int main(int ac, char **av) { struct btrfs_root *root; struct btrfs_trans_handle *trans; int ret; if (ac != 2) print_usage(); radix_tree_init(); if((ret = check_mounted(av[1])) < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); goto out; } else if(ret) { fprintf(stderr, "%s is currently mounted. Aborting.\n", av[1]); ret = -EBUSY; goto out; } root = open_ctree(av[1], 0, OPEN_CTREE_WRITES); if (root == NULL) return 1; trans = btrfs_start_transaction(root, 1); btrfs_set_super_log_root(root->fs_info->super_copy, 0); btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); btrfs_commit_transaction(trans, root); close_ctree(root); out: return !!ret; }
static int cmd_rescue_zero_log(int argc, char **argv) { struct btrfs_root *root; struct btrfs_trans_handle *trans; struct btrfs_super_block *sb; char *devname; int ret; clean_args_no_options(argc, argv, cmd_rescue_zero_log_usage); if (check_argc_exact(argc, 2)) usage(cmd_rescue_zero_log_usage); devname = argv[optind]; ret = check_mounted(devname); if (ret < 0) { errno = -ret; error("could not check mount status: %m"); goto out; } else if (ret) { error("%s is currently mounted", devname); ret = -EBUSY; goto out; } root = open_ctree(devname, 0, OPEN_CTREE_WRITES | OPEN_CTREE_PARTIAL); if (!root) { error("could not open ctree"); return 1; } sb = root->fs_info->super_copy; printf("Clearing log on %s, previous log_root %llu, level %u\n", devname, (unsigned long long)btrfs_super_log_root(sb), (unsigned)btrfs_super_log_root_level(sb)); trans = btrfs_start_transaction(root, 1); BUG_ON(IS_ERR(trans)); btrfs_set_super_log_root(sb, 0); btrfs_set_super_log_root_level(sb, 0); btrfs_commit_transaction(trans, root); close_ctree(root); out: return !!ret; }
int get_label_unmounted(char *dev) { struct btrfs_root *root; /* Open the super_block at the default location * and as read-only. */ root = open_ctree(dev, 0, 0); if(!root) return -1; fprintf(stdout, "%s\n", root->fs_info->super_copy.label); /* Now we close it since we are done. */ close_ctree(root); return 0; }
int main(int ac, char **av) { struct btrfs_root *root; struct btrfs_trans_handle *trans; struct btrfs_super_block *sb; int ret; set_argv0(av); if (check_argc_exact(ac, 2)) print_usage(); radix_tree_init(); printf("WARNING: this utility is deprecated, please use 'btrfs rescue zero-log'\n\n"); if ((ret = check_mounted(av[1])) < 0) { fprintf(stderr, "ERROR: could not check mount status: %s\n", strerror(-ret)); goto out; } else if (ret) { fprintf(stderr, "ERROR: %s is currently mounted\n", av[1]); ret = -EBUSY; goto out; } root = open_ctree(av[1], 0, OPEN_CTREE_WRITES | OPEN_CTREE_PARTIAL); if (!root) { fprintf(stderr, "ERROR: cannot open ctree\n"); return 1; } sb = root->fs_info->super_copy; printf("Clearing log on %s, previous log_root %llu, level %u\n", av[1], (unsigned long long)btrfs_super_log_root(sb), (unsigned)btrfs_super_log_root_level(sb)); trans = btrfs_start_transaction(root, 1); btrfs_set_super_log_root(root->fs_info->super_copy, 0); btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); btrfs_commit_transaction(trans, root); close_ctree(root); out: return !!ret; }
static void change_label_unmounted(char *dev, char *nLabel) { struct btrfs_root *root; struct btrfs_trans_handle *trans; /* Open the super_block at the default location * and as read-write. */ root = open_ctree(dev, 0, 1); if (!root) /* errors are printed by open_ctree() */ return; trans = btrfs_start_transaction(root, 1); strncpy(root->fs_info->super_copy.label, nLabel, BTRFS_LABEL_SIZE); root->fs_info->super_copy.label[BTRFS_LABEL_SIZE-1] = 0; btrfs_commit_transaction(trans, root); /* Now we close it since we are done. */ close_ctree(root); }
int main(int argc, char *argv[]) { struct btrfs_root *root; int success = 0; int extrefs_flag = 0; int seeding_flag = 0; int seeding_value = 0; int ret; while(1) { int c = getopt(argc, argv, "S:r"); if (c < 0) break; switch(c) { case 'S': seeding_flag = 1; seeding_value = atoi(optarg); break; case 'r': extrefs_flag = 1; break; default: print_usage(); return 1; } } argc = argc - optind; device = argv[optind]; if (argc != 1) { print_usage(); return 1; } if (check_mounted(device)) { fprintf(stderr, "%s is mounted\n", device); return 1; } root = open_ctree(device, 0, 1); if (!root) { fprintf(stderr, "Open ctree failed\n"); return 1; } if (seeding_flag) { ret = update_seeding_flag(root, seeding_value); if (!ret) success++; } if (extrefs_flag) { enable_extrefs_flag(root); success++; } if (success > 0) { ret = 0; } else { root->fs_info->readonly = 1; ret = 1; } close_ctree(root); return ret; }
int main(int ac, char **av) { struct cache_tree root_cache; struct btrfs_root *root; struct extent_buffer *eb; char *dev; char *output_file = NULL; u64 logical = 0; int ret = 0; int option_index = 0; int copy = 0; u64 bytes = 0; int out_fd = 0; int err; while(1) { int c; c = getopt_long(ac, av, "l:c:o:b:", long_options, &option_index); if (c < 0) break; switch(c) { case 'l': logical = atoll(optarg); if (logical == 0) { fprintf(stderr, "invalid extent number\n"); print_usage(); } break; case 'c': copy = atoi(optarg); if (copy == 0) { fprintf(stderr, "invalid copy number\n"); print_usage(); } break; case 'b': bytes = atoll(optarg); if (bytes == 0) { fprintf(stderr, "invalid byte count\n"); print_usage(); } break; case 'o': output_file = strdup(optarg); break; default: print_usage(); } } ac = ac - optind; if (ac == 0) print_usage(); if (logical == 0) print_usage(); if (copy < 0) print_usage(); dev = av[optind]; radix_tree_init(); cache_tree_init(&root_cache); root = open_ctree(dev, 0, 0); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } info_file = stdout; if (output_file) { if (strcmp(output_file, "-") == 0) { out_fd = 1; info_file = stderr; } else { out_fd = open(output_file, O_RDWR | O_CREAT, 0600); if (out_fd < 0) goto close; err = ftruncate(out_fd, 0); if (err) { close(out_fd); goto close; } info_file = stdout; } } if (bytes == 0) bytes = root->sectorsize; bytes = (bytes + root->sectorsize - 1) / root->sectorsize; bytes *= root->sectorsize; while (bytes > 0) { eb = debug_read_block(root, logical, root->sectorsize, copy); if (eb && output_file) { err = write(out_fd, eb->data, eb->len); if (err < 0 || err != eb->len) { fprintf(stderr, "output file write failed\n"); goto out_close_fd; } } free_extent_buffer(eb); logical += root->sectorsize; bytes -= root->sectorsize; } out_close_fd: if (output_file && out_fd != 1) close(out_fd); close: close_ctree(root); return ret; }
int main(int ac, char **av) { char *file; struct btrfs_root *root; struct btrfs_trans_handle *trans; char *label = NULL; char *first_file; u64 block_count = 0; u64 dev_block_count = 0; u64 blocks[7]; u64 alloc_start = 0; u64 metadata_profile = 0; u64 data_profile = 0; u32 leafsize = sysconf(_SC_PAGESIZE); u32 sectorsize = 4096; u32 nodesize = leafsize; u32 stripesize = 4096; int zero_end = 1; int option_index = 0; int fd; int ret; int i; int mixed = 0; int data_profile_opt = 0; int metadata_profile_opt = 0; int discard = 1; int ssd = 0; int force_overwrite = 0; char *source_dir = NULL; int source_dir_set = 0; u64 num_of_meta_chunks = 0; u64 size_of_data = 0; u64 source_dir_size = 0; int dev_cnt = 0; int saved_optind; char estr[100]; u64 features = 0; while(1) { int c; c = getopt_long(ac, av, "A:b:fl:n:s:m:d:L:O:r:VMK", long_options, &option_index); if (c < 0) break; switch(c) { case 'A': alloc_start = parse_size(optarg); break; case 'f': force_overwrite = 1; break; case 'd': data_profile = parse_profile(optarg); data_profile_opt = 1; break; case 'l': case 'n': nodesize = parse_size(optarg); leafsize = parse_size(optarg); break; case 'L': label = parse_label(optarg); break; case 'm': metadata_profile = parse_profile(optarg); metadata_profile_opt = 1; break; case 'M': mixed = 1; break; case 'O': { char *orig = strdup(optarg); char *tmp = orig; tmp = parse_fs_features(tmp, &features); if (tmp) { fprintf(stderr, "Unrecognized filesystem feature '%s'\n", tmp); free(orig); exit(1); } free(orig); if (features & BTRFS_FEATURE_LIST_ALL) { list_all_fs_features(); exit(0); } break; } case 's': sectorsize = parse_size(optarg); break; case 'b': block_count = parse_size(optarg); if (block_count <= 1024*1024*1024) { printf("SMALL VOLUME: forcing mixed " "metadata/data groups\n"); mixed = 1; } zero_end = 0; break; case 'V': print_version(); break; case 'r': source_dir = optarg; source_dir_set = 1; break; case 'K': discard = 0; break; default: print_usage(); } } sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE)); if (check_leaf_or_node_size(leafsize, sectorsize)) exit(1); if (check_leaf_or_node_size(nodesize, sectorsize)) exit(1); saved_optind = optind; dev_cnt = ac - optind; if (dev_cnt == 0) print_usage(); if (source_dir_set && dev_cnt > 1) { fprintf(stderr, "The -r option is limited to a single device\n"); exit(1); } while (dev_cnt-- > 0) { file = av[optind++]; if (is_block_device(file)) if (test_dev_for_mkfs(file, force_overwrite, estr)) { fprintf(stderr, "Error: %s", estr); exit(1); } } optind = saved_optind; dev_cnt = ac - optind; file = av[optind++]; ssd = is_ssd(file); if (is_vol_small(file)) { printf("SMALL VOLUME: forcing mixed metadata/data groups\n"); mixed = 1; if (metadata_profile != data_profile) { if (metadata_profile_opt || data_profile_opt) { fprintf(stderr, "With mixed block groups data and metadata profiles must be the same\n"); exit(1); } } } /* * Set default profiles according to number of added devices. * For mixed groups defaults are single/single. */ if (!mixed) { if (!metadata_profile_opt) { if (dev_cnt == 1 && ssd) printf("Detected a SSD, turning off metadata " "duplication. Mkfs with -m dup if you want to " "force metadata duplication.\n"); metadata_profile = (dev_cnt > 1) ? BTRFS_BLOCK_GROUP_RAID1 : (ssd) ? 0: BTRFS_BLOCK_GROUP_DUP; } if (!data_profile_opt) { data_profile = (dev_cnt > 1) ? BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */ } } else { metadata_profile = 0; data_profile = 0; } ret = test_num_disk_vs_raid(metadata_profile, data_profile, dev_cnt, mixed, estr); if (ret) { fprintf(stderr, "Error: %s\n", estr); exit(1); } /* if we are here that means all devs are good to btrfsify */ printf("\nWARNING! - %s IS EXPERIMENTAL\n", BTRFS_BUILD_VERSION); printf("WARNING! - see http://btrfs.wiki.kernel.org before using\n\n"); dev_cnt--; if (!source_dir_set) { /* * open without O_EXCL so that the problem should not * occur by the following processing. * (btrfs_register_one_device() fails if O_EXCL is on) */ fd = open(file, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s: %s\n", file, strerror(errno)); exit(1); } first_file = file; ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count, block_count, &mixed, discard); if (block_count && block_count > dev_block_count) { fprintf(stderr, "%s is smaller than requested size\n", file); exit(1); } } else { fd = open_target(file); if (fd < 0) { fprintf(stderr, "unable to open the %s\n", file); exit(1); } first_file = file; source_dir_size = size_sourcedir(source_dir, sectorsize, &num_of_meta_chunks, &size_of_data); if(block_count < source_dir_size) block_count = source_dir_size; ret = zero_output_file(fd, block_count, sectorsize); if (ret) { fprintf(stderr, "unable to zero the output file\n"); exit(1); } /* our "device" is the new image file */ dev_block_count = block_count; } /* To create the first block group and chunk 0 in make_btrfs */ if (dev_block_count < BTRFS_MKFS_SYSTEM_GROUP_SIZE) { fprintf(stderr, "device is too small to make filesystem\n"); exit(1); } blocks[0] = BTRFS_SUPER_INFO_OFFSET; for (i = 1; i < 7; i++) { blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 + leafsize * i; } /* * FS features that can be set by other means than -O * just set the bit here */ if (mixed) features |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS; if ((data_profile | metadata_profile) & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { features |= BTRFS_FEATURE_INCOMPAT_RAID56; } process_fs_features(features); ret = make_btrfs(fd, file, label, blocks, dev_block_count, nodesize, leafsize, sectorsize, stripesize, features); if (ret) { fprintf(stderr, "error during mkfs: %s\n", strerror(-ret)); exit(1); } root = open_ctree(file, 0, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "Open ctree failed\n"); close(fd); exit(1); } root->fs_info->alloc_start = alloc_start; ret = make_root_dir(root, mixed); if (ret) { fprintf(stderr, "failed to setup the root directory\n"); exit(1); } trans = btrfs_start_transaction(root, 1); if (dev_cnt == 0) goto raid_groups; btrfs_register_one_device(file); zero_end = 1; while (dev_cnt-- > 0) { int old_mixed = mixed; file = av[optind++]; /* * open without O_EXCL so that the problem should not * occur by the following processing. * (btrfs_register_one_device() fails if O_EXCL is on) */ fd = open(file, O_RDWR); if (fd < 0) { fprintf(stderr, "unable to open %s: %s\n", file, strerror(errno)); exit(1); } ret = btrfs_device_already_in_root(root, fd, BTRFS_SUPER_INFO_OFFSET); if (ret) { fprintf(stderr, "skipping duplicate device %s in FS\n", file); close(fd); continue; } ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count, block_count, &mixed, discard); mixed = old_mixed; BUG_ON(ret); ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count, sectorsize, sectorsize, sectorsize); BUG_ON(ret); btrfs_register_one_device(file); } raid_groups: if (!source_dir_set) { ret = create_raid_groups(trans, root, data_profile, data_profile_opt, metadata_profile, metadata_profile_opt, mixed, ssd); BUG_ON(ret); } ret = create_data_reloc_tree(trans, root); BUG_ON(ret); printf("fs created label %s on %s\n\tnodesize %u leafsize %u " "sectorsize %u size %s\n", label, first_file, nodesize, leafsize, sectorsize, pretty_size(btrfs_super_total_bytes(root->fs_info->super_copy))); printf("%s\n", BTRFS_BUILD_VERSION); btrfs_commit_transaction(trans, root); if (source_dir_set) { trans = btrfs_start_transaction(root, 1); ret = create_chunks(trans, root, num_of_meta_chunks, size_of_data); BUG_ON(ret); btrfs_commit_transaction(trans, root); ret = make_image(source_dir, root, fd); BUG_ON(ret); } ret = close_ctree(root); BUG_ON(ret); free(label); return 0; }
int main(int ac, char **av) { struct cache_tree root_cache; struct btrfs_root *root; char *dev; char *output_file = NULL; u64 copy = 0; u64 logical = 0; u64 bytes = 0; u64 cur_logical = 0; u64 cur_len = 0; int out_fd = -1; int found = 0; int ret = 0; while(1) { int c; static const struct option long_options[] = { /* { "byte-count", 1, NULL, 'b' }, */ { "logical", required_argument, NULL, 'l' }, { "copy", required_argument, NULL, 'c' }, { "output", required_argument, NULL, 'o' }, { "bytes", required_argument, NULL, 'b' }, { NULL, 0, NULL, 0} }; c = getopt_long(ac, av, "l:c:o:b:", long_options, NULL); if (c < 0) break; switch(c) { case 'l': logical = arg_strtou64(optarg); break; case 'c': copy = arg_strtou64(optarg); break; case 'b': bytes = arg_strtou64(optarg); break; case 'o': output_file = strdup(optarg); break; default: print_usage(); } } set_argv0(av); ac = ac - optind; if (check_argc_min(ac, 1)) print_usage(); if (logical == 0) print_usage(); dev = av[optind]; radix_tree_init(); cache_tree_init(&root_cache); root = open_ctree(dev, 0, 0); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } info_file = stdout; if (output_file) { if (strcmp(output_file, "-") == 0) { out_fd = 1; info_file = stderr; } else { out_fd = open(output_file, O_RDWR | O_CREAT, 0600); if (out_fd < 0) goto close; ret = ftruncate(out_fd, 0); if (ret) { ret = 1; close(out_fd); goto close; } info_file = stdout; } } if (bytes == 0) bytes = root->nodesize; cur_logical = logical; cur_len = bytes; /* First find the nearest extent */ ret = map_one_extent(root->fs_info, &cur_logical, &cur_len, 0); if (ret < 0) { fprintf(stderr, "Failed to find extent at [%llu,%llu): %s\n", cur_logical, cur_logical + cur_len, strerror(-ret)); goto out_close_fd; } /* * Normally, search backward should be OK, but for special case like * given logical is quite small where no extents are before it, * we need to search forward. */ if (ret > 0) { ret = map_one_extent(root->fs_info, &cur_logical, &cur_len, 1); if (ret < 0) { fprintf(stderr, "Failed to find extent at [%llu,%llu): %s\n", cur_logical, cur_logical + cur_len, strerror(-ret)); goto out_close_fd; } if (ret > 0) { fprintf(stderr, "Failed to find any extent at [%llu,%llu)\n", cur_logical, cur_logical + cur_len); goto out_close_fd; } } while (cur_logical + cur_len >= logical && cur_logical < logical + bytes) { u64 real_logical; u64 real_len; found = 1; ret = map_one_extent(root->fs_info, &cur_logical, &cur_len, 1); if (ret < 0) goto out_close_fd; if (ret > 0) break; real_logical = max(logical, cur_logical); real_len = min(logical + bytes, cur_logical + cur_len) - real_logical; ret = print_mapping_info(root->fs_info, real_logical, real_len); if (ret < 0) goto out_close_fd; if (output_file && out_fd != -1) { ret = write_extent_content(root->fs_info, out_fd, real_logical, real_len, copy); if (ret < 0) goto out_close_fd; } cur_logical += cur_len; } if (!found) { fprintf(stderr, "No extent found at range [%llu,%llu)\n", logical, logical + bytes); } out_close_fd: if (output_file && out_fd != 1) close(out_fd); close: close_ctree(root); if (ret < 0) ret = 1; return ret; }
int main(int argc, char *argv[]) { struct btrfs_root *root; unsigned ctree_flags = OPEN_CTREE_WRITES; int success = 0; int total = 0; int seeding_flag = 0; u64 seeding_value = 0; int random_fsid = 0; char *new_fsid_str = NULL; int ret; u64 super_flags = 0; while(1) { static const struct option long_options[] = { { "help", no_argument, NULL, GETOPT_VAL_HELP}, { NULL, 0, NULL, 0 } }; int c = getopt_long(argc, argv, "S:rxfuU:n", long_options, NULL); if (c < 0) break; switch(c) { case 'S': seeding_flag = 1; seeding_value = arg_strtou64(optarg); break; case 'r': super_flags |= BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF; break; case 'x': super_flags |= BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA; break; case 'n': super_flags |= BTRFS_FEATURE_INCOMPAT_NO_HOLES; break; case 'f': force = 1; break; case 'U': ctree_flags |= OPEN_CTREE_IGNORE_FSID_MISMATCH; new_fsid_str = optarg; break; case 'u': ctree_flags |= OPEN_CTREE_IGNORE_FSID_MISMATCH; random_fsid = 1; break; case GETOPT_VAL_HELP: default: print_usage(); return c != GETOPT_VAL_HELP; } } set_argv0(argv); device = argv[optind]; if (check_argc_exact(argc - optind, 1)) { print_usage(); return 1; } if (random_fsid && new_fsid_str) { error("random fsid can't be used with specified fsid"); return 1; } if (!super_flags && !seeding_flag && !(random_fsid || new_fsid_str)) { error("at least one option should be specified"); print_usage(); return 1; } if (new_fsid_str) { uuid_t tmp; ret = uuid_parse(new_fsid_str, tmp); if (ret < 0) { error("could not parse UUID: %s", new_fsid_str); return 1; } if (!test_uuid_unique(new_fsid_str)) { error("fsid %s is not unique", new_fsid_str); return 1; } } ret = check_mounted(device); if (ret < 0) { error("could not check mount status of %s: %s", device, strerror(-ret)); return 1; } else if (ret) { error("%s is mounted", device); return 1; } root = open_ctree(device, 0, ctree_flags); if (!root) { error("open ctree failed"); return 1; } if (seeding_flag) { if (!seeding_value && !force) { warning( "this is dangerous, clearing the seeding flag may cause the derived device not to be mountable!"); ret = ask_user("We are going to clear the seeding flag, are you sure?"); if (!ret) { fprintf(stderr, "Clear seeding flag canceled\n"); ret = 1; goto out; } } ret = update_seeding_flag(root, seeding_value); if (!ret) success++; total++; } if (super_flags) { ret = set_super_incompat_flags(root, super_flags); if (!ret) success++; total++; } if (random_fsid || new_fsid_str) { if (!force) { warning( "it's highly recommended to run 'btrfs check' before this operation"); warning( "also canceling running UUID change progress may cause corruption"); ret = ask_user("We are going to change UUID, are your sure?"); if (!ret) { fprintf(stderr, "UUID change canceled\n"); ret = 1; goto out; } } ret = change_uuid(root->fs_info, new_fsid_str); if (!ret) success++; total++; } if (success == total) { ret = 0; } else { root->fs_info->readonly = 1; ret = 1; error("btrfstune failed"); } out: close_ctree(root); btrfs_close_all_devices(); return ret; }
int main(int ac, char **av) { struct btrfs_key ins; struct btrfs_key last = { (u64)-1, 0, 0}; char *buf; int i; int num; int ret; int run_size = 300000; int max_key = 100000000; int tree_size = 2; struct btrfs_path path; struct btrfs_root *root; struct btrfs_trans_handle *trans; buf = malloc(512); memset(buf, 0, 512); radix_tree_init(); root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } trans = btrfs_start_transaction(root, 1); srand(55); btrfs_set_key_type(&ins, BTRFS_STRING_ITEM_KEY); for (i = 0; i < run_size; i++) { num = next_key(i, max_key); // num = i; sprintf(buf, "string-%d", num); if (i % 10000 == 0) fprintf(stderr, "insert %d:%d\n", num, i); ins.objectid = num; ins.offset = 0; ret = btrfs_insert_item(trans, root, &ins, buf, 512); if (!ret) tree_size++; if (i == run_size - 5) { btrfs_commit_transaction(trans, root); trans = btrfs_start_transaction(root, 1); } } btrfs_commit_transaction(trans, root); close_ctree(root); exit(1); root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } printf("starting search\n"); srand(55); for (i = 0; i < run_size; i++) { num = next_key(i, max_key); ins.objectid = num; btrfs_init_path(&path); if (i % 10000 == 0) fprintf(stderr, "search %d:%d\n", num, i); ret = btrfs_search_slot(NULL, root, &ins, &path, 0, 0); if (ret) { btrfs_print_tree(root, root->node, 1); printf("unable to find %d\n", num); exit(1); } btrfs_release_path(&path); } close_ctree(root); root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } printf("node %p level %d total ptrs %d free spc %lu\n", root->node, btrfs_header_level(root->node), btrfs_header_nritems(root->node), (unsigned long)BTRFS_NODEPTRS_PER_BLOCK(root) - btrfs_header_nritems(root->node)); printf("all searches good, deleting some items\n"); i = 0; srand(55); trans = btrfs_start_transaction(root, 1); for (i = 0 ; i < run_size/4; i++) { num = next_key(i, max_key); ins.objectid = num; btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, &ins, &path, -1, 1); if (!ret) { if (i % 10000 == 0) fprintf(stderr, "del %d:%d\n", num, i); ret = btrfs_del_item(trans, root, &path); if (ret != 0) BUG(); tree_size--; } btrfs_release_path(&path); } btrfs_commit_transaction(trans, root); close_ctree(root); root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } trans = btrfs_start_transaction(root, 1); srand(128); for (i = 0; i < run_size; i++) { num = next_key(i, max_key); sprintf(buf, "string-%d", num); ins.objectid = num; if (i % 10000 == 0) fprintf(stderr, "insert %d:%d\n", num, i); ret = btrfs_insert_item(trans, root, &ins, buf, 512); if (!ret) tree_size++; } btrfs_commit_transaction(trans, root); close_ctree(root); root = open_ctree(av[1], BTRFS_SUPER_INFO_OFFSET, OPEN_CTREE_WRITES); if (!root) { fprintf(stderr, "Open ctree failed\n"); exit(1); } srand(128); printf("starting search2\n"); for (i = 0; i < run_size; i++) { num = next_key(i, max_key); ins.objectid = num; btrfs_init_path(&path); if (i % 10000 == 0) fprintf(stderr, "search %d:%d\n", num, i); ret = btrfs_search_slot(NULL, root, &ins, &path, 0, 0); if (ret) { btrfs_print_tree(root, root->node, 1); printf("unable to find %d\n", num); exit(1); } btrfs_release_path(&path); } printf("starting big long delete run\n"); trans = btrfs_start_transaction(root, 1); while(root->node && btrfs_header_nritems(root->node) > 0) { struct extent_buffer *leaf; int slot; ins.objectid = (u64)-1; btrfs_init_path(&path); ret = btrfs_search_slot(trans, root, &ins, &path, -1, 1); if (ret == 0) BUG(); leaf = path.nodes[0]; slot = path.slots[0]; if (slot != btrfs_header_nritems(leaf)) BUG(); while(path.slots[0] > 0) { path.slots[0] -= 1; slot = path.slots[0]; leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &last, slot); if (tree_size % 10000 == 0) printf("big del %d:%d\n", tree_size, i); ret = btrfs_del_item(trans, root, &path); if (ret != 0) { printf("del_item returned %d\n", ret); BUG(); } tree_size--; } btrfs_release_path(&path); } /* printf("previous tree:\n"); btrfs_print_tree(root, root->commit_root); printf("map before commit\n"); btrfs_print_tree(root->extent_root, root->extent_root->node); */ btrfs_commit_transaction(trans, root); printf("tree size is now %d\n", tree_size); printf("root %p commit root %p\n", root->node, root->commit_root); btrfs_print_tree(root, root->node, 1); close_ctree(root); return 0; }
static int btrfs_fill_super(struct super_block *sb, struct btrfs_fs_devices *fs_devices, void *data, int silent) { struct inode *inode; struct dentry *root_dentry; struct btrfs_super_block *disk_super; struct btrfs_root *tree_root; struct btrfs_inode *bi; int err; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_magic = BTRFS_SUPER_MAGIC; sb->s_op = &btrfs_super_ops; sb->s_export_op = &btrfs_export_ops; sb->s_xattr = btrfs_xattr_handlers; sb->s_time_gran = 1; sb->s_flags |= MS_POSIXACL; tree_root = open_ctree(sb, fs_devices, (char *)data); if (IS_ERR(tree_root)) { printk("btrfs: open_ctree failed\n"); return PTR_ERR(tree_root); } sb->s_fs_info = tree_root; disk_super = &tree_root->fs_info->super_copy; inode = btrfs_iget_locked(sb, BTRFS_FIRST_FREE_OBJECTID, tree_root->fs_info->fs_root); bi = BTRFS_I(inode); bi->location.objectid = inode->i_ino; bi->location.offset = 0; bi->root = tree_root->fs_info->fs_root; btrfs_set_key_type(&bi->location, BTRFS_INODE_ITEM_KEY); if (!inode) { err = -ENOMEM; goto fail_close; } if (inode->i_state & I_NEW) { btrfs_read_locked_inode(inode); unlock_new_inode(inode); } root_dentry = d_alloc_root(inode); if (!root_dentry) { iput(inode); err = -ENOMEM; goto fail_close; } #if 0 /* this does the super kobj at the same time */ err = btrfs_sysfs_add_super(tree_root->fs_info); if (err) goto fail_close; #endif sb->s_root = root_dentry; save_mount_options(sb, data); sb->cleancache_poolid = cleancache_init_fs(PAGE_SIZE); return 0; fail_close: close_ctree(tree_root); return err; }
int main(int ac, char **av) { struct btrfs_root *root; int ret; u64 num = 0; u64 bytenr = 0; while(1) { int c; c = getopt(ac, av, "s:"); if (c < 0) break; switch(c) { case 's': num = arg_strtou64(optarg); if (num >= BTRFS_SUPER_MIRROR_MAX) { fprintf(stderr, "ERROR: super mirror should be less than: %d\n", BTRFS_SUPER_MIRROR_MAX); exit(1); } bytenr = btrfs_sb_offset(((int)num)); break; default: print_usage(); } } set_argv0(av); ac = ac - optind; if (check_argc_exact(ac, 1)) print_usage(); if (bytenr == 0) { fprintf(stderr, "Please select the super copy with -s\n"); print_usage(); } radix_tree_init(); if((ret = check_mounted(av[optind])) < 0) { fprintf(stderr, "Could not check mount status: %s\n", strerror(-ret)); return ret; } else if(ret) { fprintf(stderr, "%s is currently mounted. Aborting.\n", av[optind]); return -EBUSY; } root = open_ctree(av[optind], bytenr, 1); if (!root) { fprintf(stderr, "Open ctree failed\n"); return 1; } /* make the super writing code think we've read the first super */ root->fs_info->super_bytenr = BTRFS_SUPER_INFO_OFFSET; ret = write_all_supers(root); /* we don't close the ctree or anything, because we don't want a real * transaction commit. We just want the super copy we pulled off the * disk to overwrite all the other copies */ printf("using SB copy %llu, bytenr %llu\n", (unsigned long long)num, (unsigned long long)bytenr); close_ctree(root); btrfs_close_all_devices(); return ret; }