void VelocityStencil::apply ( FlowField & flowField, int i, int j ){ const FLOAT dt = _parameters.timestep.dt; const int obstacle = flowField.getFlags().getValue(i, j); VectorField & velocity = flowField.getVelocity(); if ((obstacle & OBSTACLE_SELF) == 0){ // If this is a fluid cell if ((obstacle & OBSTACLE_RIGHT) == 0){ // Check whether the neighbor is also fluid // we require a spatial finite difference expression for the pressure gradient, evaluated // at the location of the u-component. We therefore compute the distance of neighbouring // pressure values (dx) and use this as sort-of central difference expression. This will // yield second-order accuracy for uniform meshsizes. const FLOAT dx = 0.5*(_parameters.meshsize->getDx(i,j)+_parameters.meshsize->getDx(i+1,j)); velocity.getVector(i,j)[0] = flowField.getFGH().getVector(i,j)[0] - dt/dx * (flowField.getPressure().getScalar(i+1,j) - flowField.getPressure().getScalar(i,j)); } else { // Otherwise, set to zero velocity.getVector(i,j)[0] = 0; } // Note that we only set one direction per cell. The neighbor at the left is // responsible for the other side if ((obstacle & OBSTACLE_TOP) == 0){ const FLOAT dy = 0.5*(_parameters.meshsize->getDy(i,j)+_parameters.meshsize->getDy(i,j+1)); velocity.getVector(i,j)[1] = flowField.getFGH().getVector(i,j)[1] - dt/dy * (flowField.getPressure().getScalar(i,j+1) - flowField.getPressure().getScalar(i,j)); } else { velocity.getVector(i,j)[1] = 0; } } }
void VelocityStencil::apply ( FlowField & flowField, int i, int j, int k ){ const FLOAT dt = _parameters.timestep.dt; const int obstacle = flowField.getFlags().getValue(i, j, k); VectorField & velocity = flowField.getVelocity(); if ((obstacle & OBSTACLE_SELF) == 0) { if ((obstacle & OBSTACLE_RIGHT) == 0) { const FLOAT dx = 0.5*(_parameters.meshsize->getDx(i,j,k)+_parameters.meshsize->getDx(i+1,j,k)); velocity.getVector(i,j,k)[0] = flowField.getFGH().getVector(i,j,k)[0] - dt/dx * (flowField.getPressure().getScalar(i+1,j,k) - flowField.getPressure().getScalar(i,j,k)); } else { velocity.getVector(i, j, k)[0] = 0.0; } if ((obstacle & OBSTACLE_TOP) == 0) { const FLOAT dy = 0.5*(_parameters.meshsize->getDy(i,j,k)+_parameters.meshsize->getDy(i,j+1,k)); velocity.getVector(i,j,k)[1] = flowField.getFGH().getVector(i,j,k)[1] - dt/dy * (flowField.getPressure().getScalar(i,j+1,k) - flowField.getPressure().getScalar(i,j,k)); } else { velocity.getVector(i, j, k)[1] = 0.0; } if ((obstacle & OBSTACLE_BACK) == 0) { const FLOAT dz = 0.5*(_parameters.meshsize->getDz(i,j,k)+_parameters.meshsize->getDz(i,j,k+1)); velocity.getVector(i,j,k)[2] = flowField.getFGH().getVector(i,j,k)[2] - dt/dz * (flowField.getPressure().getScalar(i,j,k+1) - flowField.getPressure().getScalar(i,j,k)); } else { velocity.getVector(i, j, k)[2] = 0.0; } } }
void RHSStencil::apply(FlowField& flowField, int i, int j) { flowField.getRHS().getScalar(i, j) = 1.0 / _parameters.timestep.dt * ((flowField.getFGH().getVector(i, j)[0] - flowField.getFGH().getVector(i - 1, j)[0]) / _parameters.meshsize->getDx(i, j) + (flowField.getFGH().getVector(i, j)[1] - flowField.getFGH().getVector(i, j - 1)[1]) / _parameters.meshsize->getDy(i, j)); }
void MovingWallFGHStencil::applyRightWall ( FlowField & flowField, int i, int j , int k ){ flowField.getFGH().getVector(i-1, j, k)[0] = _parameters.walls.vectorRight[0]; /* if ( (i == 22) && ( j == 10 ) && ( k == 10 )){ std::cout<<"atleast here FGh "<< flowField.getVelocity().getVector(i-1, j, k)[0]<<std::endl; }*/ }
void MovingWallFGHStencil::applyBackWall ( FlowField & flowField, int i, int j, int k ){ flowField.getFGH().getVector(i, j, k-1)[2] = _parameters.walls.vectorBack[2]; }
void MovingWallFGHStencil::applyFrontWall ( FlowField & flowField, int i, int j, int k ){ flowField.getFGH().getVector(i, j, k)[2] = _parameters.walls.vectorFront[2]; }
void MovingWallFGHStencil::applyTopWall ( FlowField & flowField, int i, int j, int k ){ flowField.getFGH().getVector(i, j-1, k)[1] = _parameters.walls.vectorTop[1]; }
void MovingWallFGHStencil::applyBottomWall ( FlowField & flowField, int i, int j, int k ){ flowField.getFGH().getVector(i, j, k)[1] = _parameters.walls.vectorBottom[1]; }
void MovingWallFGHStencil::applyRightWall ( FlowField & flowField, int i, int j , int k ){ flowField.getFGH().getVector(i-1, j, k)[0] = _parameters.walls.vectorRight[0]; }
void MovingWallFGHStencil::applyLeftWall ( FlowField & flowField, int i, int j ){ flowField.getFGH().getVector(i, j)[0] = _parameters.walls.vectorLeft[0]; }
void BFInputFGHStencil::applyLeftWall ( FlowField & flowField, int i, int j, int k ){ flowField.getFGH().getVector(i,j,k)[0] = computeVelocity3D (flowField, i, j, k, _stepSize, _parameters); }