *graph, igraph_vector_t *membership, igraph_vector_t *csize, igraph_integer_t *no) { long int no_of_nodes=igraph_vcount(graph); igraph_vector_t next_nei=IGRAPH_VECTOR_NULL; long int i; igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; long int no_of_clusters=1; long int act_cluster_size; igraph_vector_t out=IGRAPH_VECTOR_NULL; igraph_vector_t tmp=IGRAPH_VECTOR_NULL; /* The result */ IGRAPH_VECTOR_INIT_FINALLY(&next_nei, no_of_nodes); IGRAPH_VECTOR_INIT_FINALLY(&out, 0); IGRAPH_DQUEUE_INIT_FINALLY(&q, 100); IGRAPH_VECTOR_INIT_FINALLY(&tmp, 0); if (membership) { IGRAPH_CHECK(igraph_vector_resize(membership, no_of_nodes)); } IGRAPH_CHECK(igraph_vector_reserve(&out, no_of_nodes)); igraph_vector_null(&out); if (csize) { igraph_vector_clear(csize); } for (i=0; i<no_of_nodes; i++) { IGRAPH_ALLOW_INTERRUPTION(); IGRAPH_CHECK(igraph_neighbors(graph, &tmp, (igraph_integer_t) i, IGRAPH_OUT)); if (VECTOR(next_nei)[i] > igraph_vector_size(&tmp)) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, i)); while (!igraph_dqueue_empty(&q)) { long int act_node=(long int) igraph_dqueue_back(&q); IGRAPH_CHECK(igraph_neighbors(graph, &tmp, (igraph_integer_t) act_node, IGRAPH_OUT)); if (VECTOR(next_nei)[act_node]==0) { /* this is the first time we've met this vertex */ VECTOR(next_nei)[act_node]++; } else if (VECTOR(next_nei)[act_node] <= igraph_vector_size(&tmp)) { /* we've already met this vertex but it has more children */ long int neighbor=(long int) VECTOR(tmp)[(long int) VECTOR(next_nei)[act_node]-1]; if (VECTOR(next_nei)[neighbor] == 0) { IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); } VECTOR(next_nei)[act_node]++; } else { /* we've met this vertex and it has no more children */ IGRAPH_CHECK(igraph_vector_push_back(&out, act_node)); igraph_dqueue_pop_back(&q); } } /* while q */ } /* for */ /* OK, we've the 'out' values for the nodes, let's use them in decreasing order with the help of a heap */ igraph_vector_null(&next_nei); /* mark already added vertices */ while (!igraph_vector_empty(&out)) { long int grandfather=(long int) igraph_vector_pop_back(&out); IGRAPH_ALLOW_INTERRUPTION(); if (VECTOR(next_nei)[grandfather] != 0) { continue; } VECTOR(next_nei)[grandfather]=1; act_cluster_size=1; if (membership) { VECTOR(*membership)[grandfather]=no_of_clusters-1; } IGRAPH_CHECK(igraph_dqueue_push(&q, grandfather)); while (!igraph_dqueue_empty(&q)) { long int act_node=(long int) igraph_dqueue_pop_back(&q); IGRAPH_CHECK(igraph_neighbors(graph, &tmp, (igraph_integer_t) act_node, IGRAPH_IN)); for (i=0; i<igraph_vector_size(&tmp); i++) { long int neighbor=(long int) VECTOR(tmp)[i]; if (VECTOR(next_nei)[neighbor] != 0) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); VECTOR(next_nei)[neighbor]=1; act_cluster_size++; if (membership) { VECTOR(*membership)[neighbor]=no_of_clusters-1; } } } no_of_clusters++; if (csize) { IGRAPH_CHECK(igraph_vector_push_back(csize, act_cluster_size)); } } if (no) { *no=(igraph_integer_t) no_of_clusters-1; } /* Clean up, return */ igraph_vector_destroy(&out); igraph_vector_destroy(&tmp); igraph_dqueue_destroy(&q); igraph_vector_destroy(&next_nei); IGRAPH_FINALLY_CLEAN(4); return 0; }
int igraph_bfs(igraph_t *graph, igraph_integer_t vid, igraph_neimode_t mode, igraph_vector_t *vids, igraph_vector_t *layers, igraph_vector_t *parents) { igraph_dqueue_t q; long int vidspos=0; igraph_vector_t neis; long int no_of_nodes=igraph_vcount(graph); long int i; char *added; long int lastlayer=-1; if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; } if (mode != IGRAPH_OUT && mode != IGRAPH_IN && mode != IGRAPH_ALL) { IGRAPH_ERROR("Invalid mode argument", IGRAPH_EINVMODE); } /* temporary storage */ added=igraph_Calloc(no_of_nodes, char); if (added==0) { IGRAPH_ERROR("Cannot calculate BFS", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, added); IGRAPH_VECTOR_INIT_FINALLY(&neis, 0); IGRAPH_CHECK(igraph_dqueue_init(&q, 100)); IGRAPH_FINALLY(igraph_dqueue_destroy, &q); /* results */ IGRAPH_CHECK(igraph_vector_resize(vids, no_of_nodes)); igraph_vector_clear(layers); IGRAPH_CHECK(igraph_vector_resize(parents, no_of_nodes)); /* ok start with vid */ IGRAPH_CHECK(igraph_dqueue_push(&q, vid)); IGRAPH_CHECK(igraph_dqueue_push(&q, 0)); IGRAPH_CHECK(igraph_vector_push_back(layers, vidspos)); VECTOR(*vids)[vidspos++]=vid; VECTOR(*parents)[(long int)vid]=vid; added[(long int)vid]=1; while (!igraph_dqueue_empty(&q)) { long int actvect=igraph_dqueue_pop(&q); long int actdist=igraph_dqueue_pop(&q); IGRAPH_CHECK(igraph_neighbors(graph, &neis, actvect, mode)); for (i=0; i<igraph_vector_size(&neis); i++) { long int neighbor=VECTOR(neis)[i]; if (added[neighbor]==0) { added[neighbor]=1; VECTOR(*parents)[neighbor]=actvect; IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); IGRAPH_CHECK(igraph_dqueue_push(&q, actdist+1)); if (lastlayer != actdist+1) { IGRAPH_CHECK(igraph_vector_push_back(layers, vidspos)); } VECTOR(*vids)[vidspos++]=neighbor; lastlayer=actdist+1; } } /* for i in neis */ } /* while ! dqueue_empty */ IGRAPH_CHECK(igraph_vector_push_back(layers, vidspos)); igraph_vector_destroy(&neis); igraph_dqueue_destroy(&q); igraph_Free(added); IGRAPH_FINALLY_CLEAN(3); return 0; }
int igraph_is_bipartite(const igraph_t *graph, igraph_bool_t *res, igraph_vector_bool_t *type) { /* We basically do a breadth first search and label the vertices along the way. We stop as soon as we can find a contradiction. In the 'seen' vector 0 means 'not seen yet', 1 means type 1, 2 means type 2. */ long int no_of_nodes=igraph_vcount(graph); igraph_vector_char_t seen; igraph_dqueue_t Q; igraph_vector_t neis; igraph_bool_t bi=1; long int i; IGRAPH_CHECK(igraph_vector_char_init(&seen, no_of_nodes)); IGRAPH_FINALLY(igraph_vector_char_destroy, &seen); IGRAPH_DQUEUE_INIT_FINALLY(&Q, 100); IGRAPH_VECTOR_INIT_FINALLY(&neis, 0); for (i=0; bi && i<no_of_nodes; i++) { if (VECTOR(seen)[i]) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&Q, i)); VECTOR(seen)[i]=1; while (bi && !igraph_dqueue_empty(&Q)) { long int n, j; igraph_integer_t actnode=(igraph_integer_t) igraph_dqueue_pop(&Q); char acttype=VECTOR(seen)[actnode]; IGRAPH_CHECK(igraph_neighbors(graph, &neis, actnode, IGRAPH_ALL)); n=igraph_vector_size(&neis); for (j=0; j<n; j++) { long int nei=(long int) VECTOR(neis)[j]; if (VECTOR(seen)[nei]) { long int neitype=VECTOR(seen)[nei]; if (neitype == acttype) { bi=0; break; } } else { VECTOR(seen)[nei] = 3 - acttype; IGRAPH_CHECK(igraph_dqueue_push(&Q, nei)); } } } } igraph_vector_destroy(&neis); igraph_dqueue_destroy(&Q); IGRAPH_FINALLY_CLEAN(2); if (res) { *res=bi; } if (type && bi) { IGRAPH_CHECK(igraph_vector_bool_resize(type, no_of_nodes)); for (i=0; i<no_of_nodes; i++) { VECTOR(*type)[i] = VECTOR(seen)[i] - 1; } } igraph_vector_char_destroy(&seen); IGRAPH_FINALLY_CLEAN(1); return 0; }
int igraph_i_is_separator(const igraph_t *graph, igraph_vit_t *vit, long int except, igraph_bool_t *res, igraph_vector_bool_t *removed, igraph_dqueue_t *Q, igraph_vector_t *neis, long int no_of_nodes) { long int start=0; if (IGRAPH_VIT_SIZE(*vit) >= no_of_nodes-1) { /* Just need to check that we really have at least n-1 vertices in it */ igraph_vector_bool_t hit; long int nohit=0; IGRAPH_CHECK(igraph_vector_bool_init(&hit, no_of_nodes)); IGRAPH_FINALLY(igraph_vector_bool_destroy, &hit); for (IGRAPH_VIT_RESET(*vit); !IGRAPH_VIT_END(*vit); IGRAPH_VIT_NEXT(*vit)) { long int v=IGRAPH_VIT_GET(*vit); if (!VECTOR(hit)[v]) { nohit++; VECTOR(hit)[v] = 1; } } igraph_vector_bool_destroy(&hit); IGRAPH_FINALLY_CLEAN(1); if (nohit >= no_of_nodes-1) { *res = 0; return 0; } } /* Remove the given vertices from the graph, do a breadth-first search and check the number of components */ if (except < 0) { for (IGRAPH_VIT_RESET(*vit); !IGRAPH_VIT_END(*vit); IGRAPH_VIT_NEXT(*vit)) { VECTOR(*removed)[ (long int) IGRAPH_VIT_GET(*vit) ] = 1; } } else { /* There is an exception */ long int i; for (i=0, IGRAPH_VIT_RESET(*vit); i<except; i++, IGRAPH_VIT_NEXT(*vit)) { VECTOR(*removed)[ (long int) IGRAPH_VIT_GET(*vit) ] = 1; } for (IGRAPH_VIT_NEXT(*vit); !IGRAPH_VIT_END(*vit); IGRAPH_VIT_NEXT(*vit)) { VECTOR(*removed)[ (long int) IGRAPH_VIT_GET(*vit) ] = 1; } } /* Look for the first node that is not removed */ while (start < no_of_nodes && VECTOR(*removed)[start]) start++; if (start==no_of_nodes) { IGRAPH_ERROR("All vertices are included in the separator", IGRAPH_EINVAL); } igraph_dqueue_push(Q, start); VECTOR(*removed)[start]=1; while (!igraph_dqueue_empty(Q)) { long int node=(long int) igraph_dqueue_pop(Q); long int j, n; igraph_neighbors(graph, neis, (igraph_integer_t) node, IGRAPH_ALL); n=igraph_vector_size(neis); for (j=0; j<n; j++) { long int nei=(long int) VECTOR(*neis)[j]; if (!VECTOR(*removed)[nei]) { IGRAPH_CHECK(igraph_dqueue_push(Q, nei)); VECTOR(*removed)[nei]=1; } } } /* Look for the next node that was neighter removed, not visited */ while (start < no_of_nodes && VECTOR(*removed)[start]) start++; /* If there is another component, then we have a separator */ *res = (start < no_of_nodes); return 0; }
int igraph_clusters_strong(const igraph_t *graph, igraph_vector_t *membership, igraph_vector_t *csize, igraph_integer_t *no) { long int no_of_nodes=igraph_vcount(graph); igraph_vector_t next_nei=IGRAPH_VECTOR_NULL; long int i, n, num_seen; igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; long int no_of_clusters=1; long int act_cluster_size; igraph_vector_t out=IGRAPH_VECTOR_NULL; const igraph_vector_int_t* tmp; igraph_adjlist_t adjlist; /* The result */ IGRAPH_VECTOR_INIT_FINALLY(&next_nei, no_of_nodes); IGRAPH_VECTOR_INIT_FINALLY(&out, 0); IGRAPH_DQUEUE_INIT_FINALLY(&q, 100); if (membership) { IGRAPH_CHECK(igraph_vector_resize(membership, no_of_nodes)); } IGRAPH_CHECK(igraph_vector_reserve(&out, no_of_nodes)); igraph_vector_null(&out); if (csize) { igraph_vector_clear(csize); } IGRAPH_CHECK(igraph_adjlist_init(graph, &adjlist, IGRAPH_OUT)); IGRAPH_FINALLY(igraph_adjlist_destroy, &adjlist); num_seen = 0; for (i=0; i<no_of_nodes; i++) { IGRAPH_ALLOW_INTERRUPTION(); tmp = igraph_adjlist_get(&adjlist, i); if (VECTOR(next_nei)[i] > igraph_vector_int_size(tmp)) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, i)); while (!igraph_dqueue_empty(&q)) { long int act_node=(long int) igraph_dqueue_back(&q); tmp = igraph_adjlist_get(&adjlist, act_node); if (VECTOR(next_nei)[act_node]==0) { /* this is the first time we've met this vertex */ VECTOR(next_nei)[act_node]++; } else if (VECTOR(next_nei)[act_node] <= igraph_vector_int_size(tmp)) { /* we've already met this vertex but it has more children */ long int neighbor=(long int) VECTOR(*tmp)[(long int) VECTOR(next_nei)[act_node]-1]; if (VECTOR(next_nei)[neighbor] == 0) { IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); } VECTOR(next_nei)[act_node]++; } else { /* we've met this vertex and it has no more children */ IGRAPH_CHECK(igraph_vector_push_back(&out, act_node)); igraph_dqueue_pop_back(&q); num_seen++; if (num_seen % 10000 == 0) { /* time to report progress and allow the user to interrupt */ IGRAPH_PROGRESS("Strongly connected components: ", num_seen * 50.0 / no_of_nodes, NULL); IGRAPH_ALLOW_INTERRUPTION(); } } } /* while q */ } /* for */ IGRAPH_PROGRESS("Strongly connected components: ", 50.0, NULL); igraph_adjlist_destroy(&adjlist); IGRAPH_FINALLY_CLEAN(1); IGRAPH_CHECK(igraph_adjlist_init(graph, &adjlist, IGRAPH_IN)); IGRAPH_FINALLY(igraph_adjlist_destroy, &adjlist); /* OK, we've the 'out' values for the nodes, let's use them in decreasing order with the help of a heap */ igraph_vector_null(&next_nei); /* mark already added vertices */ num_seen = 0; while (!igraph_vector_empty(&out)) { long int grandfather=(long int) igraph_vector_pop_back(&out); if (VECTOR(next_nei)[grandfather] != 0) { continue; } VECTOR(next_nei)[grandfather]=1; act_cluster_size=1; if (membership) { VECTOR(*membership)[grandfather]=no_of_clusters-1; } IGRAPH_CHECK(igraph_dqueue_push(&q, grandfather)); num_seen++; if (num_seen % 10000 == 0) { /* time to report progress and allow the user to interrupt */ IGRAPH_PROGRESS("Strongly connected components: ", 50.0 + num_seen * 50.0 / no_of_nodes, NULL); IGRAPH_ALLOW_INTERRUPTION(); } while (!igraph_dqueue_empty(&q)) { long int act_node=(long int) igraph_dqueue_pop_back(&q); tmp = igraph_adjlist_get(&adjlist, act_node); n = igraph_vector_int_size(tmp); for (i=0; i<n; i++) { long int neighbor=(long int) VECTOR(*tmp)[i]; if (VECTOR(next_nei)[neighbor] != 0) { continue; } IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); VECTOR(next_nei)[neighbor]=1; act_cluster_size++; if (membership) { VECTOR(*membership)[neighbor]=no_of_clusters-1; } num_seen++; if (num_seen % 10000 == 0) { /* time to report progress and allow the user to interrupt */ IGRAPH_PROGRESS("Strongly connected components: ", 50.0 + num_seen * 50.0 / no_of_nodes, NULL); IGRAPH_ALLOW_INTERRUPTION(); } } } no_of_clusters++; if (csize) { IGRAPH_CHECK(igraph_vector_push_back(csize, act_cluster_size)); } } IGRAPH_PROGRESS("Strongly connected components: ", 100.0, NULL); if (no) { *no=(igraph_integer_t) no_of_clusters-1; } /* Clean up, return */ igraph_adjlist_destroy(&adjlist); igraph_vector_destroy(&out); igraph_dqueue_destroy(&q); igraph_vector_destroy(&next_nei); IGRAPH_FINALLY_CLEAN(4); return 0; }
int igraph_i_minimum_spanning_tree_unweighted(const igraph_t* graph, igraph_vector_t* res) { long int no_of_nodes=igraph_vcount(graph); long int no_of_edges=igraph_ecount(graph); char *already_added; char *added_edges; igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; igraph_vector_t tmp=IGRAPH_VECTOR_NULL; long int i, j; igraph_vector_clear(res); added_edges=igraph_Calloc(no_of_edges, char); if (added_edges==0) { IGRAPH_ERROR("unweighted spanning tree failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, added_edges); already_added=igraph_Calloc(no_of_nodes, char); if (already_added==0) { IGRAPH_ERROR("unweighted spanning tree failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, already_added); IGRAPH_VECTOR_INIT_FINALLY(&tmp, 0); IGRAPH_DQUEUE_INIT_FINALLY(&q, 100); for (i=0; i<no_of_nodes; i++) { if (already_added[i]>0) { continue; } IGRAPH_ALLOW_INTERRUPTION(); already_added[i]=1; IGRAPH_CHECK(igraph_dqueue_push(&q, i)); while (! igraph_dqueue_empty(&q)) { long int act_node=(long int) igraph_dqueue_pop(&q); IGRAPH_CHECK(igraph_incident(graph, &tmp, (igraph_integer_t) act_node, IGRAPH_ALL)); igraph_vector_sort(&tmp); for (j=0; j<igraph_vector_size(&tmp); j++) { long int edge=(long int) VECTOR(tmp)[j]; if (added_edges[edge]==0) { igraph_integer_t from, to; igraph_edge(graph, (igraph_integer_t) edge, &from, &to); if (act_node==to) { to=from; } if (already_added[(long int) to]==0) { already_added[(long int) to]=1; added_edges[edge]=1; IGRAPH_CHECK(igraph_vector_push_back(res, edge)); IGRAPH_CHECK(igraph_dqueue_push(&q, to)); } } } } } igraph_dqueue_destroy(&q); igraph_Free(already_added); igraph_vector_destroy(&tmp); igraph_Free(added_edges); IGRAPH_FINALLY_CLEAN(4); return IGRAPH_SUCCESS; }
int main() { igraph_dqueue_t q; int i; /* igraph_dqueue_init, igraph_dqueue_destroy, igraph_dqueue_empty */ igraph_dqueue_init(&q, 5); if (!igraph_dqueue_empty(&q)) { return 1; } igraph_dqueue_destroy(&q); /* igraph_dqueue_push, igraph_dqueue_pop */ igraph_dqueue_init(&q, 4); igraph_dqueue_push(&q, 1); igraph_dqueue_push(&q, 2); igraph_dqueue_push(&q, 3); igraph_dqueue_push(&q, 4); if (igraph_dqueue_pop(&q) != 1) { return 2; } if (igraph_dqueue_pop(&q) != 2) { return 3; } if (igraph_dqueue_pop(&q) != 3) { return 4; } if (igraph_dqueue_pop(&q) != 4) { return 5; } igraph_dqueue_destroy(&q); /* igraph_dqueue_clear, igraph_dqueue_size */ igraph_dqueue_init(&q, 0); if (igraph_dqueue_size(&q) != 0) { return 6; } igraph_dqueue_clear(&q); if (igraph_dqueue_size(&q) != 0) { return 7; } for (i=0; i<10; i++) { igraph_dqueue_push(&q, i); } igraph_dqueue_clear(&q); if (igraph_dqueue_size(&q) != 0) { return 8; } igraph_dqueue_destroy(&q); /* TODO: igraph_dqueue_full */ /* igraph_dqueue_head, igraph_dqueue_back, igraph_dqueue_pop_back */ igraph_dqueue_init(&q, 0); for (i=0; i<10; i++) { igraph_dqueue_push(&q, i); } for (i=0; i<10; i++) { if (igraph_dqueue_head(&q) != 0) { return 9; } if (igraph_dqueue_back(&q) != 9-i) { return 10; } if (igraph_dqueue_pop_back(&q) != 9-i) { return 11; } } igraph_dqueue_destroy(&q); /* print */ igraph_dqueue_init(&q, 4); igraph_dqueue_push(&q, 1); igraph_dqueue_push(&q, 2); igraph_dqueue_push(&q, 3); igraph_dqueue_push(&q, 4); igraph_dqueue_pop(&q); igraph_dqueue_pop(&q); igraph_dqueue_push(&q, 5); igraph_dqueue_push(&q, 6); igraph_dqueue_print(&q); igraph_dqueue_clear(&q); igraph_dqueue_print(&q); igraph_dqueue_destroy(&q); if (IGRAPH_FINALLY_STACK_SIZE() != 0) return 12; return 0; }
/** * \ingroup structural * \function igraph_betweenness_estimate * \brief Estimated betweenness centrality of some vertices. * * </para><para> * The betweenness centrality of a vertex is the number of geodesics * going through it. If there are more than one geodesic between two * vertices, the value of these geodesics are weighted by one over the * number of geodesics. When estimating betweenness centrality, igraph * takes into consideration only those paths that are shorter than or * equal to a prescribed length. Note that the estimated centrality * will always be less than the real one. * * \param graph The graph object. * \param res The result of the computation, a vector containing the * estimated betweenness scores for the specified vertices. * \param vids The vertices of which the betweenness centrality scores * will be estimated. * \param directed Logical, if true directed paths will be considered * for directed graphs. It is ignored for undirected graphs. * \param cutoff The maximal length of paths that will be considered. * If zero or negative, the exact betweenness will be calculated * (no upper limit on path lengths). * \return Error code: * \c IGRAPH_ENOMEM, not enough memory for * temporary data. * \c IGRAPH_EINVVID, invalid vertex id passed in * \p vids. * * Time complexity: O(|V||E|), * |V| and * |E| are the number of vertices and * edges in the graph. * Note that the time complexity is independent of the number of * vertices for which the score is calculated. * * \sa Other centrality types: \ref igraph_degree(), \ref igraph_closeness(). * See \ref igraph_edge_betweenness() for calculating the betweenness score * of the edges in a graph. */ int igraph_betweenness_estimate(const igraph_t *graph, igraph_vector_t *res, const igraph_vs_t vids, igraph_bool_t directed, igraph_integer_t cutoff) { long int no_of_nodes=igraph_vcount(graph); igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; long int *distance; long int *nrgeo; double *tmpscore; igraph_stack_t stack=IGRAPH_STACK_NULL; long int source; long int j, k; igraph_integer_t modein, modeout; igraph_vit_t vit; igraph_vector_t *neis; igraph_adjlist_t adjlist_out, adjlist_in; igraph_adjlist_t *adjlist_out_p, *adjlist_in_p; IGRAPH_CHECK(igraph_vit_create(graph, vids, &vit)); IGRAPH_FINALLY(igraph_vit_destroy, &vit); directed=directed && igraph_is_directed(graph); if (directed) { modeout=IGRAPH_OUT; modein=IGRAPH_IN; IGRAPH_CHECK(igraph_adjlist_init(graph, &adjlist_out, IGRAPH_OUT)); IGRAPH_FINALLY(igraph_adjlist_destroy, &adjlist_out); IGRAPH_CHECK(igraph_adjlist_init(graph, &adjlist_in, IGRAPH_IN)); IGRAPH_FINALLY(igraph_adjlist_destroy, &adjlist_in); adjlist_out_p=&adjlist_out; adjlist_in_p=&adjlist_in; } else { modeout=modein=IGRAPH_ALL; IGRAPH_CHECK(igraph_adjlist_init(graph, &adjlist_out, IGRAPH_ALL)); IGRAPH_FINALLY(igraph_adjlist_destroy, &adjlist_out); adjlist_out_p=adjlist_in_p=&adjlist_out; } distance=igraph_Calloc(no_of_nodes, long int); if (distance==0) { IGRAPH_ERROR("betweenness failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, distance); nrgeo=igraph_Calloc(no_of_nodes, long int); if (nrgeo==0) { IGRAPH_ERROR("betweenness failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, nrgeo); tmpscore=igraph_Calloc(no_of_nodes, double); if (tmpscore==0) { IGRAPH_ERROR("betweenness failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, tmpscore); IGRAPH_DQUEUE_INIT_FINALLY(&q, 100); igraph_stack_init(&stack, no_of_nodes); IGRAPH_FINALLY(igraph_stack_destroy, &stack); IGRAPH_CHECK(igraph_vector_resize(res, IGRAPH_VIT_SIZE(vit))); igraph_vector_null(res); /* here we go */ for (source=0; source<no_of_nodes; source++) { IGRAPH_PROGRESS("Betweenness centrality: ", 100.0*source/no_of_nodes, 0); IGRAPH_ALLOW_INTERRUPTION(); memset(distance, 0, no_of_nodes*sizeof(long int)); memset(nrgeo, 0, no_of_nodes*sizeof(long int)); memset(tmpscore, 0, no_of_nodes*sizeof(double)); igraph_stack_clear(&stack); /* it should be empty anyway... */ IGRAPH_CHECK(igraph_dqueue_push(&q, source)); nrgeo[source]=1; distance[source]=0; while (!igraph_dqueue_empty(&q)) { long int actnode=igraph_dqueue_pop(&q); if (cutoff > 0 && distance[actnode] >= cutoff) continue; neis = igraph_adjlist_get(adjlist_out_p, actnode); for (j=0; j<igraph_vector_size(neis); j++) { long int neighbor=VECTOR(*neis)[j]; if (nrgeo[neighbor] != 0) { /* we've already seen this node, another shortest path? */ if (distance[neighbor]==distance[actnode]+1) { nrgeo[neighbor]+=nrgeo[actnode]; } } else { /* we haven't seen this node yet */ nrgeo[neighbor]+=nrgeo[actnode]; distance[neighbor]=distance[actnode]+1; IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); IGRAPH_CHECK(igraph_stack_push(&stack, neighbor)); } } } /* while !igraph_dqueue_empty */ /* Ok, we've the distance of each node and also the number of shortest paths to them. Now we do an inverse search, starting with the farthest nodes. */ while (!igraph_stack_empty(&stack)) { long int actnode=igraph_stack_pop(&stack); if (distance[actnode]<=1) { continue; } /* skip source node */ /* set the temporary score of the friends */ neis = igraph_adjlist_get(adjlist_in_p, actnode); for (j=0; j<igraph_vector_size(neis); j++) { long int neighbor=VECTOR(*neis)[j]; if (distance[neighbor]==distance[actnode]-1 && nrgeo[neighbor] != 0) { tmpscore[neighbor] += (tmpscore[actnode]+1)*nrgeo[neighbor]/nrgeo[actnode]; } } } /* Ok, we've the scores for this source */ for (k=0, IGRAPH_VIT_RESET(vit); !IGRAPH_VIT_END(vit); IGRAPH_VIT_NEXT(vit), k++) { long int node=IGRAPH_VIT_GET(vit); VECTOR(*res)[k] += tmpscore[node]; tmpscore[node] = 0.0; /* in case a node is in vids multiple times */ } } /* for source < no_of_nodes */ /* divide by 2 for undirected graph */ if (!directed) { for (j=0; j<igraph_vector_size(res); j++) { VECTOR(*res)[j] /= 2.0; } } /* clean */ igraph_Free(distance); igraph_Free(nrgeo); igraph_Free(tmpscore); igraph_dqueue_destroy(&q); igraph_stack_destroy(&stack); igraph_vit_destroy(&vit); IGRAPH_FINALLY_CLEAN(6); if (directed) { igraph_adjlist_destroy(&adjlist_out); igraph_adjlist_destroy(&adjlist_in); IGRAPH_FINALLY_CLEAN(2); } else { igraph_adjlist_destroy(&adjlist_out); IGRAPH_FINALLY_CLEAN(1); } return 0; }
/** * \ingroup structural * \function igraph_closeness_estimate * \brief Closeness centrality estimations for some vertices. * * </para><para> * The closeness centrality of a vertex measures how easily other * vertices can be reached from it (or the other way: how easily it * can be reached from the other vertices). It is defined as the * number of the number of vertices minus one divided by the sum of the * lengths of all geodesics from/to the given vertex. When estimating * closeness centrality, igraph considers paths having a length less than * or equal to a prescribed cutoff value. * * </para><para> * If the graph is not connected, and there is no such path between two * vertices, the number of vertices is used instead the length of the * geodesic. This is always longer than the longest possible geodesic. * * </para><para> * Since the estimation considers vertex pairs with a distance greater than * the given value as disconnected, the resulting estimation will always be * lower than the actual closeness centrality. * * \param graph The graph object. * \param res The result of the computation, a vector containing the * closeness centrality scores for the given vertices. * \param vids Vector giving the vertices for which the closeness * centrality scores will be computed. * \param mode The type of shortest paths to be used for the * calculation in directed graphs. Possible values: * \clist * \cli IGRAPH_OUT * the lengths of the outgoing paths are calculated. * \cli IGRAPH_IN * the lengths of the incoming paths are calculated. * \cli IGRAPH_ALL * the directed graph is considered as an * undirected one for the computation. * \endclist * \param cutoff The maximal length of paths that will be considered. * If zero or negative, the exact closeness will be calculated * (no upper limit on path lengths). * \return Error code: * \clist * \cli IGRAPH_ENOMEM * not enough memory for temporary data. * \cli IGRAPH_EINVVID * invalid vertex id passed. * \cli IGRAPH_EINVMODE * invalid mode argument. * \endclist * * Time complexity: O(n|E|), * n is the number * of vertices for which the calculation is done and * |E| is the number * of edges in the graph. * * \sa Other centrality types: \ref igraph_degree(), \ref igraph_betweenness(). */ int igraph_closeness_estimate(const igraph_t *graph, igraph_vector_t *res, const igraph_vs_t vids, igraph_neimode_t mode, igraph_integer_t cutoff) { long int no_of_nodes=igraph_vcount(graph); igraph_vector_t already_counted, *neis; long int i, j; long int nodes_reached; igraph_adjlist_t allneis; igraph_dqueue_t q; long int nodes_to_calc; igraph_vit_t vit; IGRAPH_CHECK(igraph_vit_create(graph, vids, &vit)); IGRAPH_FINALLY(igraph_vit_destroy, &vit); nodes_to_calc=IGRAPH_VIT_SIZE(vit); if (mode != IGRAPH_OUT && mode != IGRAPH_IN && mode != IGRAPH_ALL) { IGRAPH_ERROR("calculating closeness", IGRAPH_EINVMODE); } IGRAPH_VECTOR_INIT_FINALLY(&already_counted, no_of_nodes); IGRAPH_DQUEUE_INIT_FINALLY(&q, 100); IGRAPH_CHECK(igraph_adjlist_init(graph, &allneis, mode)); IGRAPH_FINALLY(igraph_adjlist_destroy, &allneis); IGRAPH_CHECK(igraph_vector_resize(res, nodes_to_calc)); igraph_vector_null(res); for (IGRAPH_VIT_RESET(vit), i=0; !IGRAPH_VIT_END(vit); IGRAPH_VIT_NEXT(vit), i++) { IGRAPH_CHECK(igraph_dqueue_push(&q, IGRAPH_VIT_GET(vit))); IGRAPH_CHECK(igraph_dqueue_push(&q, 0)); nodes_reached=1; VECTOR(already_counted)[(long int)IGRAPH_VIT_GET(vit)]=i+1; IGRAPH_PROGRESS("Closeness: ", 100.0*i/no_of_nodes, NULL); IGRAPH_ALLOW_INTERRUPTION(); while (!igraph_dqueue_empty(&q)) { long int act=igraph_dqueue_pop(&q); long int actdist=igraph_dqueue_pop(&q); VECTOR(*res)[i] += actdist; if (cutoff>0 && actdist>=cutoff) continue; neis=igraph_adjlist_get(&allneis, act); for (j=0; j<igraph_vector_size(neis); j++) { long int neighbor=VECTOR(*neis)[j]; if (VECTOR(already_counted)[neighbor] == i+1) { continue; } VECTOR(already_counted)[neighbor] = i+1; nodes_reached++; IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); IGRAPH_CHECK(igraph_dqueue_push(&q, actdist+1)); } } VECTOR(*res)[i] += ((igraph_integer_t)no_of_nodes * (no_of_nodes-nodes_reached)); VECTOR(*res)[i] = (no_of_nodes-1) / VECTOR(*res)[i]; } IGRAPH_PROGRESS("Closeness: ", 100.0, NULL); /* Clean */ igraph_dqueue_destroy(&q); igraph_vector_destroy(&already_counted); igraph_vit_destroy(&vit); igraph_adjlist_destroy(&allneis); IGRAPH_FINALLY_CLEAN(4); return 0; }
/** * \ingroup structural * \function igraph_edge_betweenness_estimate * \brief Estimated betweenness centrality of the edges. * * </para><para> * The betweenness centrality of an edge is the number of geodesics * going through it. If there are more than one geodesics between two * vertices, the value of these geodesics are weighted by one over the * number of geodesics. When estimating betweenness centrality, igraph * takes into consideration only those paths that are shorter than or * equal to a prescribed length. Note that the estimated centrality * will always be less than the real one. * \param graph The graph object. * \param result The result of the computation, vector containing the * betweenness scores for the edges. * \param directed Logical, if true directed paths will be considered * for directed graphs. It is ignored for undirected graphs. * \param cutoff The maximal length of paths that will be considered. * If zero or negative, the exact betweenness will be calculated * (no upper limit on path lengths). * \return Error code: * \c IGRAPH_ENOMEM, not enough memory for * temporary data. * * Time complexity: O(|V||E|), * |V| and * |E| are the number of vertices and * edges in the graph. * * \sa Other centrality types: \ref igraph_degree(), \ref igraph_closeness(). * See \ref igraph_betweenness() for calculating the betweenness score * of the vertices in a graph. */ int igraph_edge_betweenness_estimate(const igraph_t *graph, igraph_vector_t *result, igraph_bool_t directed, igraph_integer_t cutoff) { long int no_of_nodes=igraph_vcount(graph); long int no_of_edges=igraph_ecount(graph); igraph_dqueue_t q=IGRAPH_DQUEUE_NULL; long int *distance; long int *nrgeo; double *tmpscore; igraph_stack_t stack=IGRAPH_STACK_NULL; long int source; long int j; igraph_adjedgelist_t elist_out, elist_in; igraph_adjedgelist_t *elist_out_p, *elist_in_p; igraph_vector_t *neip; long int neino; long int i; igraph_integer_t modein, modeout; directed=directed && igraph_is_directed(graph); if (directed) { modeout=IGRAPH_OUT; modein=IGRAPH_IN; IGRAPH_CHECK(igraph_adjedgelist_init(graph, &elist_out, IGRAPH_OUT)); IGRAPH_FINALLY(igraph_adjedgelist_destroy, &elist_out); IGRAPH_CHECK(igraph_adjedgelist_init(graph, &elist_in, IGRAPH_IN)); IGRAPH_FINALLY(igraph_adjedgelist_destroy, &elist_in); elist_out_p=&elist_out; elist_in_p=&elist_in; } else { modeout=modein=IGRAPH_ALL; IGRAPH_CHECK(igraph_adjedgelist_init(graph,&elist_out, IGRAPH_ALL)); IGRAPH_FINALLY(igraph_adjedgelist_destroy, &elist_out); elist_out_p=elist_in_p=&elist_out; } distance=igraph_Calloc(no_of_nodes, long int); if (distance==0) { IGRAPH_ERROR("edge betweenness failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, distance); nrgeo=igraph_Calloc(no_of_nodes, long int); if (nrgeo==0) { IGRAPH_ERROR("edge betweenness failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, nrgeo); tmpscore=igraph_Calloc(no_of_nodes, double); if (tmpscore==0) { IGRAPH_ERROR("edge betweenness failed", IGRAPH_ENOMEM); } IGRAPH_FINALLY(igraph_free, tmpscore); IGRAPH_DQUEUE_INIT_FINALLY(&q, 100); IGRAPH_CHECK(igraph_stack_init(&stack, no_of_nodes)); IGRAPH_FINALLY(igraph_stack_destroy, &stack); IGRAPH_CHECK(igraph_vector_resize(result, no_of_edges)); igraph_vector_null(result); /* here we go */ for (source=0; source<no_of_nodes; source++) { IGRAPH_PROGRESS("Edge betweenness centrality: ", 100.0*source/no_of_nodes, 0); IGRAPH_ALLOW_INTERRUPTION(); memset(distance, 0, no_of_nodes*sizeof(long int)); memset(nrgeo, 0, no_of_nodes*sizeof(long int)); memset(tmpscore, 0, no_of_nodes*sizeof(double)); igraph_stack_clear(&stack); /* it should be empty anyway... */ IGRAPH_CHECK(igraph_dqueue_push(&q, source)); nrgeo[source]=1; distance[source]=0; while (!igraph_dqueue_empty(&q)) { long int actnode=igraph_dqueue_pop(&q); if (cutoff > 0 && distance[actnode] >= cutoff ) continue; neip=igraph_adjedgelist_get(elist_out_p, actnode); neino=igraph_vector_size(neip); for (i=0; i<neino; i++) { igraph_integer_t edge=VECTOR(*neip)[i], from, to; long int neighbor; igraph_edge(graph, edge, &from, &to); neighbor = actnode!=from ? from : to; if (nrgeo[neighbor] != 0) { /* we've already seen this node, another shortest path? */ if (distance[neighbor]==distance[actnode]+1) { nrgeo[neighbor]+=nrgeo[actnode]; } } else { /* we haven't seen this node yet */ nrgeo[neighbor]+=nrgeo[actnode]; distance[neighbor]=distance[actnode]+1; IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor)); IGRAPH_CHECK(igraph_stack_push(&stack, neighbor)); } } } /* while !igraph_dqueue_empty */ /* Ok, we've the distance of each node and also the number of shortest paths to them. Now we do an inverse search, starting with the farthest nodes. */ while (!igraph_stack_empty(&stack)) { long int actnode=igraph_stack_pop(&stack); if (distance[actnode]<1) { continue; } /* skip source node */ /* set the temporary score of the friends */ neip=igraph_adjedgelist_get(elist_in_p, actnode); neino=igraph_vector_size(neip); for (i=0; i<neino; i++) { igraph_integer_t from, to; long int neighbor; long int edgeno=VECTOR(*neip)[i]; igraph_edge(graph, edgeno, &from, &to); neighbor= actnode != from ? from : to; if (distance[neighbor]==distance[actnode]-1 && nrgeo[neighbor] != 0) { tmpscore[neighbor] += (tmpscore[actnode]+1)*nrgeo[neighbor]/nrgeo[actnode]; VECTOR(*result)[edgeno] += (tmpscore[actnode]+1)*nrgeo[neighbor]/nrgeo[actnode]; } } } /* Ok, we've the scores for this source */ } /* for source <= no_of_nodes */ IGRAPH_PROGRESS("Edge betweenness centrality: ", 100.0, 0); /* clean and return */ igraph_Free(distance); igraph_Free(nrgeo); igraph_Free(tmpscore); igraph_dqueue_destroy(&q); igraph_stack_destroy(&stack); IGRAPH_FINALLY_CLEAN(5); if (directed) { igraph_adjedgelist_destroy(&elist_out); igraph_adjedgelist_destroy(&elist_in); IGRAPH_FINALLY_CLEAN(2); } else { igraph_adjedgelist_destroy(&elist_out); IGRAPH_FINALLY_CLEAN(1); } /* divide by 2 for undirected graph */ if (!directed || !igraph_is_directed(graph)) { for (j=0; j<igraph_vector_size(result); j++) { VECTOR(*result)[j] /= 2.0; } } return 0; }