示例#1
0
int main(int argc, char *argv[])
{

#ifdef EPETRA_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  // Creates the linear problem using the Galeri package.
  // Various matrix examples are supported; please refer to the
  // Galeri documentation for more details.
  // This matrix is a simple VBR matrix, constructed by replicating
  // a point-matrix on each unknown. This example is
  // useful to test the vector capabilities of ML, or to debug
  // code for vector problems. The number of equations is here
  // hardwired as 5, but any positive number (including 1) can be
  // specified.
  //
  // NOTE: The epetra interface of ML has only limited capabilites
  // for matrices with variable block size (that is,
  // best is if the number of equations for
  // each block row is constant). If you are interested in variable
  // block capabilites, please contact the ML developers.

  int NumPDEEqns = 5;

  // build up a 9-point Laplacian in 2D. This stencil will lead to
  // "perfect" aggregates, of square shape, using almost all the ML
  // aggregation schemes.
  // The problem size (900) must be a square number. Otherwise, the user
  // can specify the number of points in the x- and y-direction, and the
  // length of the x- and y-side of the computational domain. Please
  // refer to the Trilinos tutorial for more details.
  //
  // Note also that this gallery matrix have no boundary nodes.

  int nx;
  if (argc > 1)
    nx = (int) strtol(argv[1],NULL,10);
  else
    nx = 16;

  Teuchos::ParameterList GaleriList;
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());

  Epetra_Map* Map = CreateMap("Cartesian2D", Comm, GaleriList);
  Epetra_CrsMatrix* CrsA = CreateCrsMatrix("Star2D", Map, GaleriList);
  Epetra_VbrMatrix* A = CreateVbrMatrix(CrsA, NumPDEEqns);

  Epetra_Vector LHS(A->Map()); LHS.Random();
  Epetra_Vector RHS(A->Map()); RHS.PutScalar(0.0);

  Epetra_LinearProblem Problem(A, &LHS, &RHS);

  // Construct a solver object for this problem
  AztecOO solver(Problem);

  // =========================== begin of ML part ===========================

  // create a parameter list for ML options
  ParameterList MLList;

  // set defaults for classic smoothed aggregation
  ML_Epetra::SetDefaults("SA",MLList);

  // overwrite some parameters. Please refer to the user's guide
  // for more information
  // some of the parameters do not differ from their default value,
  // and they are here reported for the sake of clarity

  // maximum number of levels
  MLList.set("max levels",5);
  MLList.set("increasing or decreasing","increasing");

  // set different aggregation schemes for each level. Depending on the
  // size of your problem, the hierarchy will contain different number
  // of levels. As `Uncoupled' and `METIS' are local aggregation
  // schemes, they should be used only for the finest level. `MIS' and
  // `ParMETIS' are global aggregation schemes (meaning that the
  // aggregates can span across processes), and should be reserved for
  // coarsest levels.
  // Note also that `Uncoupled' and `MIS' will always try to create
  // aggregates of diameter 3 (in the graph sense), while `METIS' and
  // `ParMETIS' can generate aggregates of any size.

  MLList.set("aggregation: type (level 0)", "Uncoupled");
  MLList.set("aggregation: type (level 1)", "MIS");

  // this is recognized by `METIS' and `ParMETIS' only
  MLList.set("aggregation: nodes per aggregate", 9);

  // smoother is Gauss-Seidel. Example file
  // ml_2level_DD.cpp shows how to use
  // AZTEC's preconditioners as smoothers
  MLList.set("smoother: type","Gauss-Seidel");

  // use both pre and post smoothing. Non-symmetric problems may take
  // advantage of pre-smoothing or post-smoothing only.
  MLList.set("smoother: pre or post", "both");

  // solve with serial direct solver KLU
  MLList.set("coarse: type","Amesos-KLU");

  // create the preconditioner object and compute hierarchy
  ML_Epetra::MultiLevelPreconditioner * MLPrec =
    new ML_Epetra::MultiLevelPreconditioner(*A, MLList);

  // tell AztecOO to use this preconditioner, then solve
  solver.SetPrecOperator(MLPrec);

  // =========================== end of ML part =============================

  solver.SetAztecOption(AZ_solver, AZ_cg_condnum);
  solver.SetAztecOption(AZ_output, 32);

  // solve with 500 iterations and 1e-5 tolerance
  solver.Iterate(500, 1e-7);

  delete MLPrec;

  // compute the real residual.

  double residual;
  LHS.Norm2(&residual);

  if (Comm.MyPID() == 0)
  {
    cout << "||b-Ax||_2 = " << residual << endl;
  }

  if (residual > 1e-3)
    exit(EXIT_FAILURE);

  delete A;
  delete CrsA;
  delete Map;

#ifdef EPETRA_MPI
  MPI_Finalize() ;
#endif

  return(EXIT_SUCCESS);
}
示例#2
0
int main(int argc, char *argv[])
{
  
#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  // Create the linear problem using the Galeri package.
  
  int NumPDEEqns = 5;

  Teuchos::ParameterList GaleriList;
  int nx = 32;
  GaleriList.set("nx", nx);
  GaleriList.set("ny", nx * Comm.NumProc());
  GaleriList.set("mx", 1);
  GaleriList.set("my", Comm.NumProc());

  Epetra_Map* Map = CreateMap("Cartesian2D", Comm, GaleriList);
  Epetra_CrsMatrix* CrsA = CreateCrsMatrix("Laplace2D", Map, GaleriList);
  Epetra_VbrMatrix* A = CreateVbrMatrix(CrsA, NumPDEEqns);

  Epetra_Vector LHS(A->Map()); LHS.Random();
  Epetra_Vector RHS(A->Map()); RHS.PutScalar(0.0);

  Epetra_LinearProblem Problem(A, &LHS, &RHS);

  AztecOO solver(Problem);

  // =========================== definition of coordinates =================
  
  // use the following Galeri function to get the
  // coordinates for a Cartesian grid. Note however that the
  // visualization capabilites of Trilinos accept non-structured grid as
  // well. Visualization and statistics occurs just after the ML
  // preconditioner has been build.

  Epetra_MultiVector* Coord = CreateCartesianCoordinates("2D", &(A->Map()),
                                                         GaleriList);
  double* x_coord = (*Coord)[0];
  double* y_coord = (*Coord)[1];
  
  // =========================== begin of ML part ===========================
  
  // create a parameter list for ML options
  ParameterList MLList;
  int *options    = new int[AZ_OPTIONS_SIZE];
  double *params  = new double[AZ_PARAMS_SIZE];

  // set defaults
  ML_Epetra::SetDefaults("SA",MLList, options, params);
  
  // overwrite some parameters. Please refer to the user's guide
  // for more information
  // some of the parameters do not differ from their default value,
  // and they are here reported for the sake of clarity
  
  // maximum number of levels
  MLList.set("max levels",3);
  MLList.set("increasing or decreasing","increasing");
  MLList.set("smoother: type", "symmetric Gauss-Seidel");

  // aggregation scheme set to Uncoupled. Note that the aggregates
  // created by MIS can be visualized for serial runs only, while 
  // Uncoupled, METIS for both serial and parallel runs.
  MLList.set("aggregation: type", "Uncoupled");

  // ======================== //
  // visualization parameters //
  // ======================== //
  // 
  // - set "viz: enable" to `false' to disable visualization and
  //   statistics.
  // - set "x-coordinates" to the pointer of x-coor
  // - set "viz: equation to plot" to the number of equation to 
  //   be plotted (for vector problems only). Default is -1 (that is,
  //   plot all the equations)
  // - set "viz: print starting solution" to print on file 
  //   the starting solution vector, that was used for pre-
  //   and post-smoothing, and for the cycle. This may help to
  //   understand whether the smoothed solution is "smooth" 
  //   or not.
  //
  // NOTE: visualization occurs *after* the creation of the ML preconditioner,
  // by calling VisualizeAggregates(), VisualizeSmoothers(), and
  // VisualizeCycle(). However, the user *must* enable visualization 
  // *before* creating the ML object. This is because ML must store some
  // additional information about the aggregates.
  // 
  // NOTE: the options above work only for "viz: output format" == "xyz"
  // (default value) or "viz: output format" == "vtk".
  // If "viz: output format" == "dx", the user
  // can only plot the aggregates. 

  MLList.set("viz: output format", "vtk");
  MLList.set("viz: enable", true);
  MLList.set("x-coordinates", x_coord);
  MLList.set("y-coordinates", y_coord);
  MLList.set("z-coordinates", (double *)0);
  MLList.set("viz: print starting solution", true);

  // =============================== //
  // end of visualization parameters //
  // =============================== //

  // create the preconditioner object and compute hierarchy

  ML_Epetra::MultiLevelPreconditioner * MLPrec = 
    new ML_Epetra::MultiLevelPreconditioner(*A, MLList);

  // ============= //
  // visualization //
  // ============= //

  // 1.- print out the shape of the aggregates, plus some
  //     statistics
  // 2.- print out the effect of presmoother and postsmoother
  //     on a random vector. Input integer number represent 
  //     the number of applications of presmoother and postmsoother,
  //     respectively
  // 3.- print out the effect of the ML cycle on a random vector.
  //     The integer parameter represents the number of cycles.
  // Below, `5' and `1' refers to the number of pre-smoother and
  // post-smoother applications. `10' refers to the number of ML
  // cycle applications. In both cases, smoothers and ML cycle are
  // applied to a random vector.

  MLPrec->VisualizeAggregates();
  MLPrec->VisualizeSmoothers(5,1);
  MLPrec->VisualizeCycle(10);

  // ==================== //
  // end of visualization //
  // ==================== //

  // destroy the preconditioner
  delete MLPrec;
  
  delete [] options;
  delete [] params;
  
  delete A;
  delete Coord;
  delete Map;

#ifdef HAVE_MPI
  MPI_Finalize();
#endif

  return(EXIT_SUCCESS);
}