示例#1
0
bool
lineIntersectsTriangle(Line3 const & line, Vector3 const & v0, Vector3 const & edge01, Vector3 const & edge02, Real * time)
{
  // The code is taken from the ray-triangle intersection test in Dave Eberly's Wild Magic library, v5.3, released under the
  // Boost license: http://www.boost.org/LICENSE_1_0.txt .

  static Real const EPS = 1e-30f;

  Vector3 diff = line.getPoint() - v0;
  Vector3 normal = edge01.cross(edge02);

  // Solve Q + t*D = b1*E1 + b2*E2 (Q = diff, D = line direction, E1 = edge01, E2 = edge02, N = Cross(E1,E2)) by
  //   |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
  //   |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
  //   |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)

  Real DdN = line.getDirection().dot(normal);
  int sign;
  if (DdN > EPS)
    sign = 1;
  else if (DdN < -EPS)
  {
    sign = -1;
    DdN = -DdN;
  }
  else
  {
    // Line and triangle are parallel, call it a "no intersection" even if the line does intersect
    return false;
  }

  Real DdQxE2 = sign * line.getDirection().dot(diff.cross(edge02));
  if (DdQxE2 >= 0)
  {
    Real DdE1xQ = sign * line.getDirection().dot(edge01.cross(diff));
    if (DdE1xQ >= 0)
    {
      if (DdQxE2 + DdE1xQ <= DdN)
      {
        // Line intersects triangle
        Real QdN = -sign * diff.dot(normal);
        if (time) *time = QdN / DdN;
        return true;
      }
      // else: b1 + b2 > 1, no intersection
    }
    // else: b2 < 0, no intersection
  }
  // else: b1 < 0, no intersection

  return false;
}
示例#2
0
Real
closestPtLineTriangle(Line3 const & line, Vector3 const & v0, Vector3 const & edge01, Vector3 const & edge02, Real & s,
                      Vector3 & c1, Vector3 & c2)
{
  if (lineIntersectsTriangle(line, v0, edge01, edge02, &s))
  {
    c1 = c2 = line.getPoint() + s * line.getDirection();
    return 0;
  }

  // Either (1) the line is not parallel to the triangle and the point of
  // intersection of the line and the plane of the triangle is outside the
  // triangle or (2) the line and triangle are parallel.  Regardless, the
  // closest point on the triangle is on an edge of the triangle.  Compare
  // the line to all three edges of the triangle.
  Real min_sqdist = -1;
  Vector3 v[3] = { v0, v0 + edge01, v0 + edge02 };
  Vector3 tmp_c1, tmp_c2;
  float tmp_s, t;
  for (int i0 = 2, i1 = 0; i1 < 3; i0 = i1++)
  {
    Real sqdist = closestPtSegmentLine(v[i0], v[i1], line.getPoint(), line.getPoint() + line.getDirection(),
                                       t, tmp_s, tmp_c2, tmp_c1);
    if (min_sqdist < 0 || sqdist < min_sqdist)
    {
      min_sqdist = sqdist;
      s = tmp_s;
      c1 = tmp_c1;
      c2 = tmp_c2;
    }
  }

  return min_sqdist;
}