示例#1
0
/**
 * Compute the matrix R with the method Gram Schmidt
 * @attribute n, number of rows and columns of Q, A and R.
 * @attribute Q, matrix Q.
 * @attribute A, matrix A.
 * @attribute R, matrix R.
 */
void matrixR(int n, double **Q, double **A, double **R) {
	double **QTrans;
	createMatrix(&QTrans, n, n);
	
	transposedMatrix(n, n, Q, QTrans);
	multiplicationMatrix(n, n, QTrans, A, R);
	
	destroyMatrix(&QTrans, n, n);
}
示例#2
0
Table_quadruplet least_squares_approximation(Table_triplet points, 
	Booleen uniformConf) {

	int i, j;

	Table_quadruplet res;
	res.nb = points.nb;
	ALLOUER(res.table, points.nb);

	Table_flottant steps = steps_computation(points, uniformConf);

	double ** B;
	ALLOUER(B, points.nb);
	for(i = 0; i < points.nb; i++)
		ALLOUER(B[i], points.nb);

	B[0][0] = B[points.nb - 1][points.nb - 1] = 1;
	for(i = 1; i < points.nb; i++)
		B[0][i] = 0;
	for(i = 0; i < points.nb; i++) { 
		for(j = 1; j < points.nb - 1; j++) {
			B[j][i] = bernsteinPolynomial(i, points.nb - 1, steps.table[j]);
		}
	}
	for(i = 0; i < points.nb - 1; i++)
		B[points.nb - 1][i] = 0;

	double ** BT = transposedMatrix(B, points.nb);

	Grille_flottant Aprime;
	Aprime.nb_lignes = Aprime.nb_colonnes = points.nb;
	Aprime.grille = matrix_matrix_mult(B, BT, points.nb);

	for(i = 0; i < points.nb; i++)
		free(BT[i]);
	free(BT);

	double * pointsX, * pointsY, * pointsZ;
	ALLOUER(pointsX, points.nb);
	ALLOUER(pointsY, points.nb);
	ALLOUER(pointsZ, points.nb);
	split_x_y_z(points, pointsX, pointsY, pointsZ);

	Table_flottant BprimeX, BprimeY, BprimeZ;
	BprimeX.nb = BprimeY.nb = BprimeZ.nb = points.nb;
	BprimeX.table = matrix_vector_mult(B, pointsX, points.nb);
	BprimeY.table = matrix_vector_mult(B, pointsY, points.nb);
	BprimeZ.table = matrix_vector_mult(B, pointsZ, points.nb);

	free(pointsX); free(pointsY); free(pointsZ);
	for(i = 0; i < points.nb; i++)
		free(B[i]);
	free(B);

	Table_flottant resX, resY, resZ;
	resX.nb = resY.nb = resZ.nb = points.nb;
	ALLOUER(resX.table, points.nb);
	ALLOUER(resY.table, points.nb);
	ALLOUER(resZ.table, points.nb);

	resolution_systeme_lineaire(&Aprime, &BprimeX, &resX);
	resolution_systeme_lineaire(&Aprime, &BprimeY, &resY);
	resolution_systeme_lineaire(&Aprime, &BprimeZ, &resZ);

	for(i = 0; i < points.nb; i++) {
		res.table[i].x = resX.table[i];
		res.table[i].y = resY.table[i];
		res.table[i].z = resZ.table[i];
		res.table[i].h = 1;
	}

	free(BprimeX.table); free(BprimeY.table); free(BprimeZ.table);
	free(resX.table); free(resY.table); free(resZ.table);
	for(i = 0; i < Aprime.nb_lignes; i++)
		free(Aprime.grille[i]);
	free(Aprime.grille);

	return res;
}