int main(int argc, char** argv) { cout << endl; cout << "generating example map" << endl; OcTree tree (0.1); // create empty tree with resolution 0.1 // insert some measurements of occupied cells for (int x=-20; x<20; x++) { for (int y=-20; y<20; y++) { for (int z=-20; z<20; z++) { point3d endpoint ((float) x*0.05f, (float) y*0.05f, (float) z*0.05f); tree.updateNode(endpoint, true); // integrate 'occupied' measurement } } } // insert some measurements of free cells for (int x=-30; x<30; x++) { for (int y=-30; y<30; y++) { for (int z=-30; z<30; z++) { point3d endpoint ((float) x*0.02f-1.0f, (float) y*0.02f-1.0f, (float) z*0.02f-1.0f); tree.updateNode(endpoint, false); // integrate 'free' measurement } } } cout << endl; cout << "performing some queries:" << endl; point3d query (0., 0., 0.); OcTreeNode* result = tree.search (query); print_query_info(query, result); query = point3d(-1.,-1.,-1.); result = tree.search (query); print_query_info(query, result); query = point3d(1.,1.,1.); result = tree.search (query); print_query_info(query, result); cout << endl; tree.writeBinary("simple_tree.bt"); cout << "wrote example file simple_tree.bt" << endl << endl; cout << "now you can use octovis to visualize: octovis simple_tree.bt" << endl; cout << "Hint: hit 'F'-key in viewer to see the freespace" << endl << endl; }
void printChanges(OcTree& tree){ unsigned int changedOccupied = 0; unsigned int changedFree = 0; unsigned int actualOccupied = 0; unsigned int actualFree = 0; unsigned int missingChanged = 0; tree.expand(); // iterate through the changed nodes KeyBoolMap::const_iterator it; for (it=tree.changedKeysBegin(); it!=tree.changedKeysEnd(); it++) { OcTreeNode* node = tree.search(it->first); if (node != NULL) { if (tree.isNodeOccupied(node)) { changedOccupied += 1; } else { changedFree += 1; } } else { missingChanged +=1; } } // iterate through the entire tree for(OcTree::tree_iterator it=tree.begin_tree(), end=tree.end_tree(); it!= end; ++it) { if (it.isLeaf()) { if (tree.isNodeOccupied(*it)) { actualOccupied += 1; } else { actualFree += 1; } } } cout << "change detection: " << changedOccupied << " occ; " << changedFree << " free; "<< missingChanged << " missing" << endl; cout << "actual: " << actualOccupied << " occ; " << actualFree << " free; " << endl; tree.prune(); }
int main(int argc, char** argv) { if (argc != 2){ std::cerr << "Error: you need to specify a testfile (.bt) as argument to read" << std::endl; return 1; // exit 1 means failure } std::cout << "Testing empty OcTree...\n"; //empty tree { OcTree emptyTree(0.999); EXPECT_EQ(emptyTree.size(), 0); EXPECT_TRUE(emptyTree.writeBinary("empty.bt")); EXPECT_TRUE(emptyTree.write("empty.ot")); OcTree emptyReadTree(0.2); EXPECT_TRUE(emptyReadTree.readBinary("empty.bt")); EXPECT_EQ(emptyReadTree.size(), 0); EXPECT_TRUE(emptyTree == emptyReadTree); AbstractOcTree* readTreeAbstract = AbstractOcTree::read("empty.ot"); EXPECT_TRUE(readTreeAbstract); OcTree* readTreeOt = dynamic_cast<OcTree*>(readTreeAbstract); EXPECT_TRUE(readTreeOt); EXPECT_EQ(readTreeOt->size(), 0); EXPECT_TRUE(emptyTree == *readTreeOt); delete readTreeOt; } std::cout << "Testing reference OcTree from file ...\n"; string filename = string(argv[1]); { string filenameOt = "test_io_file.ot"; string filenameBtOut = "test_io_file.bt"; string filenameBtCopyOut = "test_io_file_copy.bt"; // read reference tree from input file OcTree tree (0.1); EXPECT_TRUE (tree.readBinary(filename)); std::cout << " Copy Constructor / assignment / ==\n"; // test copy constructor / assignment: OcTree* treeCopy = new OcTree(tree); EXPECT_TRUE(tree == *treeCopy); EXPECT_TRUE(treeCopy->writeBinary(filenameBtCopyOut)); // change a tree property, trees must be different afterwards treeCopy->setResolution(tree.getResolution()*2.0); EXPECT_FALSE(tree == *treeCopy); treeCopy->setResolution(tree.getResolution()); EXPECT_TRUE(tree == *treeCopy); // flip one value, trees must be different afterwards: point3d pt(0.5, 0.5, 0.5); OcTreeNode* node = treeCopy->search(pt); if (node && treeCopy->isNodeOccupied(node)) treeCopy->updateNode(pt, false); else treeCopy->updateNode(pt, true); EXPECT_FALSE(tree == *treeCopy); delete treeCopy; std::cout << " Swap\n"; // test swap: OcTree emptyT(tree.getResolution()); OcTree emptySw(emptyT); OcTree otherSw(tree); emptySw.swapContent(otherSw); EXPECT_FALSE(emptyT == emptySw); EXPECT_TRUE(emptySw == tree); EXPECT_TRUE(otherSw == emptyT); // write again to bt, read & compare EXPECT_TRUE(tree.writeBinary(filenameBtOut)); OcTree readTreeBt(0.1); EXPECT_TRUE(readTreeBt.readBinary(filenameBtOut)); EXPECT_TRUE(tree == readTreeBt); std::cout <<" Write to .ot / read through AbstractOcTree\n"; // now write to .ot, read & compare EXPECT_TRUE(tree.write(filenameOt)); AbstractOcTree* readTreeAbstract = AbstractOcTree::read(filenameOt); EXPECT_TRUE(readTreeAbstract); OcTree* readTreeOt = dynamic_cast<OcTree*>(readTreeAbstract); EXPECT_TRUE(readTreeOt); EXPECT_TRUE(tree == *readTreeOt); // sanity test for "==": flip one node, compare again point3d coord(0.1f, 0.1f, 0.1f); node = readTreeOt->search(coord); if (node && readTreeOt->isNodeOccupied(node)) readTreeOt->updateNode(coord, false); else readTreeOt->updateNode(coord, true); EXPECT_FALSE(tree == *readTreeOt); delete readTreeOt; } // Test for tree headers and IO factory registry (color) { std::cout << "Testing ColorOcTree...\n"; double res = 0.02; std::string filenameColor = "test_io_color_file.ot"; ColorOcTree colorTree(res); EXPECT_EQ(colorTree.getTreeType(), "ColorOcTree"); ColorOcTreeNode* colorNode = colorTree.updateNode(point3d(0.0, 0.0, 0.0), true); ColorOcTreeNode::Color color_red(255, 0, 0); colorNode->setColor(color_red); colorTree.setNodeColor(0.0, 0.0, 0.0, 255, 0, 0); colorTree.updateNode(point3d(0.1f, 0.1f, 0.1f), true); colorTree.setNodeColor(0.1f, 0.1f, 0.1f, 0, 0, 255); EXPECT_TRUE(colorTree.write(filenameColor)); AbstractOcTree* readTreeAbstract = AbstractOcTree::read(filenameColor); EXPECT_TRUE(readTreeAbstract); EXPECT_EQ(colorTree.getTreeType(), readTreeAbstract->getTreeType()); ColorOcTree* readColorTree = dynamic_cast<ColorOcTree*>(readTreeAbstract); EXPECT_TRUE(readColorTree); EXPECT_TRUE(colorTree == *readColorTree); colorNode = colorTree.search(0.0, 0.0, 0.0); EXPECT_TRUE(colorNode); EXPECT_EQ(colorNode->getColor(), color_red); delete readColorTree; } // Test for tree headers and IO factory registry (stamped) { std::cout << "Testing OcTreeStamped...\n"; double res = 0.05; std::string filenameStamped = "test_io_stamped_file.ot"; OcTreeStamped stampedTree(res); EXPECT_EQ(stampedTree.getTreeType(), "OcTreeStamped"); // TODO: add / modify some stamped nodes //ColorOcTreeNode* colorNode = colorTree.updateNode(point3d(0.0, 0.0, 0.0), true); //ColorOcTreeNode::Color color_red(255, 0, 0); //colorNode->setColor(color_red); //colorTree.setNodeColor(0.0, 0.0, 0.0, 255, 0, 0); //colorTree.updateNode(point3d(0.1f, 0.1f, 0.1f), true); //colorTree.setNodeColor(0.1f, 0.1f, 0.1f, 0, 0, 255); EXPECT_TRUE(stampedTree.write(filenameStamped)); AbstractOcTree* readTreeAbstract = AbstractOcTree::read(filenameStamped); EXPECT_TRUE(readTreeAbstract); EXPECT_EQ(stampedTree.getTreeType(), readTreeAbstract->getTreeType()); OcTreeStamped* readStampedTree = dynamic_cast<OcTreeStamped*>(readTreeAbstract); EXPECT_TRUE(readStampedTree); EXPECT_TRUE(stampedTree == *readStampedTree); //colorNode = colorTree.search(0.0, 0.0, 0.0); //EXPECT_TRUE(colorNode); //EXPECT_EQ(colorNode->getColor(), color_red); delete readStampedTree; } std::cerr << "Test successful.\n"; return 0; }
int main(int argc, char** argv) { //############################################################## string btFilename = ""; unsigned char maxDepth = 16; // test timing: timeval start; timeval stop; const unsigned char tree_depth(16); const unsigned int tree_max_val(32768); double time_it, time_depr; if (argc <= 1|| argc >3 || strcmp(argv[1], "-h") == 0){ printUsage(argv[0]); } btFilename = std::string(argv[1]); if (argc > 2){ maxDepth = (unsigned char)atoi(argv[2]); } maxDepth = std::min((unsigned char)16,maxDepth); if (maxDepth== 0) maxDepth = tree_depth; // iterate over empty tree: OcTree emptyTree(0.2); EXPECT_EQ(emptyTree.size(), 0); EXPECT_EQ(emptyTree.calcNumNodes(), 0); size_t iteratedNodes = 0; OcTree::tree_iterator t_it = emptyTree.begin_tree(maxDepth); OcTree::tree_iterator t_end = emptyTree.end_tree(); EXPECT_TRUE (t_it == t_end); for( ; t_it != t_end; ++t_it){ iteratedNodes++; } EXPECT_EQ(iteratedNodes, 0); for(OcTree::leaf_iterator l_it = emptyTree.begin_leafs(maxDepth), l_end=emptyTree.end_leafs(); l_it!= l_end; ++l_it){ iteratedNodes++; } EXPECT_EQ(iteratedNodes, 0); cout << "\nReading OcTree file\n===========================\n"; OcTree* tree = new OcTree(btFilename); if (tree->size()<= 1){ std::cout << "Error reading file, exiting!\n"; return 1; } size_t count; std::list<OcTreeVolume> list_depr; std::list<OcTreeVolume> list_iterator; /** * get number of nodes: */ gettimeofday(&start, NULL); // start timer size_t num_leafs_recurs = tree->getNumLeafNodes(); gettimeofday(&stop, NULL); // stop timer time_depr = timediff(start, stop); gettimeofday(&start, NULL); // start timer size_t num_leafs_it = 0; for(OcTree::leaf_iterator it = tree->begin(), end=tree->end(); it!= end; ++it) { num_leafs_it++; } gettimeofday(&stop, NULL); // stop timer time_it = timediff(start, stop); std::cout << "Number of leafs: " << num_leafs_it << " / " << num_leafs_recurs << ", times: " <<time_it << " / " << time_depr << "\n========================\n\n"; /** * get all occupied leafs */ point3d tree_center; tree_center(0) = tree_center(1) = tree_center(2) = (float) (((double) tree_max_val) * tree->getResolution()); gettimeofday(&start, NULL); // start timer getLeafNodesRecurs(list_depr,maxDepth,tree->getRoot(), 0, tree_center, tree_center, tree, true); gettimeofday(&stop, NULL); // stop timer time_depr = timediff(start, stop); gettimeofday(&start, NULL); // start timer for(OcTree::iterator it = tree->begin(maxDepth), end=tree->end(); it!= end; ++it){ if(tree->isNodeOccupied(*it)) { //count ++; list_iterator.push_back(OcTreeVolume(it.getCoordinate(), it.getSize())); } } gettimeofday(&stop, NULL); // stop timer time_it = timediff(start, stop); std::cout << "Occupied lists traversed, times: " <<time_it << " / " << time_depr << "\n"; compareResults(list_iterator, list_depr); std::cout << "========================\n\n"; /** * get all free leafs */ list_iterator.clear(); list_depr.clear(); gettimeofday(&start, NULL); // start timer for(OcTree::leaf_iterator it = tree->begin(maxDepth), end=tree->end(); it!= end; ++it) { if(!tree->isNodeOccupied(*it)) list_iterator.push_back(OcTreeVolume(it.getCoordinate(), it.getSize())); } gettimeofday(&stop, NULL); // stop timer time_it = timediff(start, stop); gettimeofday(&start, NULL); // start timer getLeafNodesRecurs(list_depr,maxDepth,tree->getRoot(), 0, tree_center, tree_center, tree, false); gettimeofday(&stop, NULL); // stop timer time_depr = timediff(start, stop); std::cout << "Free lists traversed, times: " <<time_it << " / " << time_depr << "\n"; compareResults(list_iterator, list_depr); std::cout << "========================\n\n"; /** * get all volumes */ list_iterator.clear(); list_depr.clear(); gettimeofday(&start, NULL); // start timer getVoxelsRecurs(list_depr,maxDepth,tree->getRoot(), 0, tree_center, tree_center, tree->getResolution()); gettimeofday(&stop, NULL); // stop timer time_depr = timediff(start, stop); gettimeofday(&start, NULL); // start timers for(OcTree::tree_iterator it = tree->begin_tree(maxDepth), end=tree->end_tree(); it!= end; ++it){ //count ++; //std::cout << it.getDepth() << " " << " "<<it.getCoordinate()<< std::endl; list_iterator.push_back(OcTreeVolume(it.getCoordinate(), it.getSize())); } gettimeofday(&stop, NULL); // stop timer time_it = timediff(start, stop); list_iterator.sort(OcTreeVolumeSortPredicate); list_depr.sort(OcTreeVolumeSortPredicate); std::cout << "All inner lists traversed, times: " <<time_it << " / " << time_depr << "\n"; compareResults(list_iterator, list_depr); std::cout << "========================\n\n"; // traverse all leaf nodes, timing: gettimeofday(&start, NULL); // start timers count = 0; for(OcTree::iterator it = tree->begin(maxDepth), end=tree->end(); it!= end; ++it){ // do something: // std::cout << it.getDepth() << " " << " "<<it.getCoordinate()<< std::endl; count++; } gettimeofday(&stop, NULL); // stop timer time_it = timediff(start, stop); std::cout << "Time to traverse all leafs at max depth " <<(unsigned int)maxDepth <<" ("<<count<<" nodes): "<< time_it << " s\n\n"; /** * bounding box tests */ //tree->expand(); // test complete tree (should be equal to no bbx) OcTreeKey bbxMinKey, bbxMaxKey; double temp_x,temp_y,temp_z; tree->getMetricMin(temp_x,temp_y,temp_z); octomap::point3d bbxMin(temp_x,temp_y,temp_z); tree->getMetricMax(temp_x,temp_y,temp_z); octomap::point3d bbxMax(temp_x,temp_y,temp_z); EXPECT_TRUE(tree->coordToKeyChecked(bbxMin, bbxMinKey)); EXPECT_TRUE(tree->coordToKeyChecked(bbxMax, bbxMaxKey)); OcTree::leaf_bbx_iterator it_bbx = tree->begin_leafs_bbx(bbxMinKey,bbxMaxKey); EXPECT_TRUE(it_bbx == tree->begin_leafs_bbx(bbxMinKey,bbxMaxKey)); OcTree::leaf_bbx_iterator end_bbx = tree->end_leafs_bbx(); EXPECT_TRUE(end_bbx == tree->end_leafs_bbx()); OcTree::leaf_iterator it = tree->begin_leafs(); EXPECT_TRUE(it == tree->begin_leafs()); OcTree::leaf_iterator end = tree->end_leafs(); EXPECT_TRUE(end == tree->end_leafs()); for( ; it!= end && it_bbx != end_bbx; ++it, ++it_bbx){ EXPECT_TRUE(it == it_bbx); } EXPECT_TRUE(it == end && it_bbx == end_bbx); // now test an actual bounding box: tree->expand(); // (currently only works properly for expanded tree (no multires) bbxMin = point3d(-1, -1, - 1); bbxMax = point3d(3, 2, 1); EXPECT_TRUE(tree->coordToKeyChecked(bbxMin, bbxMinKey)); EXPECT_TRUE(tree->coordToKeyChecked(bbxMax, bbxMaxKey)); typedef unordered_ns::unordered_map<OcTreeKey, double, OcTreeKey::KeyHash> KeyVolumeMap; KeyVolumeMap bbxVoxels; count = 0; for(OcTree::leaf_bbx_iterator it = tree->begin_leafs_bbx(bbxMinKey,bbxMaxKey), end=tree->end_leafs_bbx(); it!= end; ++it) { count++; OcTreeKey currentKey = it.getKey(); // leaf is actually a leaf: EXPECT_FALSE(it->hasChildren()); // leaf exists in tree: OcTreeNode* node = tree->search(currentKey); EXPECT_TRUE(node); EXPECT_EQ(node, &(*it)); // all leafs are actually in the bbx: for (unsigned i = 0; i < 3; ++i){ // if (!(currentKey[i] >= bbxMinKey[i] && currentKey[i] <= bbxMaxKey[i])){ // std::cout << "Key failed: " << i << " " << currentKey[i] << " "<< bbxMinKey[i] << " "<< bbxMaxKey[i] // << "size: "<< it.getSize()<< std::endl; // } EXPECT_TRUE(currentKey[i] >= bbxMinKey[i] && currentKey[i] <= bbxMaxKey[i]); } bbxVoxels.insert(std::pair<OcTreeKey,double>(currentKey, it.getSize())); } EXPECT_EQ(bbxVoxels.size(), count); std::cout << "Bounding box traversed ("<< count << " leaf nodes)\n\n"; // compare with manual BBX check on all leafs: for(OcTree::leaf_iterator it = tree->begin(), end=tree->end(); it!= end; ++it) { OcTreeKey key = it.getKey(); if ( key[0] >= bbxMinKey[0] && key[0] <= bbxMaxKey[0] && key[1] >= bbxMinKey[1] && key[1] <= bbxMaxKey[1] && key[2] >= bbxMinKey[2] && key[2] <= bbxMaxKey[2]) { KeyVolumeMap::iterator bbxIt = bbxVoxels.find(key); EXPECT_FALSE(bbxIt == bbxVoxels.end()); EXPECT_TRUE(key == bbxIt->first); EXPECT_EQ(it.getSize(), bbxIt->second); } } // test tree with one node: OcTree simpleTree(0.01); simpleTree.updateNode(point3d(10, 10, 10), 5.0f); for(OcTree::leaf_iterator it = simpleTree.begin_leafs(maxDepth), end=simpleTree.end_leafs(); it!= end; ++it) { std::cout << it.getDepth() << " " << " "<<it.getCoordinate()<< std::endl; } std::cout << "Tests successful\n"; return 0; }
void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[]) { // Usage: // Constructors/Destructor: // octree = octomapWrapper(resolution); // constructor: new tree with // specified resolution // octree = octomapWrapper(filename); // constructor: load from file // octomapWrapper(octree); // destructor // // Queries: // results = octomapWrapper(octree, 1, pts) // search // leaf_nodes = octomapWrapper(octree, 2) // getLeafNodes // // Update tree: // octomapWrapper(octree, 11, pts, occupied) // updateNote(pts, occupied). // pts is 3-by-n, occupied is 1-by-n logical // // General operations: // octomapWrapper(octree, 21, filename) // save to file OcTree* tree = NULL; if (nrhs == 1) { if (mxIsNumeric(prhs[0])) { // constructor w/ resolution if (nlhs > 0) { double resolution = mxGetScalar(prhs[0]); // mexPrintf("Creating octree w/ resolution %f\n", resolution); tree = new OcTree(resolution); plhs[0] = createDrakeMexPointer((void*)tree, "OcTree"); } } else if (mxIsChar(prhs[0])) { if (nlhs > 0) { char* filename = mxArrayToString(prhs[0]); // mexPrintf("Loading octree from %s\n", filename); tree = new OcTree(filename); plhs[0] = createDrakeMexPointer((void*)tree, "OcTree"); mxFree(filename); } } else { // destructor. note: assumes prhs[0] is a DrakeMexPointer (todo: // could check) // mexPrintf("Deleting octree\n"); destroyDrakeMexPointer<OcTree*>(prhs[0]); } return; } tree = (OcTree*)getDrakeMexPointer(prhs[0]); int COMMAND = (int)mxGetScalar(prhs[1]); switch (COMMAND) { case 1: // search { mexPrintf("octree search\n"); if (mxGetM(prhs[2]) != 3) mexErrMsgTxt("octomapWrapper: pts must be 3-by-n"); int n = mxGetN(prhs[2]); double* pts = mxGetPrSafe(prhs[2]); if (nlhs > 0) { plhs[0] = mxCreateDoubleMatrix(1, n, mxREAL); double* presults = mxGetPrSafe(plhs[0]); for (int i = 0; i < n; i++) { OcTreeNode* result = tree->search(pts[3 * i], pts[3 * i + 1], pts[3 * i + 2]); if (result == NULL) presults[i] = -1.0; else presults[i] = result->getOccupancy(); } } } break; case 2: // get leaf nodes { // mexPrintf("octree get leaf nodes\n"); int N = tree->getNumLeafNodes(); plhs[0] = mxCreateDoubleMatrix(3, N, mxREAL); double* leaf_xyz = mxGetPrSafe(plhs[0]); double* leaf_value = NULL, * leaf_size = NULL; if (nlhs > 1) { // return value plhs[1] = mxCreateDoubleMatrix(1, N, mxREAL); leaf_value = mxGetPrSafe(plhs[1]); } if (nlhs > 2) { // return size plhs[2] = mxCreateDoubleMatrix(1, N, mxREAL); leaf_size = mxGetPrSafe(plhs[2]); } for (OcTree::leaf_iterator leaf = tree->begin_leafs(), end = tree->end_leafs(); leaf != end; ++leaf) { leaf_xyz[0] = leaf.getX(); leaf_xyz[1] = leaf.getY(); leaf_xyz[2] = leaf.getZ(); leaf_xyz += 3; if (leaf_value) *leaf_value++ = leaf->getValue(); if (leaf_size) *leaf_size++ = leaf.getSize(); } } break; case 11: // add occupied pts { // mexPrintf("octree updateNode\n"); if (mxGetM(prhs[2]) != 3) mexErrMsgTxt("octomapWrapper: pts must be 3-by-n"); int n = mxGetN(prhs[2]); double* pts = mxGetPrSafe(prhs[2]); mxLogical* occupied = mxGetLogicals(prhs[3]); for (int i = 0; i < n; i++) { tree->updateNode(pts[3 * i], pts[3 * i + 1], pts[3 * i + 2], occupied[i]); } } break; case 12: // insert a scan of endpoints and sensor origin { // pointsA should be 3xN, originA is 3x1 double* points = mxGetPrSafe(prhs[2]); double* originA = mxGetPrSafe(prhs[3]); int n = mxGetN(prhs[2]); point3d origin((float)originA[0], (float)originA[1], (float)originA[2]); Pointcloud pointCloud; for (int i = 0; i < n; i++) { point3d point((float)points[3 * i], (float)points[3 * i + 1], (float)points[3 * i + 2]); pointCloud.push_back(point); } tree->insertPointCloud(pointCloud, origin); } break; case 21: // save to file { char* filename = mxArrayToString(prhs[2]); // mexPrintf("writing octree to %s\n", filename); tree->writeBinary(filename); mxFree(filename); } break; default: mexErrMsgTxt("octomapWrapper: Unknown command"); } }
int main(int argc, char** argv) { // default values: double res = 0.1; if (argc < 2) printUsage(argv[0]); string graphFilename = std::string(argv[1]); double maxrange = -1; int max_scan_no = -1; int skip_scan_eval = 5; int arg = 1; while (++arg < argc) { if (! strcmp(argv[arg], "-i")) graphFilename = std::string(argv[++arg]); else if (! strcmp(argv[arg], "-res")) res = atof(argv[++arg]); else if (! strcmp(argv[arg], "-m")) maxrange = atof(argv[++arg]); else if (! strcmp(argv[arg], "-n")) max_scan_no = atoi(argv[++arg]); else { printUsage(argv[0]); } } cout << "\nReading Graph file\n===========================\n"; ScanGraph* graph = new ScanGraph(); if (!graph->readBinary(graphFilename)) exit(2); size_t num_points_in_graph = 0; if (max_scan_no > 0) { num_points_in_graph = graph->getNumPoints(max_scan_no-1); cout << "\n Data points in graph up to scan " << max_scan_no << ": " << num_points_in_graph << endl; } else { num_points_in_graph = graph->getNumPoints(); cout << "\n Data points in graph: " << num_points_in_graph << endl; } cout << "\nCreating tree\n===========================\n"; OcTree* tree = new OcTree(res); size_t numScans = graph->size(); unsigned int currentScan = 1; for (ScanGraph::iterator scan_it = graph->begin(); scan_it != graph->end(); scan_it++) { if (currentScan % skip_scan_eval != 0){ if (max_scan_no > 0) cout << "("<<currentScan << "/" << max_scan_no << ") " << flush; else cout << "("<<currentScan << "/" << numScans << ") " << flush; tree->insertPointCloud(**scan_it, maxrange); } else cout << "(SKIP) " << flush; if ((max_scan_no > 0) && (currentScan == (unsigned int) max_scan_no)) break; currentScan++; } tree->expand(); cout << "\nEvaluating scans\n===========================\n"; currentScan = 1; size_t num_points = 0; size_t num_voxels_correct = 0; size_t num_voxels_wrong = 0; size_t num_voxels_unknown = 0; for (ScanGraph::iterator scan_it = graph->begin(); scan_it != graph->end(); scan_it++) { if (currentScan % skip_scan_eval == 0){ if (max_scan_no > 0) cout << "("<<currentScan << "/" << max_scan_no << ") " << flush; else cout << "("<<currentScan << "/" << numScans << ") " << flush; pose6d frame_origin = (*scan_it)->pose; point3d sensor_origin = frame_origin.inv().transform((*scan_it)->pose.trans()); // transform pointcloud: Pointcloud scan (*(*scan_it)->scan); scan.transform(frame_origin); point3d origin = frame_origin.transform(sensor_origin); KeySet free_cells, occupied_cells; tree->computeUpdate(scan, origin, free_cells, occupied_cells, maxrange); num_points += scan.size(); // count free cells for (KeySet::iterator it = free_cells.begin(); it != free_cells.end(); ++it) { OcTreeNode* n = tree->search(*it); if (n){ if (tree->isNodeOccupied(n)) num_voxels_wrong++; else num_voxels_correct++; } else num_voxels_unknown++; } // count occupied cells for (KeySet::iterator it = occupied_cells.begin(); it != occupied_cells.end(); ++it) { OcTreeNode* n = tree->search(*it); if (n){ if (tree->isNodeOccupied(n)) num_voxels_correct++; else num_voxels_wrong++; } else num_voxels_unknown++; } } if ((max_scan_no > 0) && (currentScan == (unsigned int) max_scan_no)) break; currentScan++; } cout << "\nFinished evaluating " << num_points <<"/"<< num_points_in_graph << " points.\n" <<"Voxels correct: "<<num_voxels_correct<<" #wrong: " <<num_voxels_wrong << " #unknown: " <<num_voxels_unknown <<". % correct: "<< num_voxels_correct/double(num_voxels_correct+num_voxels_wrong)<<"\n\n"; delete graph; delete tree; return 0; }
int main(int argc, char** argv) { cout << endl; cout << "generating example map" << endl; OcTree tree (0.1); // create empty tree with resolution 0.1 // insert some measurements of occupied cells for (int x=-20; x<20; x++) { for (int y=-20; y<20; y++) { for (int z=-20; z<20; z++) { point3d endpoint ((float) x*0.05f, (float) y*0.05f, (float) z*0.05f); tree.updateNode(endpoint, true); // integrate 'occupied' measurement } } } // insert some measurements of free cells for (int x=-30; x<30; x++) { for (int y=-30; y<30; y++) { for (int z=-30; z<30; z++) { point3d endpoint ((float) x*0.02f-1.0f, (float) y*0.02f-1.0f, (float) z*0.02f-1.0f); tree.updateNode(endpoint, false); // integrate 'free' measurement } } } cout << endl; cout << "performing some queries around the desired voxel:" << endl; point3d query; OcTreeNode* result = NULL; for(float z = -0.6; z < -0.21; z += 0.1){ for(float y = -0.6; y < -0.21; y += 0.1){ for(float x = -0.6; x < -0.21; x += 0.1){ query = point3d(x, y, z); result = tree.search(query); print_query_info(query, result); } } } query = point3d(-0.5, -0.4, -0.4); result = tree.search(query); vector<point3d> normals; if (tree.getNormals(query, normals)){ cout << endl; string s_norm = (normals.size() > 1) ? " normals " : " normal "; cout << "MC algorithm gives " << normals.size() << s_norm << "in voxel at " << query << endl; for(unsigned i = 0; i < normals.size(); ++i) cout << "\t" << normals[i].x() << "; " << normals[i].y() << "; " << normals[i].z() << endl; } else{ cout << "query point unknown (no normals)\n"; } }