示例#1
0
static void checkSequence(string seq) {
  Normalizer n;
  bool ok = n.check(seq);
  if (!ok) {
    cerr << "Sequence can contain only numbers 0-9 and lowercase a-z" << endl;
    exit(1);
  }
}
示例#2
0
int main()
{
	Model model;

	model.AddVariable("X0");
	model.AddParam("gfi");

	Normalizer normalizer;

	normalizer.PutRmCoor("X0", 0.156, 0.5465, 0.41541, 0.214);

	return 0;
}
示例#3
0
std::string sequenceToPattern(std::string seq) {
  checkSequence(seq);

  Normalizer n;

  std::string sub = "";
  if (seq.length()>10) {
    sub = seq.substr(0,seq.length()-10);
    seq = seq.substr(seq.length()-10,seq.length());
  }

  string pat = n.denorm(submain(n.norm(seq)));
  pat = sub + pat;

  return pat;
}
示例#4
0
void testNormalize() {
  BOOST_LOG(rdInfoLog) << "-----------------------\n test normalize"
                       << std::endl;

  Normalizer normalizer;

  // Test sulfoxide normalization.
  std::string smi1 = "CS(C)=O";
  std::shared_ptr<ROMol> m1(SmilesToMol(smi1));
  ROMOL_SPTR normalized(normalizer.normalize(*m1));
  TEST_ASSERT(MolToSmiles(*normalized) == "C[S+](C)[O-]");

  // normalize sulfone.
  std::string smi2 = "C[S+2]([O-])([O-])C";
  std::shared_ptr<ROMol> m2(SmilesToMol(smi2));
  ROMOL_SPTR normalized2(normalizer.normalize(*m2));
  TEST_ASSERT(MolToSmiles(*normalized2) == "CS(C)(=O)=O");
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}
示例#5
0
/*
  operates on normalized and localized sequences and patterns only
  
  alphabet can be modified
 */
list<string> extendSequence(const list<string>& seq, 
			    string pat) {

  list<string> results;

  std::string result;
  boost::regex_constants::syntax_option_type flags = 
    boost::regex_constants::perl;
  boost::regex re;
  boost::smatch what;

  pat = "^" + pat;
  re.assign(pat, flags);
  for (list<string>::const_iterator it = seq.begin(); it!=seq.end(); it++) {
    string activeSeq = *it;

    Normalizer n;
    n.norm(activeSeq);
    string input = n.getInput() + "z";

    for (int i=0; i<input.length(); i++) {
      string ref = activeSeq+input[i]+"~~~~~~~~~~~~~~~~~~";
      DBG cout << "pattern " << pat << " against " << ref << endl;
      try {
	if (regex_search(ref,what,re)) {
	  string m = what[0];
	  if (m.length()>activeSeq.length()) {
	    string bit;
	    bit += input[i];
	    string ext = activeSeq + n.norm(bit);
	    DBG cout << "  got something " << ext << endl;
	    results.push_back(string(ext));
	  }
	}
      } catch(boost::regex_error& regErr) {
	cerr << "regular expression failed: " << regErr.what() << endl;
      }
    }
  }

  return results;
}
  ExitCodes main_(int, const char **)
  {
    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------

    //input/output files
    String in(getStringOption_("in"));
    String out(getStringOption_("out"));

    //-------------------------------------------------------------
    // loading input
    //-------------------------------------------------------------

    MSExperiment<> exp;
    MzMLFile f;
    f.setLogType(log_type_);
    f.load(in, exp);

    //-------------------------------------------------------------
    // filter
    //-------------------------------------------------------------
    Param filter_param = getParam_().copy("algorithm:", true);
    writeDebug_("Used filter parameters", filter_param, 3);

    Normalizer filter;
    filter.setParameters(filter_param);
    filter.filterPeakMap(exp);

    //-------------------------------------------------------------
    // writing output
    //-------------------------------------------------------------

    //annotate output with data processing info
    addDataProcessing_(exp, getProcessingInfo_(DataProcessing::FILTERING));

    f.store(out, exp);

    return EXECUTION_OK;
  }
示例#7
0
int main()
{
    cout << ">> TEST DATA SET (k=3)" << endl;
    rowvec inX = randu<rowvec>(4);
    mat dataSet = randu<mat>(4, 4);
    ucolvec labels;
    labels << 1 << endr << 3 << endr << 2 << endr << 3 << endr;
    inX.print("inX");
    dataSet.print("dataSet:");
    labels.print("labels:");
    cout << "answer: " << knn(inX, dataSet, labels, 3) << endl << endl;

    cout << ">> RAND DATA SET (k=10)" << endl;
    srand ( time(NULL) );
    inX = randu<rowvec>(100);
    dataSet = randu<mat>(1000000, 100);
    labels = arma::conv_to<ucolvec>::from(4 * randu<colvec>(1000000));
    cout << "0s: " << count(labels.begin(), labels.end(), 0) << endl;
    cout << "1s: " << count(labels.begin(), labels.end(), 1) << endl;
    cout << "2s: " << count(labels.begin(), labels.end(), 2) << endl;
    cout << "3s: " << count(labels.begin(), labels.end(), 3) << endl;
    cout << "answer: " << knn(inX, dataSet, labels, 10) << endl << endl;

    cout << ">> FILE-BASED DATA SET (k=10)" << endl;
    mat data;
    data.load("datingTestSet2.txt");
    dataSet = data.submat(0, 0, data.n_rows-1, data.n_cols-2);
    Normalizer <double> normalizer;
    dataSet = normalizer.normalize(dataSet);
    labels = arma::conv_to<ucolvec>::from(data.submat(0, data.n_cols-1, data.n_rows-1, data.n_cols-1));
    rowvec inX1, inX2, inX3;
    inX1 << 58732 << 2.454285 << 0.222380 << endr;
    inX2 << 6121 << 8.339588 << 1.443357 << endr;
    inX3 << 36800 << 12.45 << 0.64 << endr;
    cout << "example from the 1st class:" << inX1 << "answer: " << knn(normalizer.normalize(inX1), dataSet, labels, 10) << endl << endl;
    cout << "example from the 2nd class:" << inX2 << "answer: " << knn(normalizer.normalize(inX2), dataSet, labels, 10) << endl << endl;
    cout << "example from the 3rd class:" << inX3 << "answer: " << knn(normalizer.normalize(inX3), dataSet, labels, 10) << endl << endl;
    return 0;
}
示例#8
0
vector<int> extendSequence(const vector<int>& seq, 
			   int ct) {
  vector<int> result;
  Normalizer n;
  int at = 0;
  map<int,char> lower;
  map<char,int> revLower;

  for (vector<int>::const_iterator it = seq.begin();
       it!=seq.end(); it++) {
    int v = *it;
    if (lower.find(v)==lower.end()) {
      char ch = n.toChar(at);
      if (ch==-1) {
	printf("Too many units in symbolic sequence\n");
      }
      lower[v] = ch;
      revLower[ch] = v;
      at++;
    }
  }
  if (at>10) {
    // alternate mode: just look for best prior
    int hist = seq.size()-1;
    for (int i=0; i<ct; i++) {
      int bestHits = -1;
      int bestAt = 0;
      for (int j=0; j<seq.size(); j++) {
	int hits = 0;
	for (int k=0; k<=hist; k++) {
	  if (j-k-1<0) {
	    break;
	  }
	  if (seq[j-k-1]!=seq[hist-k]) {
	    break;
	  }
	  hits++;
	}
	if (hits>bestHits) {
	  bestAt = j;
	  bestHits = hits;
	}
      }
      hist = bestAt;
      result.push_back(seq[hist]);
    }
    cerr << "Did alternative search" << endl;
    cerr << "Got: ";
    for (int i=0; i<result.size(); i++) {
      cerr << result[i] << " ";
    }
    cerr << endl;
    return result;
  }

  string strSeq;
  for (vector<int>::const_iterator it = seq.begin();
       it!=seq.end(); it++) {
    strSeq += lower[*it];
  }
  string pat = sequenceToPattern(strSeq);
  string ext = extendSequence(strSeq,pat,ct);
  map<char,int> novel;
  int novelAt = 1;
  for (int i=0; i<ext.length(); i++) {
    char ch = ext[i];
    int v = 0;
    if (revLower.find(ch)==revLower.end()) {
      if (novel.find(ch)==novel.end()) {
	novel[ch] = novelAt;
	novelAt++;
      }
      v = -novel[ch];
    } else {
      v = revLower[ch];
    }
    result.push_back(v);
  }
  return result;
}
示例#9
0
std::string extendSequence(std::string seq, std::string pattern, int len) {

  srand (std::time(0));

  checkSequence(seq);

  Normalizer n;
  int pruneLen = 100;

  seq = n.norm(seq);
  pattern = n.norm(pattern);
  string refPattern = pattern;
  pattern = localizePattern(pattern);

  DBG cout << "extend " << seq << " with " << pattern << endl;

  n.add("ABCDEFGHIJKLMNOPQRSTUVWXYZ");

  list<string> lst;
  lst.push_back(seq);
  for (int k=0; k<len; k++) {
    lst = extendSequence(lst,pattern);

    
    list<string> lst2;
    for (list<string>::const_iterator it = lst.begin(); it!=lst.end(); 
	 it++) {
      string nextSeq = *it;
      string nextPat = refPattern;
      if (nextSeq.length()<=10) {
	nextPat = sequenceToPattern(nextSeq);
      }
      if (nextPat==refPattern) {
	lst2.push_back(nextSeq);
      } else {
	DBG cout << nextSeq << ": " << "mismatch " << nextPat << " versus " << refPattern << endl;
      }
    }
    if (lst2.size()>0) {
      lst = lst2;
    }


    if (lst.size()>pruneLen) {
      DBG cout << "NEED TO PRUNE" << endl;
      vector<string> v(lst.begin(),lst.end());
      random_shuffle(v.begin(),v.end());
      lst.clear();
      lst = list<string>(v.begin(),v.begin()+pruneLen);
      //lst.erase((++(++(lst.begin()))),lst.end());
    }
    DBG {
      cout << "possibilities: " << endl;
      for (list<string>::const_iterator it = lst.begin(); it!=lst.end(); 
	   it++) {
	cout << " -- " << n.denorm(*it) << endl;
      }
    }
  }

  for (list<string>::const_iterator it = lst.begin(); it!=lst.end(); 
       it++) {
    DBG cout << "  final possibility " << n.denorm(*it) << endl;
  }
  vector<string> v(lst.begin(),lst.end());
  random_shuffle(v.begin(),v.end());
  if (v.size()>0) {
    string result = n.denorm(v[0]);
    result = result.substr(seq.length(),result.length());
    return result;
  }

  return "";
}
示例#10
0
void CompNovoIdentificationCID::getIdentification(PeptideIdentification & id, const PeakSpectrum & CID_spec)
{
    //if (CID_spec.getPrecursors().begin()->getMZ() > 1000.0)
    //{
    //cerr << "Weight of precursor has been estimated to exceed 2000.0 Da which is the current limit" << endl;
    //return;
    //}

    PeakSpectrum new_CID_spec(CID_spec);
    windowMower_(new_CID_spec, 0.3, 1);

    Param zhang_param;
    zhang_param = zhang_.getParameters();
    zhang_param.setValue("tolerance", fragment_mass_tolerance_);
    zhang_param.setValue("use_gaussian_factor", "true");
    zhang_param.setValue("use_linear_factor", "false");
    zhang_.setParameters(zhang_param);


    Normalizer normalizer;
    Param n_param(normalizer.getParameters());
    n_param.setValue("method", "to_one");
    normalizer.setParameters(n_param);
    normalizer.filterSpectrum(new_CID_spec);

    Size charge(2);
    double precursor_weight(0);     // [M+H]+
    if (!CID_spec.getPrecursors().empty())
    {
        // believe charge of spectrum?
        if (CID_spec.getPrecursors().begin()->getCharge() != 0)
        {
            charge = CID_spec.getPrecursors().begin()->getCharge();
        }
        else
        {
            // TODO estimate charge state
        }
        precursor_weight = CID_spec.getPrecursors().begin()->getMZ() * charge - ((charge - 1) * Constants::PROTON_MASS_U);
    }

    //cerr << "charge=" << charge << ", [M+H]=" << precursor_weight << endl;

    // now delete all peaks that are right of the estimated precursor weight
    Size peak_counter(0);
    for (PeakSpectrum::ConstIterator it = new_CID_spec.begin(); it != new_CID_spec.end(); ++it, ++peak_counter)
    {
        if (it->getPosition()[0] > precursor_weight)
        {
            break;
        }
    }
    if (peak_counter < new_CID_spec.size())
    {
        new_CID_spec.resize(peak_counter);
    }


    static double oxonium_mass = EmpiricalFormula("H2O+").getMonoWeight();

    Peak1D p;
    p.setIntensity(1);
    p.setPosition(oxonium_mass);

    new_CID_spec.push_back(p);

    p.setPosition(precursor_weight);
    new_CID_spec.push_back(p);

    // add complement to spectrum
    /*
    for (PeakSpectrum::ConstIterator it1 = CID_spec.begin(); it1 != CID_spec.end(); ++it1)
    {
    // get m/z of complement
    double mz_comp = precursor_weight - it1->getPosition()[0] + Constants::PROTON_MASS_U;

    // search if peaks are available that have similar m/z values
    Size count(0);
    bool found(false);
    for (PeakSpectrum::ConstIterator it2 = CID_spec.begin(); it2 != CID_spec.end(); ++it2, ++count)
    {
    if (fabs(mz_comp - it2->getPosition()[0]) < fragment_mass_tolerance)
    {
      // add peak intensity to corresponding peak in new_CID_spec
      new_CID_spec[count].setIntensity(new_CID_spec[count].getIntensity());
    }
    }
    if (!found)
    {
    // infer this peak
    Peak1D p;
    p.setIntensity(it1->getIntensity());
    p.setPosition(mz_comp);
    new_CID_spec.push_back(p);
    }
    }*/

    CompNovoIonScoringCID ion_scoring;
    Param ion_scoring_param(ion_scoring.getParameters());
    ion_scoring_param.setValue("fragment_mass_tolerance", fragment_mass_tolerance_);
    ion_scoring_param.setValue("precursor_mass_tolerance", precursor_mass_tolerance_);
    ion_scoring_param.setValue("decomp_weights_precision", decomp_weights_precision_);
    ion_scoring_param.setValue("double_charged_iso_threshold", (double)param_.getValue("double_charged_iso_threshold"));
    ion_scoring_param.setValue("max_isotope_to_score", param_.getValue("max_isotope_to_score"));
    ion_scoring_param.setValue("max_isotope", max_isotope_);
    ion_scoring.setParameters(ion_scoring_param);

    Map<double, IonScore> ion_scores;
    ion_scoring.scoreSpectrum(ion_scores, new_CID_spec, precursor_weight, charge);

    new_CID_spec.sortByPosition();

    /*
    cerr << "Size of ion_scores " << ion_scores.size() << endl;
    for (Map<double, IonScore>::const_iterator it = ion_scores.begin(); it != ion_scores.end(); ++it)
    {
        cerr << it->first << " " << it->second.score << endl;
    }*/

#ifdef WRITE_SCORED_SPEC
    PeakSpectrum filtered_spec(new_CID_spec);
    filtered_spec.clear();
    for (Map<double, CompNovoIonScoringCID::IonScore>::const_iterator it = ion_scores.begin(); it != ion_scores.end(); ++it)
    {
        Peak1D p;
        p.setIntensity(it->second.score);
        p.setPosition(it->first);
        filtered_spec.push_back(p);
    }
    DTAFile().store("spec_scored.dta", filtered_spec);
#endif

    set<String> sequences;
    getDecompositionsDAC_(sequences, 0, new_CID_spec.size() - 1, precursor_weight, new_CID_spec, ion_scores);

#ifdef SPIKE_IN
    sequences.insert("AFCVDGEGR");
    sequences.insert("APEFAAPWPDFVPR");
    sequences.insert("AVKQFEESQGR");
    sequences.insert("CCTESLVNR");
    sequences.insert("DAFLGSFLYEYSR");
    sequences.insert("DAIPENLPPLTADFAEDK");
    sequences.insert("DDNKVEDIWSFLSK");
    sequences.insert("DDPHACYSTVFDK");
    sequences.insert("DEYELLCLDGSR");
    sequences.insert("DGAESYKELSVLLPNR");
    sequences.insert("DGASCWCVDADGR");
    sequences.insert("DLFIPTCLETGEFAR");
    sequences.insert("DTHKSEIAHR");
    sequences.insert("DVCKNYQEAK");
    sequences.insert("EACFAVEGPK");
    sequences.insert("ECCHGDLLECADDR");
    sequences.insert("EFLGDKFYTVISSLK");
    sequences.insert("EFTPVLQADFQK");
    sequences.insert("ELFLDSGIFQPMLQGR");
    sequences.insert("ETYGDMADCCEK");
    sequences.insert("EVGCPSSSVQEMVSCLR");
    sequences.insert("EYEATLEECCAK");
    sequences.insert("FADLIQSGTFQLHLDSK");
    sequences.insert("FFSASCVPGATIEQK");
    sequences.insert("FLANVSTVLTSK");
    sequences.insert("FLSGSDYAIR");
    sequences.insert("FTASCPPSIK");
    sequences.insert("GAIEWEGIESGSVEQAVAK");
    sequences.insert("GDVAFIQHSTVEENTGGK");
    sequences.insert("GEPPSCAEDQSCPSER");
    sequences.insert("GEYVPTSLTAR");
    sequences.insert("GQEFTITGQKR");
    sequences.insert("GTFAALSELHCDK");
    sequences.insert("HLVDEPQNLIK");
    sequences.insert("HQDCLVTTLQTQPGAVR");
    sequences.insert("HTTVNENAPDQK");
    sequences.insert("ILDCGSPDTEVR");
    sequences.insert("KCPSPCQLQAER");
    sequences.insert("KGTEFTVNDLQGK");
    sequences.insert("KQTALVELLK");
    sequences.insert("KVPQVSTPTLVEVSR");
    sequences.insert("LALQFTTNAKR");
    sequences.insert("LCVLHEKTPVSEK");
    sequences.insert("LFTFHADICTLPDTEK");
    sequences.insert("LGEYGFQNALIVR");
    sequences.insert("LHVDPENFK");
    sequences.insert("LKECCDKPLLEK");
    sequences.insert("LKHLVDEPQNLIK");
    sequences.insert("LKPDPNTLCDEFK");
    sequences.insert("LLGNVLVVVLAR");
    sequences.insert("LLVVYPWTQR");
    sequences.insert("LRVDPVNFK");
    sequences.insert("LTDEELAFPPLSPSR");
    sequences.insert("LVNELTEFAK");
    sequences.insert("MFLSFPTTK");
    sequences.insert("MPCTEDYLSLILNR");
    sequences.insert("NAPYSGYSGAFHCLK");
    sequences.insert("NECFLSHKDDSPDLPK");
    sequences.insert("NEPNKVPACPGSCEEVK");
    sequences.insert("NLQMDDFELLCTDGR");
    sequences.insert("QAGVQAEPSPK");
    sequences.insert("RAPEFAAPWPDFVPR");
    sequences.insert("RHPEYAVSVLLR");
    sequences.insert("RPCFSALTPDETYVPK");
    sequences.insert("RSLLLAPEEGPVSQR");
    sequences.insert("SAFPPEPLLCSVQR");
    sequences.insert("SAGWNIPIGTLLHR");
    sequences.insert("SCWCVDEAGQK");
    sequences.insert("SGNPNYPHEFSR");
    sequences.insert("SHCIAEVEK");
    sequences.insert("SISSGFFECER");
    sequences.insert("SKYLASASTMDHAR");
    sequences.insert("SLHTLFGDELCK");
    sequences.insert("SLLLAPEEGPVSQR");
    sequences.insert("SPPQCSPDGAFRPVQCK");
    sequences.insert("SREGDPLAVYLK");
    sequences.insert("SRQIPQCPTSCER");
    sequences.insert("TAGTPVSIPVCDDSSVK");
    sequences.insert("TCVADESHAGCEK");
    sequences.insert("TQFGCLEGFGR");
    sequences.insert("TVMENFVAFVDK");
    sequences.insert("TYFPHFDLSHGSAQVK");
    sequences.insert("TYMLAFDVNDEK");
    sequences.insert("VDEVGGEALGR");
    sequences.insert("VDLLIGSSQDDGLINR");
    sequences.insert("VEDIWSFLSK");
    sequences.insert("VGGHAAEYGAEALER");
    sequences.insert("VGTRCCTKPESER");
    sequences.insert("VKVDEVGGEALGR");
    sequences.insert("VKVDLLIGSSQDDGLINR");
    sequences.insert("VLDSFSNGMK");
    sequences.insert("VLSAADKGNVK");
    sequences.insert("VPQVSTPTLVEVSR");
    sequences.insert("VTKCCTESLVNR");
    sequences.insert("VVAASDASQDALGCVK");
    sequences.insert("VVAGVANALAHR");
    sequences.insert("YICDNQDTISSK");
    sequences.insert("YLASASTMDHAR");
    sequences.insert("YNGVFQECCQAEDK");
#endif

    SpectrumAlignmentScore spectra_zhang;
    spectra_zhang.setParameters(zhang_param);

    vector<PeptideHit> hits;
    Size missed_cleavages = param_.getValue("missed_cleavages");
    for (set<String>::const_iterator it = sequences.begin(); it != sequences.end(); ++it)
    {

        Size num_missed = countMissedCleavagesTryptic_(*it);
        if (missed_cleavages < num_missed)
        {
            //cerr << "Two many missed cleavages: " << *it << ", found " << num_missed << ", allowed " << missed_cleavages << endl;
            continue;
        }
        PeakSpectrum CID_sim_spec;
        getCIDSpectrum_(CID_sim_spec, *it, charge);

        //normalizer.filterSpectrum(CID_sim_spec);

        double cid_score = zhang_(CID_sim_spec, CID_spec);

        PeptideHit hit;
        hit.setScore(cid_score);

        hit.setSequence(getModifiedAASequence_(*it));
        hit.setCharge((Int)charge);   //TODO unify charge interface: int or size?
        hits.push_back(hit);
        //cerr << getModifiedAASequence_(*it) << " " << cid_score << " " << endl;
    }

    // rescore the top hits
    id.setHits(hits);
    id.assignRanks();

    hits = id.getHits();

    SpectrumAlignmentScore alignment_score;
    Param align_param(alignment_score.getParameters());
    align_param.setValue("tolerance", fragment_mass_tolerance_);
    align_param.setValue("use_linear_factor", "true");
    alignment_score.setParameters(align_param);

    for (vector<PeptideHit>::iterator it = hits.begin(); it != hits.end(); ++it)
    {
        //cerr << "Pre: " << it->getRank() << " " << it->getSequence() << " " << it->getScore() << " " << endl;
    }

    Size number_of_prescoring_hits = param_.getValue("number_of_prescoring_hits");
    if (hits.size() > number_of_prescoring_hits)
    {
        hits.resize(number_of_prescoring_hits);
    }

    for (vector<PeptideHit>::iterator it = hits.begin(); it != hits.end(); ++it)
    {
        PeakSpectrum CID_sim_spec;
        getCIDSpectrum_(CID_sim_spec, getModifiedStringFromAASequence_(it->getSequence()), charge);

        normalizer.filterSpectrum(CID_sim_spec);

        //DTAFile().store("sim_specs/" + it->getSequence().toUnmodifiedString() + "_sim_CID.dta", CID_sim_spec);

        //double cid_score = spectra_zhang(CID_sim_spec, CID_spec);
        double cid_score = alignment_score(CID_sim_spec, CID_spec);

        //cerr << "Final: " << it->getSequence() << " " << cid_score << endl;

        it->setScore(cid_score);
    }

    id.setHits(hits);
    id.assignRanks();
    hits = id.getHits();

    for (vector<PeptideHit>::iterator it = hits.begin(); it != hits.end(); ++it)
    {
        //cerr << "Fin: " << it->getRank() << " " << it->getSequence() << " " << it->getScore() << " " << endl;
    }

    Size number_of_hits = param_.getValue("number_of_hits");
    if (id.getHits().size() > number_of_hits)
    {
        hits.resize(number_of_hits);
    }

    id.setHits(hits);
    id.assignRanks();

    return;
}
示例#11
0
int main(int /*argc*/, char ** /*argv*/) {

    Normalizer *normalizer = new Normalizer();

    DOMDocument *doc = normalizer->createDocument();
    bool *tmpTrue = new bool(true);
    bool *tmpFalse = new bool(false);

    DOMElement* docFirstElement = doc->createElementNS(X("http://www.test.com"),X("docEle"));
    doc->appendChild(docFirstElement);
    DOMElement* docFirstElementChild = doc->createElementNS(X("http://www.test2.com"),X("docEleChild"));
    docFirstElement->appendChild(docFirstElementChild);

    //create default ns
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    //add in binding
    docFirstElement->setPrefix(X("po"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    //use default
    DOMElement* docFirstElementChildChild = doc->createElementNS(X("http://www.test2.com"),X("docEleChildChild"));
    docFirstElementChild->appendChild(docFirstElementChildChild);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    // this block is needed to destroy the XMLBuffer 
    {
        //use a binding
        XMLBuffer buf;
        buf.set(XMLUni::fgXMLNSString);
        buf.append(chColon);
        buf.append(X("po2"));
        docFirstElementChild->removeAttributeNS(XMLUni::fgXMLNSURIName, XMLUni::fgXMLNSString);
        docFirstElement->removeAttributeNS(XMLUni::fgXMLNSURIName, XMLUni::fgXMLNSString);
        docFirstElement->setAttributeNS(XMLUni::fgXMLNSURIName, buf.getRawBuffer(), X("http://www.test2.com"));
        docFirstElementChild->setPrefix(X("po2"));
        doc->normalizeDocument();
        normalizer->serializeNode(doc);
        XERCES_STD_QUALIFIER cout << "\n\n";
    }

    //some siblngs to ensure the scope stacks are working
    docFirstElementChildChild = doc->createElementNS(X("http://www.test3.com"),X("docEleChildChild2"));
    docFirstElementChild->appendChild(docFirstElementChildChild);
    docFirstElementChildChild = doc->createElementNS(X("http://www.test4.com"),X("po4:docEleChildChild3"));
    docFirstElementChild->appendChild(docFirstElementChildChild);
    docFirstElementChildChild = doc->createElementNS(X("http://www.test4.com"),X("po4:docEleChildChild4"));
    docFirstElementChild->appendChild(docFirstElementChildChild);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    //conflicting prefix
    docFirstElementChildChild->setAttributeNS(XMLUni::fgXMLNSURIName, X("po4"), X("conflict"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";
    
    //conflicting default
    docFirstElementChildChild = doc->createElementNS(X("http://www.test4.com"),X("docEleChildChild5"));
    docFirstElementChild->appendChild(docFirstElementChildChild);
    docFirstElementChildChild->setAttributeNS(XMLUni::fgXMLNSURIName, XMLUni::fgXMLNSString, X("conflict"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    //set the xmlns to ""
    DOMElement *noNamespaceEle = doc->createElementNS(X(""),X("noNamespace"));
    docFirstElementChildChild->appendChild(noNamespaceEle);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";


    //now lets do a bit off attribute testing on the doc ele
    docFirstElement->setAttributeNS(X("http://testattr.com"), X("attr1"), X("value"));
    docFirstElement->setAttributeNS(X("http://testattr.com"), X("attr2"), X("value"));
    docFirstElement->setAttributeNS(X("http://testattr2.com"), X("attr3"), X("value"));
    docFirstElement->setAttributeNS(X("http://www.test.com"), X("attr4"), X("value"));
    docFirstElement->setAttributeNS(X("http://testattr2.com"), X("po:attr5"), X("value"));
    docFirstElement->setAttributeNS(X("http://testattr2.com"), X("poFake:attr6"), X("value"));
    docFirstElement->setAttributeNS(X("http://testattr3.com"), X("po3:attr7"), X("value"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    //and now on one of its children
    docFirstElementChildChild->setAttributeNS(X("http://testattr.com"), X("attr1"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://testattr.com"), X("attr2"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://testattr2.com"), X("attr3"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://www.test.com"), X("attr4"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://testattr2.com"), X("po:attr5"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://testattr2.com"), X("poFake:attr6"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://testattr3.com"), X("po3:attr7"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://testattr4.com"), X("po4:attr8"), X("value"));
    

    //test for a clash with our NSx attrs
    docFirstElementChildChild->setAttributeNS(X("http://testclash.com"), X("NS1:attr9"), X("value"));
    docFirstElementChildChild->setAttributeNS(XMLUni::fgXMLNSURIName, X("xmlns:NS1"), X("http://testclash.com"));

    //clash with standard prefix
    docFirstElementChildChild->setAttributeNS(X("http://testattr5.com"), X("po:attr10"), X("value"));

    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";


    //2 prefix with the same uri
    docFirstElementChildChild = doc->createElementNS(X("http://www.uri1.com"),X("docEleChildChild6"));
    docFirstElementChild->appendChild(docFirstElementChildChild);
    docFirstElementChildChild->setAttributeNS(XMLUni::fgXMLNSURIName, X("xmlns:uri1"), X("http://www.uri1.com"));
    docFirstElementChildChild->setAttributeNS(XMLUni::fgXMLNSURIName, X("xmlns:uri1b"), X("http://www.uri1.com"));
    docFirstElementChildChild->setAttributeNS(X("http://www.uri1.com"), X("uri1:attr1"), X("value"));
    docFirstElementChildChild->setAttributeNS(X("http://www.uri1.com"), X("uri1b:attr2"), X("value"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";

    //check to see we use the nearest binding and for more inheritence
    DOMElement *docFirstElementChildChildChild = doc->createElementNS(X("http://www.uri1.com"),X("docEleChildChildChild"));
    docFirstElementChildChild->appendChild(docFirstElementChildChildChild);
    docFirstElementChildChild->setAttributeNS(XMLUni::fgXMLNSURIName, X("xmlns:nearerThanPo"), X("http://www.test.com"));
    docFirstElementChildChildChild->setAttributeNS(X("http://testattr.com"), X("attr2"), X("value"));
    docFirstElementChildChildChild->setAttributeNS(X("http://www.test.com"), X("attr1"), X("value"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);
    XERCES_STD_QUALIFIER cout << "\n\n";


    //NS1.1 stuff

    //test creating default prefix when NS1 has been set to ""
    noNamespaceEle->setAttributeNS(XMLUni::fgXMLNSURIName, X("xmlns:NS1"), X(""));
    DOMElement *noNamespaceChild = doc->createElementNS(X("http://testclash.com"),X("testing1.1Stuff"));
    noNamespaceEle->appendChild(noNamespaceChild);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);

    noNamespaceChild = doc->createElementNS(X("http://testclash.com"),X("NS1:testing1.1Stuff"));
    noNamespaceEle->appendChild(noNamespaceChild);
    
    noNamespaceChild->setAttributeNS(X("http://www.someRandomUri.com"), X("attr"), X("value"));
    doc->normalizeDocument();
    normalizer->serializeNode(doc);


    //check error conditions
    XERCES_STD_QUALIFIER cout << "error conditions" << XERCES_STD_QUALIFIER endl;

    DOMConfiguration *conf = doc->getDOMConfig();
    conf->setParameter(XMLUni::fgDOMErrorHandler, normalizer);
    conf->setParameter(XMLUni::fgDOMNamespaces, true);

    DOMElement *level1Node = doc->createElement(X("level1Node"));
    docFirstElement->appendChild(level1Node);
    doc->normalizeDocument();

    docFirstElement->removeChild(level1Node);
    docFirstElement->setAttribute(X("level1Attr"), X("level1"));
    doc->normalizeDocument();
    docFirstElement->removeAttribute(X("level1Attr"));

    //cant check this as Xerces does not let us do it
    //    noNamespaceChild->setAttributeNS(X("http://www.someRandomUri.com"), X("xmlns"), X("value"));
    //    doc->normalizeDocument();



    //lets do a sanity test on a comment
    DOMComment *comment = doc->createComment(X("some comment"));
    docFirstElement->appendChild(comment);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);

    conf->setParameter(XMLUni::fgDOMComments, false);
    docFirstElement->appendChild(comment);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);


    //and on a CDATA
    DOMCDATASection *cData = doc->createCDATASection(X("some cdata"));
    docFirstElement->appendChild(cData);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);

    conf->setParameter(XMLUni::fgDOMCDATASections, false);
    docFirstElement->appendChild(cData);
    doc->normalizeDocument();
    normalizer->serializeNode(doc);

    delete normalizer;
    delete tmpTrue;
    delete tmpFalse;

    return 0;
}
  ExitCodes main_(int, const char **)
  {
    //-------------------------------------------------------------
    // parsing parameters
    //-------------------------------------------------------------

    StringList id_in(getStringList_("id_in"));
    StringList in_raw(getStringList_("in"));
    Size number_of_bins((UInt)getIntOption_("number_of_bins"));
    bool precursor_error_ppm(getFlag_("precursor_error_ppm"));
    bool fragment_error_ppm(getFlag_("fragment_error_ppm"));
    bool generate_gnuplot_scripts(DataValue(getStringOption_("generate_gnuplot_scripts")).toBool());

    if (in_raw.size() != id_in.size())
    {
      writeLog_("Number of spectrum files and identification files differs...");
      return ILLEGAL_PARAMETERS;
    }

    //-------------------------------------------------------------
    // reading input
    //-------------------------------------------------------------

    vector<vector<PeptideIdentification> > pep_ids;
    vector<vector<ProteinIdentification> > prot_ids;
    pep_ids.resize(id_in.size());
    prot_ids.resize(id_in.size());

    IdXMLFile idxmlfile;
    for (Size i = 0; i != id_in.size(); ++i)
    {
      String doc_id;
      idxmlfile.load(id_in[i], prot_ids[i], pep_ids[i], doc_id);
    }

    // read mzML files
    vector<RichPeakMap> maps_raw;
    maps_raw.resize(in_raw.size());

    MzMLFile mzml_file;
    for (Size i = 0; i != in_raw.size(); ++i)
    {
      mzml_file.load(in_raw[i], maps_raw[i]);
    }

    //-------------------------------------------------------------
    // calculations
    //-------------------------------------------------------------

    // mapping ids
    IDMapper mapper;
    for (Size i = 0; i != maps_raw.size(); ++i)
    {
      mapper.annotate(maps_raw[i], pep_ids[i], prot_ids[i]);
    }

    // normalize the spectra
    Normalizer normalizer;
    for (vector<RichPeakMap>::iterator it1 = maps_raw.begin(); it1 != maps_raw.end(); ++it1)
    {
      for (RichPeakMap::Iterator it2 = it1->begin(); it2 != it1->end(); ++it2)
      {
        normalizer.filterSpectrum(*it2);
      }
    }

    // generate precursor statistics
    vector<MassDifference> precursor_diffs;
    if (getStringOption_("precursor_out") != "")
    {
      for (Size i = 0; i != maps_raw.size(); ++i)
      {
        for (Size j = 0; j != maps_raw[i].size(); ++j)
        {
          if (maps_raw[i][j].getPeptideIdentifications().empty())
          {
            continue;
          }
          for (vector<PeptideIdentification>::const_iterator it = maps_raw[i][j].getPeptideIdentifications().begin(); it != maps_raw[i][j].getPeptideIdentifications().end(); ++it)
          {
            if (it->getHits().size() > 0)
            {
              PeptideHit hit = *it->getHits().begin();
              MassDifference md;
              Int charge = hit.getCharge();
              if (charge == 0)
              {
                charge = 1;
              }
              md.exp_mz = it->getMZ();
              md.theo_mz = (hit.getSequence().getMonoWeight() + (double)charge * Constants::PROTON_MASS_U) / (double)charge;
              md.charge = charge;
              precursor_diffs.push_back(md);
            }
          }
        }
      }
    }

    // generate fragment ions statistics
    vector<MassDifference> fragment_diffs;
    TheoreticalSpectrumGenerator tsg;
    SpectrumAlignment sa;
    double fragment_mass_tolerance(getDoubleOption_("fragment_mass_tolerance"));
    Param sa_param(sa.getParameters());
    sa_param.setValue("tolerance", fragment_mass_tolerance);
    sa.setParameters(sa_param);

    if (getStringOption_("fragment_out") != "")
    {
      for (Size i = 0; i != maps_raw.size(); ++i)
      {
        for (Size j = 0; j != maps_raw[i].size(); ++j)
        {
          if (maps_raw[i][j].getPeptideIdentifications().empty())
          {
            continue;
          }
          for (vector<PeptideIdentification>::const_iterator it = maps_raw[i][j].getPeptideIdentifications().begin(); it != maps_raw[i][j].getPeptideIdentifications().end(); ++it)
          {
            if (it->getHits().size() > 0)
            {
              PeptideHit hit = *it->getHits().begin();

              RichPeakSpectrum theo_spec;
              tsg.addPeaks(theo_spec, hit.getSequence(), Residue::YIon);
              tsg.addPeaks(theo_spec, hit.getSequence(), Residue::BIon);

              vector<pair<Size, Size> > pairs;
              sa.getSpectrumAlignment(pairs, theo_spec, maps_raw[i][j]);
              //cerr << hit.getSequence() << " " << hit.getSequence().getSuffix(1).getFormula() << " " << hit.getSequence().getSuffix(1).getFormula().getMonoWeight() << endl;
              for (vector<pair<Size, Size> >::const_iterator pit = pairs.begin(); pit != pairs.end(); ++pit)
              {
                MassDifference md;
                md.exp_mz = maps_raw[i][j][pit->second].getMZ();
                md.theo_mz = theo_spec[pit->first].getMZ();
                //cerr.precision(15);
                //cerr << md.exp_mz << " " << md.theo_mz << " " << md.exp_mz - md.theo_mz << endl;
                md.intensity = maps_raw[i][j][pit->second].getIntensity();
                md.charge = hit.getCharge();
                fragment_diffs.push_back(md);
              }
            }
          }
        }
      }
    }

    //-------------------------------------------------------------
    // writing output
    //-------------------------------------------------------------

    String precursor_out_file(getStringOption_("precursor_out"));
    if (precursor_out_file != "")
    {
      vector<double> errors;
      ofstream precursor_out(precursor_out_file.c_str());
      double min_diff(numeric_limits<double>::max()), max_diff(numeric_limits<double>::min());
      for (Size i = 0; i != precursor_diffs.size(); ++i)
      {
        double diff = getMassDifference(precursor_diffs[i].theo_mz, precursor_diffs[i].exp_mz, precursor_error_ppm);
        precursor_out << diff << "\n";
        errors.push_back(diff);

        if (diff > max_diff)
        {
          max_diff = diff;
        }
        if (diff < min_diff)
        {
          min_diff = diff;
        }
      }
      precursor_out.close();

      // fill histogram with the collected values
      double bin_size = (max_diff - min_diff) / (double)number_of_bins;
      Histogram<double, double> hist(min_diff, max_diff, bin_size);
      for (Size i = 0; i != errors.size(); ++i)
      {
        hist.inc(errors[i], 1.0);
      }

      writeDebug_("min_diff=" + String(min_diff) + ", max_diff=" + String(max_diff) + ", number_of_bins=" + String(number_of_bins), 1);

      // transform the histogram into a vector<DPosition<2> > for the fitting
      vector<DPosition<2> > values;
      for (Size i = 0; i != hist.size(); ++i)
      {
        DPosition<2> p;
        p.setX((double)i / (double)number_of_bins * (max_diff - min_diff) + min_diff);
        p.setY(hist[i]);
        values.push_back(p);
      }

      double mean = Math::mean(errors.begin(), errors.end());
      double abs_dev = Math::absdev(errors.begin(), errors.end(), mean);
      double sdv = Math::sd(errors.begin(), errors.end(), mean);
      sort(errors.begin(), errors.end());
      double median = errors[(Size)(errors.size() / 2.0)];

      writeDebug_("Precursor mean error: " + String(mean), 1);
      writeDebug_("Precursor abs. dev.:  " + String(abs_dev), 1);
      writeDebug_("Precursor std. dev.:  " + String(sdv), 1);
      writeDebug_("Precursor median error:  " + String(median), 1);


      // calculate histogram for gauss fitting
      GaussFitter gf;
      GaussFitter::GaussFitResult init_param (hist.maxValue(), median, sdv/500.0);
      gf.setInitialParameters(init_param);

      try
      {
        gf.fit(values);

        // write gnuplot scripts
        if (generate_gnuplot_scripts)
        {
          ofstream out(String(precursor_out_file + "_gnuplot.dat").c_str());
          for (vector<DPosition<2> >::const_iterator it = values.begin(); it != values.end(); ++it)
          {
            out << it->getX() << " " << it->getY() << endl;
          }
          out.close();

          ofstream gpl_out(String(precursor_out_file + "_gnuplot.gpl").c_str());
          gpl_out << "set terminal png" << endl;
          gpl_out << "set output \"" << precursor_out_file  << "_gnuplot.png\"" << endl;
          if (precursor_error_ppm)
          {
            gpl_out << "set xlabel \"error in ppm\"" << endl;
          }
          else
          {
            gpl_out << "set xlabel \"error in Da\"" << endl;
          }
          gpl_out << "set ylabel \"frequency\"" << endl;
          gpl_out << "plot '" << precursor_out_file << "_gnuplot.dat' title 'Precursor mass error distribution' w boxes, f(x) w lp title 'Gaussian fit of the error distribution'" << endl;
          gpl_out.close();
        }

      }
      catch (Exception::UnableToFit)
      {
        writeLog_("Unable to fit a Gaussian distribution to the precursor mass errors");
      }
    }

    String fragment_out_file(getStringOption_("fragment_out"));
    if (fragment_out_file != "")
    {
      vector<double> errors;
      ofstream fragment_out(fragment_out_file.c_str());
      double min_diff(numeric_limits<double>::max()), max_diff(numeric_limits<double>::min());
      for (Size i = 0; i != fragment_diffs.size(); ++i)
      {
        double diff = getMassDifference(fragment_diffs[i].theo_mz, fragment_diffs[i].exp_mz, fragment_error_ppm);
        fragment_out << diff << endl;
        errors.push_back(diff);

        if (diff > max_diff)
        {
          max_diff = diff;
        }
        if (diff < min_diff)
        {
          min_diff = diff;
        }
      }
      fragment_out.close();

      // fill histogram with the collected values
      // here we use the intensities to scale the error
      // low intensity peaks are likely to be random matches
      double bin_size = (max_diff - min_diff) / (double)number_of_bins;
      Histogram<double, double> hist(min_diff, max_diff, bin_size);
      for (Size i = 0; i != fragment_diffs.size(); ++i)
      {
        double diff = getMassDifference(fragment_diffs[i].theo_mz, fragment_diffs[i].exp_mz, fragment_error_ppm);
        hist.inc(diff, fragment_diffs[i].intensity);
      }

      writeDebug_("min_diff=" + String(min_diff) + ", max_diff=" + String(max_diff) + ", number_of_bins=" + String(number_of_bins), 1);

      // transform the histogram into a vector<DPosition<2> > for the fitting
      vector<DPosition<2> > values;
      for (Size i = 0; i != hist.size(); ++i)
      {
        DPosition<2> p;
        p.setX((double)i / (double)number_of_bins * (max_diff - min_diff) + min_diff);
        p.setY(hist[i]);
        values.push_back(p);
      }

      double mean = Math::mean(errors.begin(), errors.end());
      double abs_dev = Math::absdev(errors.begin(), errors.end(), mean);
      double sdv = Math::sd(errors.begin(), errors.end(), mean);
      sort(errors.begin(), errors.end());
      double median = errors[(Size)(errors.size() / 2.0)];

      writeDebug_("Fragment mean error:  " + String(mean), 1);
      writeDebug_("Fragment abs. dev.:   " + String(abs_dev), 1);
      writeDebug_("Fragment std. dev.:   " + String(sdv), 1);
      writeDebug_("Fragment median error:   " + String(median), 1);

      // calculate histogram for gauss fitting
      GaussFitter gf;
      GaussFitter::GaussFitResult init_param (hist.maxValue(), median, sdv / 100.0);
      gf.setInitialParameters(init_param);

      try
      {
        gf.fit(values);


        // write gnuplot script
        if (generate_gnuplot_scripts)
        {
          ofstream out(String(fragment_out_file + "_gnuplot.dat").c_str());
          for (vector<DPosition<2> >::const_iterator it = values.begin(); it != values.end(); ++it)
          {
            out << it->getX() << " " << it->getY() << endl;
          }
          out.close();

          ofstream gpl_out(String(fragment_out_file + "_gnuplot.gpl").c_str());
          gpl_out << "set terminal png" << endl;
          gpl_out << "set output \"" << fragment_out_file  << "_gnuplot.png\"" << endl;
          if (fragment_error_ppm)
          {
            gpl_out << "set xlabel \"error in ppm\"" << endl;
          }
          else
          {
            gpl_out << "set xlabel \"error in Da\"" << endl;
          }
          gpl_out << "set ylabel \"frequency\"" << endl;
          gpl_out << "plot '" << fragment_out_file << "_gnuplot.dat' title 'Fragment mass error distribution' w boxes, f(x) w lp title 'Gaussian fit of the error distribution'" << endl;
          gpl_out.close();
        }
      }
      catch (Exception::UnableToFit)
      {
        writeLog_("Unable to fit a Gaussian distribution to the fragment mass errors");
      }
    }

    return EXECUTION_OK;
  }
Normalizer* e_ptr = 0;
Normalizer* e_nullPointer = 0;

START_SECTION((Normalizer()))
	e_ptr = new Normalizer;
  TEST_NOT_EQUAL(e_ptr, e_nullPointer)
END_SECTION

START_SECTION((~Normalizer()))
	delete e_ptr;
END_SECTION

e_ptr = new Normalizer();

START_SECTION((Normalizer(const Normalizer& source)))
	Normalizer copy(*e_ptr);
	TEST_EQUAL(copy.getParameters(), e_ptr->getParameters())
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((Normalizer& operator = (const Normalizer& source)))
	Normalizer copy;
	copy = *e_ptr;
	TEST_EQUAL(copy.getParameters(), e_ptr->getParameters())
	TEST_EQUAL(copy.getName(), e_ptr->getName())
END_SECTION

START_SECTION((template<typename SpectrumType> void filterSpectrum(SpectrumType& spectrum)))
	DTAFile dta_file;
	PeakSpectrum spec;
	dta_file.load(OPENMS_GET_TEST_DATA_PATH("Transformers_tests.dta"), spec);
示例#14
0
	TEST_EQUAL(copy.getName(), ptr->getName());
	TEST_EQUAL(copy.getParameters(), ptr->getParameters());
END_SECTION

START_SECTION(ZhangSimilarityScore& operator = (const ZhangSimilarityScore& source))
	ZhangSimilarityScore copy;
	copy = *ptr;
	TEST_EQUAL(copy.getName(), ptr->getName());
	TEST_EQUAL(copy.getParameters(), ptr->getParameters());
END_SECTION

START_SECTION(double operator () (const PeakSpectrum& spec) const)
	PeakSpectrum s1;
  DTAFile().load(OPENMS_GET_TEST_DATA_PATH("PILISSequenceDB_DFPIANGER_1.dta"), s1);

  Normalizer normalizer;
  Param p(normalizer.getParameters());
  p.setValue("method", "to_one");
  normalizer.setParameters(p);
  normalizer.filterSpectrum(s1);

  double score = (*ptr)(s1);
  TEST_REAL_SIMILAR(score, 1.82682);
END_SECTION

START_SECTION(double operator () (const PeakSpectrum& spec1, const PeakSpectrum& spec2) const)
  PeakSpectrum s1, s2;
  DTAFile().load(OPENMS_GET_TEST_DATA_PATH("PILISSequenceDB_DFPIANGER_1.dta"), s1);
  DTAFile().load(OPENMS_GET_TEST_DATA_PATH("PILISSequenceDB_DFPIANGER_1.dta"), s2);

  Normalizer normalizer;