int main(int argc, char** argv) { if (argc != 3) printUsage(argv[0]); string inputFilename = argv[1]; string outputFilename = argv[2]; // pcl point cloud pcl::PointCloud<pcl::PointXYZ>::Ptr pclcloud( new pcl::PointCloud<pcl::PointXYZ>() ); pcl::io::loadPCDFile( inputFilename, *pclcloud ); // data conversion Pointcloud * cloud = new Pointcloud; for ( size_t i = 0; i < pclcloud->size(); ++ i ) { point3d pt(pclcloud->points[i].x, pclcloud->points[i].y, pclcloud->points[i].z); cloud->push_back( pt ); } point3d sensor_origin(0,0,0); OcTree* tree = new OcTree(0.1); tree->insertPointCloud( cloud, sensor_origin ); tree->writeBinary(outputFilename); }
void Pointcloud::crop(point3d lowerBound, point3d upperBound) { Pointcloud result; float min_x, min_y, min_z; float max_x, max_y, max_z; float x,y,z; min_x = lowerBound(0); min_y = lowerBound(1); min_z = lowerBound(2); max_x = upperBound(0); max_y = upperBound(1); max_z = upperBound(2); for (Pointcloud::const_iterator it=begin(); it!=end(); it++) { x = (*it)(0); y = (*it)(1); z = (*it)(2); if ( (x >= min_x) && (y >= min_y) && (z >= min_z) && (x <= max_x) && (y <= max_y) && (z <= max_z) ) { result.push_back (x,y,z); } } // end for points this->clear(); this->push_back(result); }
void Pointcloud::minDist(double thres) { Pointcloud result; float x,y,z; for (Pointcloud::const_iterator it=begin(); it!=end(); it++) { x = (*it)(0); y = (*it)(1); z = (*it)(2); double dist = sqrt(x*x+y*y+z*z); if ( dist > thres ) result.push_back (x,y,z); } // end for points this->clear(); this->push_back(result); }
void Pointcloud::subSampleRandom(unsigned int num_samples, Pointcloud& sample_cloud) { point3d_collection samples; // visual studio does not support random_sample_n #ifdef _MSC_VER samples.reserve(this->size()); samples.insert(samples.end(), this->begin(), this->end()); std::random_shuffle(samples.begin(), samples.end()); samples.resize(num_samples); #else random_sample_n(begin(), end(), std::back_insert_iterator<point3d_collection>(samples), num_samples); for (unsigned int i=0; i<samples.size(); i++) { sample_cloud.push_back(samples[i]); } #endif }
int main(int argc, char** argv) { //############################################################## OcTree tree (0.05); tree.enableChangeDetection(true); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (4.01f,0.01f,0.01f); tree.insertRay(origin, point_on_surface); printChanges(tree); tree.updateNode(point3d(2.01f, 0.01f, 0.01f), 2.0f); printChanges(tree); tree.updateNode(point3d(2.01f, 0.01f, 0.01f), -2.0f); printChanges(tree); cout << "generating spherical scan at " << origin << " ..." << endl; for (int i=-100; i<101; i++) { Pointcloud cloud; for (int j=-100; j<101; j++) { point3d rotated = point_on_surface; rotated.rotate_IP(0, DEG2RAD(i*0.5), DEG2RAD(j*0.5)); cloud.push_back(rotated); } // insert in global coordinates: tree.insertPointCloud(cloud, origin, -1); } printChanges(tree); cout << "done." << endl; return 0; }
void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[]) { // Usage: // Constructors/Destructor: // octree = octomapWrapper(resolution); // constructor: new tree with // specified resolution // octree = octomapWrapper(filename); // constructor: load from file // octomapWrapper(octree); // destructor // // Queries: // results = octomapWrapper(octree, 1, pts) // search // leaf_nodes = octomapWrapper(octree, 2) // getLeafNodes // // Update tree: // octomapWrapper(octree, 11, pts, occupied) // updateNote(pts, occupied). // pts is 3-by-n, occupied is 1-by-n logical // // General operations: // octomapWrapper(octree, 21, filename) // save to file OcTree* tree = NULL; if (nrhs == 1) { if (mxIsNumeric(prhs[0])) { // constructor w/ resolution if (nlhs > 0) { double resolution = mxGetScalar(prhs[0]); // mexPrintf("Creating octree w/ resolution %f\n", resolution); tree = new OcTree(resolution); plhs[0] = createDrakeMexPointer((void*)tree, "OcTree"); } } else if (mxIsChar(prhs[0])) { if (nlhs > 0) { char* filename = mxArrayToString(prhs[0]); // mexPrintf("Loading octree from %s\n", filename); tree = new OcTree(filename); plhs[0] = createDrakeMexPointer((void*)tree, "OcTree"); mxFree(filename); } } else { // destructor. note: assumes prhs[0] is a DrakeMexPointer (todo: // could check) // mexPrintf("Deleting octree\n"); destroyDrakeMexPointer<OcTree*>(prhs[0]); } return; } tree = (OcTree*)getDrakeMexPointer(prhs[0]); int COMMAND = (int)mxGetScalar(prhs[1]); switch (COMMAND) { case 1: // search { mexPrintf("octree search\n"); if (mxGetM(prhs[2]) != 3) mexErrMsgTxt("octomapWrapper: pts must be 3-by-n"); int n = mxGetN(prhs[2]); double* pts = mxGetPrSafe(prhs[2]); if (nlhs > 0) { plhs[0] = mxCreateDoubleMatrix(1, n, mxREAL); double* presults = mxGetPrSafe(plhs[0]); for (int i = 0; i < n; i++) { OcTreeNode* result = tree->search(pts[3 * i], pts[3 * i + 1], pts[3 * i + 2]); if (result == NULL) presults[i] = -1.0; else presults[i] = result->getOccupancy(); } } } break; case 2: // get leaf nodes { // mexPrintf("octree get leaf nodes\n"); int N = tree->getNumLeafNodes(); plhs[0] = mxCreateDoubleMatrix(3, N, mxREAL); double* leaf_xyz = mxGetPrSafe(plhs[0]); double* leaf_value = NULL, * leaf_size = NULL; if (nlhs > 1) { // return value plhs[1] = mxCreateDoubleMatrix(1, N, mxREAL); leaf_value = mxGetPrSafe(plhs[1]); } if (nlhs > 2) { // return size plhs[2] = mxCreateDoubleMatrix(1, N, mxREAL); leaf_size = mxGetPrSafe(plhs[2]); } for (OcTree::leaf_iterator leaf = tree->begin_leafs(), end = tree->end_leafs(); leaf != end; ++leaf) { leaf_xyz[0] = leaf.getX(); leaf_xyz[1] = leaf.getY(); leaf_xyz[2] = leaf.getZ(); leaf_xyz += 3; if (leaf_value) *leaf_value++ = leaf->getValue(); if (leaf_size) *leaf_size++ = leaf.getSize(); } } break; case 11: // add occupied pts { // mexPrintf("octree updateNode\n"); if (mxGetM(prhs[2]) != 3) mexErrMsgTxt("octomapWrapper: pts must be 3-by-n"); int n = mxGetN(prhs[2]); double* pts = mxGetPrSafe(prhs[2]); mxLogical* occupied = mxGetLogicals(prhs[3]); for (int i = 0; i < n; i++) { tree->updateNode(pts[3 * i], pts[3 * i + 1], pts[3 * i + 2], occupied[i]); } } break; case 12: // insert a scan of endpoints and sensor origin { // pointsA should be 3xN, originA is 3x1 double* points = mxGetPrSafe(prhs[2]); double* originA = mxGetPrSafe(prhs[3]); int n = mxGetN(prhs[2]); point3d origin((float)originA[0], (float)originA[1], (float)originA[2]); Pointcloud pointCloud; for (int i = 0; i < n; i++) { point3d point((float)points[3 * i], (float)points[3 * i + 1], (float)points[3 * i + 2]); pointCloud.push_back(point); } tree->insertPointCloud(pointCloud, origin); } break; case 21: // save to file { char* filename = mxArrayToString(prhs[2]); // mexPrintf("writing octree to %s\n", filename); tree->writeBinary(filename); mxFree(filename); } break; default: mexErrMsgTxt("octomapWrapper: Unknown command"); } }
int main(int argc, char** argv) { if (argc != 2){ std::cerr << "Error: you need to specify a test as argument" << std::endl; return 1; // exit 1 means failure } std::string test_name (argv[1]); // ------------------------------------------------------------ if (test_name == "MathVector") { // test constructors Vector3* twos = new Vector3(); Vector3* ones = new Vector3(1,1,1); for (int i=0;i<3;i++) { (*twos)(i) = 2; } // test basic operations Vector3 subtraction = *twos - *ones; Vector3 addition = *twos + *ones; Vector3 multiplication = *twos * 2.; for (int i=0;i<3;i++) { EXPECT_FLOAT_EQ (subtraction(i), 1.); EXPECT_FLOAT_EQ (addition(i), 3.); EXPECT_FLOAT_EQ (multiplication(i), 4.); } // copy constructor Vector3 rotation = *ones; // rotation rotation.rotate_IP (M_PI, 1., 0.1); EXPECT_FLOAT_EQ (rotation.x(), 1.2750367); EXPECT_FLOAT_EQ (rotation.y(), (-1.1329513)); EXPECT_FLOAT_EQ (rotation.z(), 0.30116868); // ------------------------------------------------------------ } else if (test_name == "MathPose") { // constructors Pose6D a (1.0f, 0.1f, 0.1f, 0.0f, 0.1f, (float) M_PI/4. ); Pose6D b; Vector3 trans(1.0f, 0.1f, 0.1f); Quaternion rot(0.0f, 0.1f, (float) M_PI/4.); Pose6D c(trans, rot); // comparator EXPECT_TRUE ( a == c); // toEuler EXPECT_FLOAT_EQ (c.yaw() , M_PI/4.); // transform Vector3 t = c.transform (trans); EXPECT_FLOAT_EQ (t.x() , 1.6399229); EXPECT_FLOAT_EQ (t.y() , 0.8813442); EXPECT_FLOAT_EQ (t.z() , 0.099667005); // inverse transform Pose6D c_inv = c.inv(); Vector3 t2 = c_inv.transform (t); EXPECT_FLOAT_EQ (t2.x() , trans.x()); EXPECT_FLOAT_EQ (t2.y() , trans.y()); EXPECT_FLOAT_EQ (t2.z() , trans.z()); // ------------------------------------------------------------ } else if (test_name == "InsertRay") { double p = 0.5; EXPECT_FLOAT_EQ(p, probability(logodds(p))); p = 0.1; EXPECT_FLOAT_EQ(p, probability(logodds(p))); p = 0.99; EXPECT_FLOAT_EQ(p, probability(logodds(p))); float l = 0; EXPECT_FLOAT_EQ(l, logodds(probability(l))); l = -4; EXPECT_FLOAT_EQ(l, logodds(probability(l))); l = 2; EXPECT_FLOAT_EQ(l, logodds(probability(l))); OcTree tree (0.05); tree.setProbHit(0.7); tree.setProbMiss(0.4); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (2.01f,0.01f,0.01f); for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { EXPECT_TRUE (tree.insertRay(origin, origin+point_on_surface)); point_on_surface.rotate_IP (0,0,DEG2RAD(1.)); } point_on_surface.rotate_IP (0,DEG2RAD(1.),0); } EXPECT_TRUE (tree.writeBinary("sphere_rays.bt")); EXPECT_EQ ((int) tree.size(), 50615); // ------------------------------------------------------------ // ray casting is now in "test_raycasting.cpp" // ------------------------------------------------------------ // insert scan test // insert graph node test // write graph test } else if (test_name == "InsertScan") { Pointcloud* measurement = new Pointcloud(); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (2.01f, 0.01f, 0.01f); for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { point3d p = origin+point_on_surface; measurement->push_back(p); point_on_surface.rotate_IP (0,0,DEG2RAD(1.)); } point_on_surface.rotate_IP (0,DEG2RAD(1.),0); } OcTree tree (0.05); tree.insertPointCloud(*measurement, origin); EXPECT_EQ (tree.size(), 53959); ScanGraph* graph = new ScanGraph(); Pose6D node_pose (origin.x(), origin.y(), origin.z(),0.0f,0.0f,0.0f); graph->addNode(measurement, node_pose); EXPECT_TRUE (graph->writeBinary("test.graph")); delete graph; // ------------------------------------------------------------ // graph read file test } else if (test_name == "ReadGraph") { // not really meaningful, see better test in "test_scans.cpp" ScanGraph graph; EXPECT_TRUE (graph.readBinary("test.graph")); // ------------------------------------------------------------ } else if (test_name == "StampedTree") { OcTreeStamped stamped_tree (0.05); // fill tree for (int x=-20; x<20; x++) for (int y=-20; y<20; y++) for (int z=-20; z<20; z++) { point3d p ((float) x*0.05f+0.01f, (float) y*0.05f+0.01f, (float) z*0.05f+0.01f); stamped_tree.updateNode(p, true); // integrate 'occupied' measurement } // test if update times set point3d query (0.1f, 0.1f, 0.1f); OcTreeNodeStamped* result = stamped_tree.search (query); EXPECT_TRUE (result); unsigned int tree_time = stamped_tree.getLastUpdateTime(); unsigned int node_time = result->getTimestamp(); std::cout << "After 1st update (cube): Tree time " <<tree_time << "; node(0.1, 0.1, 0.1) time " << result->getTimestamp() << std::endl; EXPECT_TRUE (tree_time > 0); #ifdef _WIN32 Sleep(1000); #else sleep(1); #endif stamped_tree.integrateMissNoTime(result); // reduce occupancy, no time update std::cout << "After 2nd update (single miss): Tree time " <<tree_time << "; node(0.1, 0.1, 0.1) time " << node_time << std::endl; EXPECT_EQ (node_time, result->getTimestamp()); // node time updated? point3d query2 = point3d (0.1f, 0.1f, 0.3f); stamped_tree.updateNode(query2, true); // integrate 'occupied' measurement OcTreeNodeStamped* result2 = stamped_tree.search (query2); EXPECT_TRUE (result2); result = stamped_tree.search (query); EXPECT_TRUE (result); std::cout << "After 3rd update (single hit at (0.1, 0.1, 0.3): Tree time " << stamped_tree.getLastUpdateTime() << "; node(0.1, 0.1, 0.1) time " << result->getTimestamp() << "; node(0.1, 0.1, 0.3) time " << result2->getTimestamp() << std::endl; EXPECT_TRUE (result->getTimestamp() < result2->getTimestamp()); // result2 has been updated EXPECT_EQ(result2->getTimestamp(), stamped_tree.getLastUpdateTime()); // ------------------------------------------------------------ } else if (test_name == "OcTreeKey") { OcTree tree (0.05); point3d p(0.0,0.0,0.0); OcTreeKey key; tree.coordToKeyChecked(p, key); point3d p_inv = tree.keyToCoord(key); EXPECT_FLOAT_EQ (0.025, p_inv.x()); EXPECT_FLOAT_EQ (0.025, p_inv.y()); EXPECT_FLOAT_EQ (0.025, p_inv.z()); // ------------------------------------------------------------ } else { std::cerr << "Invalid test name specified: " << test_name << std::endl; return 1; } std::cerr << "Test successful.\n"; return 0; }