RankFourTensor TensorMechanicsPlasticTensile::dflowPotential_dstress(const RankTwoTensor & stress, const Real & intnl) const { Real mean_stress = stress.trace()/3.0; RankTwoTensor dmean_stress = stress.dtrace()/3.0; Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0); if (sin3Lode <= _sin3tt) { // the non-edge-smoothed version std::vector<Real> eigvals; std::vector<RankTwoTensor> deigvals; std::vector<RankFourTensor> d2eigvals; stress.dsymmetricEigenvalues(eigvals, deigvals); stress.d2symmetricEigenvalues(d2eigvals); Real denom = std::sqrt(_small_smoother2 + std::pow(eigvals[2] - mean_stress, 2)); RankFourTensor dr_dstress = (eigvals[2] - mean_stress)*d2eigvals[2]/denom; for (unsigned i = 0 ; i < 3 ; ++i) for (unsigned j = 0 ; j < 3 ; ++j) for (unsigned k = 0 ; k < 3 ; ++k) for (unsigned l = 0 ; l < 3 ; ++l) dr_dstress(i, j, k, l) += (1 - std::pow((eigvals[2] - mean_stress)/denom, 2))*(deigvals[2](i, j) - dmean_stress(i, j))*(deigvals[2](k, l) - dmean_stress(k, l))/denom; return dr_dstress; } else { // the edge-smoothed version RankTwoTensor dsin3Lode = stress.dsin3Lode(_lode_cutoff); Real kk = _aaa + _bbb*sin3Lode + _ccc*std::pow(sin3Lode, 2); RankTwoTensor dkk = (_bbb + 2*_ccc*sin3Lode)*dsin3Lode; RankFourTensor d2kk = (_bbb + 2*_ccc*sin3Lode)*stress.d2sin3Lode(_lode_cutoff); for (unsigned i = 0 ; i < 3 ; ++i) for (unsigned j = 0 ; j < 3 ; ++j) for (unsigned k = 0 ; k < 3 ; ++k) for (unsigned l = 0 ; l < 3 ; ++l) d2kk(i, j, k, l) += 2*_ccc*dsin3Lode(i, j)*dsin3Lode(k, l); Real sibar2 = stress.secondInvariant(); RankTwoTensor dsibar2 = stress.dsecondInvariant(); RankFourTensor d2sibar2 = stress.d2secondInvariant(); Real denom = std::sqrt(_small_smoother2 + sibar2*std::pow(kk, 2)); RankFourTensor dr_dstress = (0.5*d2sibar2*std::pow(kk, 2) + sibar2*kk*d2kk)/denom; for (unsigned i = 0 ; i < 3 ; ++i) for (unsigned j = 0 ; j < 3 ; ++j) for (unsigned k = 0 ; k < 3 ; ++k) for (unsigned l = 0 ; l < 3 ; ++l) { dr_dstress(i, j, k, l) += (dsibar2(i, j)*dkk(k, l)*kk + dkk(i, j)*dsibar2(k, l)*kk + sibar2*dkk(i, j)*dkk(k, l))/denom; dr_dstress(i, j, k, l) -= (0.5*dsibar2(i, j)*std::pow(kk, 2) + sibar2*kk*dkk(i, j))*(0.5*dsibar2(k, l)*std::pow(kk, 2) + sibar2*kk*dkk(k, l))/std::pow(denom, 3); } return dr_dstress; } }
void TensorMechanicsPlasticMohrCoulombMulti::dflowPotential_dstressV(const RankTwoTensor & stress, Real intnl, std::vector<RankFourTensor> & dr_dstress) const { std::vector<RankFourTensor> d2eigvals; stress.d2symmetricEigenvalues(d2eigvals); const Real sinpsi = std::sin(psi(intnl)); dr_dstress.resize(6); dr_dstress[0] = 0.5*(d2eigvals[0] - d2eigvals[1]) + 0.5*(d2eigvals[0] + d2eigvals[1])*sinpsi; dr_dstress[1] = 0.5*(d2eigvals[1] - d2eigvals[0]) + 0.5*(d2eigvals[0] + d2eigvals[1])*sinpsi; dr_dstress[2] = 0.5*(d2eigvals[0] - d2eigvals[2]) + 0.5*(d2eigvals[0] + d2eigvals[2])*sinpsi; dr_dstress[3] = 0.5*(d2eigvals[2] - d2eigvals[0]) + 0.5*(d2eigvals[0] + d2eigvals[2])*sinpsi; dr_dstress[4] = 0.5*(d2eigvals[1] - d2eigvals[2]) + 0.5*(d2eigvals[1] + d2eigvals[2])*sinpsi; dr_dstress[5] = 0.5*(d2eigvals[2] - d2eigvals[1]) + 0.5*(d2eigvals[1] + d2eigvals[2])*sinpsi; }
RankFourTensor TensorMechanicsPlasticTensile::dflowPotential_dstress(const RankTwoTensor & stress, Real /*intnl*/) const { Real mean_stress = stress.trace() / 3.0; RankTwoTensor dmean_stress = stress.dtrace() / 3.0; Real sin3Lode = stress.sin3Lode(_lode_cutoff, 0); if (sin3Lode <= _sin3tt) { // the non-edge-smoothed version std::vector<Real> eigvals; std::vector<RankTwoTensor> deigvals; std::vector<RankFourTensor> d2eigvals; stress.dsymmetricEigenvalues(eigvals, deigvals); stress.d2symmetricEigenvalues(d2eigvals); Real denom = std::sqrt(smooth(stress) + Utility::pow<2>(eigvals[2] - mean_stress)); Real denom3 = Utility::pow<3>(denom); RankTwoTensor numer_part = deigvals[2] - dmean_stress; RankTwoTensor numer_full = 0.5 * dsmooth(stress) * dmean_stress + (eigvals[2] - mean_stress) * numer_part; Real d2smooth_over_denom = d2smooth(stress) / denom; RankFourTensor dr_dstress = (eigvals[2] - mean_stress) * d2eigvals[2] / denom; for (unsigned i = 0; i < 3; ++i) for (unsigned j = 0; j < 3; ++j) for (unsigned k = 0; k < 3; ++k) for (unsigned l = 0; l < 3; ++l) { dr_dstress(i, j, k, l) += 0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l); dr_dstress(i, j, k, l) += numer_part(i, j) * numer_part(k, l) / denom; dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3; } return dr_dstress; } else { // the edge-smoothed version RankTwoTensor dsin3Lode = stress.dsin3Lode(_lode_cutoff); Real kk = _aaa + _bbb * sin3Lode + _ccc * Utility::pow<2>(sin3Lode); RankTwoTensor dkk = (_bbb + 2.0 * _ccc * sin3Lode) * dsin3Lode; RankFourTensor d2kk = (_bbb + 2.0 * _ccc * sin3Lode) * stress.d2sin3Lode(_lode_cutoff); for (unsigned i = 0; i < 3; ++i) for (unsigned j = 0; j < 3; ++j) for (unsigned k = 0; k < 3; ++k) for (unsigned l = 0; l < 3; ++l) d2kk(i, j, k, l) += 2.0 * _ccc * dsin3Lode(i, j) * dsin3Lode(k, l); Real sibar2 = stress.secondInvariant(); RankTwoTensor dsibar2 = stress.dsecondInvariant(); RankFourTensor d2sibar2 = stress.d2secondInvariant(); Real denom = std::sqrt(smooth(stress) + sibar2 * Utility::pow<2>(kk)); Real denom3 = Utility::pow<3>(denom); Real d2smooth_over_denom = d2smooth(stress) / denom; RankTwoTensor numer_full = 0.5 * dsmooth(stress) * dmean_stress + 0.5 * dsibar2 * kk * kk + sibar2 * kk * dkk; RankFourTensor dr_dstress = (0.5 * d2sibar2 * Utility::pow<2>(kk) + sibar2 * kk * d2kk) / denom; for (unsigned i = 0; i < 3; ++i) for (unsigned j = 0; j < 3; ++j) for (unsigned k = 0; k < 3; ++k) for (unsigned l = 0; l < 3; ++l) { dr_dstress(i, j, k, l) += 0.5 * d2smooth_over_denom * dmean_stress(i, j) * dmean_stress(k, l); dr_dstress(i, j, k, l) += (dsibar2(i, j) * dkk(k, l) * kk + dkk(i, j) * dsibar2(k, l) * kk + sibar2 * dkk(i, j) * dkk(k, l)) / denom; dr_dstress(i, j, k, l) -= numer_full(i, j) * numer_full(k, l) / denom3; } return dr_dstress; } }
void TensorMechanicsPlasticTensileMulti::dflowPotential_dstressV(const RankTwoTensor & stress, const Real & /*intnl*/, std::vector<RankFourTensor> & dr_dstress) const { stress.d2symmetricEigenvalues(dr_dstress); }