void IDMapper::getIDDetails_(const PeptideIdentification & id, DoubleReal & rt_pep, DoubleList & mz_values, IntList & charges, bool use_avg_mass) const { mz_values.clear(); charges.clear(); rt_pep = id.getMetaValue("RT"); // collect m/z values of pepId if (param_.getValue("mz_reference") == "precursor") // use precursor m/z of pepId { mz_values.push_back(id.getMetaValue("MZ")); } for (vector<PeptideHit>::const_iterator hit_it = id.getHits().begin(); hit_it != id.getHits().end(); ++hit_it) { Int charge = hit_it->getCharge(); charges.push_back(charge); if (param_.getValue("mz_reference") == "peptide") // use mass of each pepHit (assuming H+ adducts) { DoubleReal mass = use_avg_mass ? hit_it->getSequence().getAverageWeight(Residue::Full, charge) : hit_it->getSequence().getMonoWeight(Residue::Full, charge); mz_values.push_back( mass / (DoubleReal) charge); } } }
TEST(FastListTest, test) { IntList flist; flist.new_node(1); IntList::RemovableElementHandler two = flist.new_node(2); flist.new_node(3); std::list<int> rlist; rlist.push_back(1); rlist.push_back(2); rlist.push_back(3); ASSERT_TRUE(compare(flist, rlist)); // remove 'two' two.destroy(); flist.shrink(); rlist.remove(2); ASSERT_TRUE(compare(flist, rlist)); two = flist.new_node(2); rlist.push_back(2); ASSERT_TRUE(compare(flist, rlist)); for (int i = 10; i < 20; ++i) { flist.new_node(i); rlist.push_back(i); } ASSERT_TRUE(compare(flist, rlist)); flist.clear(); flist.shrink(); rlist.clear(); ASSERT_TRUE(flist.empty()); ASSERT_TRUE(compare(flist, rlist)); for (int i = 10; i < 30; ++i) { flist.new_node(i); rlist.push_back(i); } ASSERT_TRUE(compare(flist, rlist)); }
/*----------------------------------------------------------------------- */ SEXP watershed (SEXP x, SEXP _tolerance, SEXP _ext) { SEXP res; int im, i, j, nx, ny, nz, ext, nprotect = 0; double tolerance; nx = INTEGER ( GET_DIM(x) )[0]; ny = INTEGER ( GET_DIM(x) )[1]; nz = getNumberOfFrames(x,0); tolerance = REAL( _tolerance )[0]; ext = INTEGER( _ext )[0]; PROTECT ( res = Rf_duplicate(x) ); nprotect++; int * index = new int[ nx * ny ]; for ( im = 0; im < nz; im++ ) { double * src = &( REAL(x)[ im * nx * ny ] ); double * tgt = &( REAL(res)[ im * nx * ny ] ); /* generate pixel index and negate the image -- filling wells */ for ( i = 0; i < nx * ny; i++ ) { tgt[ i ] = -src[ i ]; index[ i ] = i; } /* from R includes R_ext/Utils.h */ /* will resort tgt as well */ rsort_with_index( tgt, index, nx * ny ); /* reassign tgt as it was reset above but keep new index */ for ( i = 0; i < nx * ny; i++ ) tgt[ i ] = -src[ i ]; SeedList seeds; /* indexes of all seed starting points, i.e. lowest values */ IntList equals; /* queue of all pixels on the same gray level */ IntList nb; /* seed values of assigned neighbours */ int ind, indxy, nbseed, x, y, topseed = 0; IntList::iterator it; TheSeed newseed; PointXY pt; bool isin; /* loop through the sorted index */ for ( i = 0; i < nx * ny && src[ index[i] ] > BG; ) { /* pool a queue of equally lowest values */ ind = index[ i ]; equals.push_back( ind ); for ( i = i + 1; i < nx * ny; ) { if ( src[ index[i] ] != src[ ind ] ) break; equals.push_back( index[i] ); i++; } while ( !equals.empty() ) { /* first check through all the pixels if we can assign them to * existing objects, count checked and reset counter on each assigned * -- exit when counter equals queue length */ for ( j = 0; j < (int) equals.size(); ) { if ((j%1000)==0) R_CheckUserInterrupt(); ind = equals.front(); equals.pop_front(); /* check neighbours: * - if exists one, assign * - if two or more check what should be combined and assign to the steepest * - if none, push back */ /* reset j to 0 every time we assign another pixel to restart the loop */ nb.clear(); pt = pointFromIndex( ind, nx ); /* determine which neighbour we have, push them to nb */ for ( x = pt.x - ext; x <= pt.x + ext; x++ ) for ( y = pt.y - ext; y <= pt.y + ext; y++ ) { if ( x < 0 || y < 0 || x >= nx || y >= ny || (x == pt.x && y == pt.y) ) continue; indxy = x + y * nx; nbseed = (int) tgt[ indxy ]; if ( nbseed < 1 ) continue; isin = false; for ( it = nb.begin(); it != nb.end() && !isin; it++ ) if ( nbseed == *it ) isin = true; if ( !isin ) nb.push_back( nbseed ); } if ( nb.size() == 0 ) { /* push the pixel back and continue with the next one */ equals.push_back( ind ); j++; continue; } tgt[ ind ] = check_multiple(tgt, src, ind, nb, seeds, tolerance, nx, ny ); /* we assigned the pixel, reset j to restart neighbours detection */ j = 0; } /* now we have assigned all that we could */ if ( !equals.empty() ) { /* create a new seed for one pixel only and go back to assigning neighbours */ topseed++; newseed.index = equals.front(); newseed.seed = topseed; equals.pop_front(); tgt[ newseed.index ] = topseed; seeds.push_back( newseed ); } } // assigning equals } // sorted index /* now we need to reassign indexes while some seeds could be removed */ double * finseed = new double[ topseed ]; for ( i = 0; i < topseed; i++ ) finseed[ i ] = 0; i = 0; while ( !seeds.empty() ) { newseed = seeds.front(); seeds.pop_front(); finseed[ newseed.seed - 1 ] = i + 1; i++; } for ( i = 0; i < nx * ny; i++ ) { j = (int) tgt[ i ]; if ( 0 < j && j <= topseed ) tgt[ i ] = finseed[ j - 1 ]; } delete[] finseed; } // loop through images delete[] index; UNPROTECT (nprotect); return res; }