bool CreateTrainDir(AliAnalysisAlien *plugin, const TMap &lookup){ // // Make train data dir name and JDL, C and sh file names // TObjArray infos; bool found = FindDataSample(lookup, infos); if(!found){ printf("sample %s not found\n", g_sample.Data()); return false; } TString type; GetData(infos, type, 2); // check whether the train dir is already provided or needs to be specified if(!g_train_dir.Length()){ // Query number of train runs before const char *gridhome = gGrid->GetHomeDirectory(); const char gridoutdir[256]; sprintf(gridoutdir, "%sAnalysis_pPb/%s", gridhome, type.Data()); TGridResult *trainruns = gGrid->Ls(gridoutdir); int nruns = trainruns->GetEntries(); // Get Date and time TDatime time; g_train_dir = Form("%d_%d%02d%02d_%02d%02d", nruns, time.GetYear(), time.GetMonth(), time.GetDay(), time.GetHour(), time.GetMinute()); } plugin->SetGridWorkingDir(Form("Analysis_pPb/%s/%s", type.Data(), g_train_dir.Data())); plugin->SetJDLName(Form("TPCTOFanalysispPb_%s_%s.jdl", type.Data(), g_train_dir.Data())); plugin->SetExecutable(Form("TPCTOFanalysispPb_%s_%s.sh", type.Data(), g_train_dir.Data())); plugin->SetAnalysisMacro(Form("TPCTOFanalysispPb_%s_%s.C", type.Data(), g_train_dir.Data())); return true; }
void TExpenser::calculate_balance() { fBalanceXMLParser -> selectMainNode(); fBalanceXMLParser -> selectNode("entry"); TString balance = fBalanceXMLParser -> getNodeContent("amount"); fBalanceXMLParser -> selectNode("date"); TString balance_year = fBalanceXMLParser -> getNodeContent("year"); TString balance_month = fBalanceXMLParser -> getNodeContent("month"); fLastStatusLabel -> SetText(balance_month+"/"+balance_year+": " + balance + " eur"); // now calculate the current balance (last - expenses since the last) TDatime time; fXMLParser->selectMainNode(); fXMLParser->selectNode("expense"); Double_t expenses_since_last_status = 0; while (fXMLParser->getCurrentNode() != 0) { XMLNodePointer_t current_node = fXMLParser->getCurrentNode(); fXMLParser -> selectNode("date"); TString year = fXMLParser -> getNodeContent("year"); TString month = fXMLParser -> getNodeContent("month"); fXMLParser -> setCurrentNode(current_node); bool year_more_recent = (year.Atoi() > balance_year.Atoi()); bool year_same = (year.Atoi() == balance_year.Atoi()); bool month_more_recent = (month.Atoi()>=balance_month.Atoi()); bool expense_more_recent_than_balance = (year_more_recent || (year_same && month_more_recent)); if ( expense_more_recent_than_balance && fXMLParser -> getNodeContent("withdrawn") == "Yes" ) { expenses_since_last_status += fXMLParser -> getNodeContent("amount").Atof(); } fXMLParser->selectNextNode("expense"); } // calculate total income since last balance fIncomeXMLParser->selectMainNode(); fIncomeXMLParser->selectNode("entry"); Double_t income_since_last_status = 0; while (fIncomeXMLParser->getCurrentNode() != 0) { XMLNodePointer_t current_node = fIncomeXMLParser->getCurrentNode(); fIncomeXMLParser -> selectNode("date"); TString year = fIncomeXMLParser -> getNodeContent("year"); TString month = fIncomeXMLParser -> getNodeContent("month"); fIncomeXMLParser -> setCurrentNode(current_node); if ( ( (month.Atoi()>=balance_month.Atoi()) && (year.Atoi()==balance_year.Atoi()) ) || (year.Atoi()>balance_year.Atoi()) ) { income_since_last_status += fIncomeXMLParser -> getNodeContent("amount").Atof(); } fIncomeXMLParser->selectNextNode("entry"); } Double_t new_balance = balance.Atof() - expenses_since_last_status + income_since_last_status; fCurrentStatusLabel -> SetText(toStr(time.GetDay())+"/"+toStr(time.GetMonth())+"/"+toStr(time.GetYear())+": " + toStr(new_balance,2) + " eur"); }
void TExpenser::drawStatisticsMonthTab() { fStatisticsTab = fTab->AddTab("Statistics (Month)"); fStatisticsTab -> SetLayoutManager(new TGHorizontalLayout(fStatisticsTab)); TRootEmbeddedCanvas * fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fStatisticsTab, CANVAS_WIDTH, CANVAS_HEIGHT); fStatisticsTab -> AddFrame(fEcanvas, new TGLayoutHints(kLHintsCenterX, 10,10,10,1)); fCanvas = fEcanvas->GetCanvas(); fCategoriesHistogram = new TH1F("fCategoriesHistogram", "Expenses for each category for a given month", NCATEGORIES, 0, NCATEGORIES); fCategoriesHistogram -> SetStats(0); TGVerticalFrame *vframe = new TGVerticalFrame(fStatisticsTab, 60, 40); fStatisticsTab -> AddFrame(vframe, new TGLayoutHints(kLHintsCenterX,2,2,2,2)); // month selector fStatisticsMonth = new TGComboBox(vframe); for (unsigned i = 0; i < 12; i++) { fStatisticsMonth->AddEntry(MONTHS[i], i+1); } fStatisticsMonth->Resize(DROPDOWN_MENU_WIDTH, DROPDOWN_MENU_HEIGHT); TDatime time; fStatisticsMonth->Select(time.GetMonth()); vframe->AddFrame(fStatisticsMonth, new TGLayoutHints(kLHintsLeft,5,10,5,5)); // year selector fStatisticsYear = new TGComboBox(vframe); for (unsigned i = FIRST_YEAR; i <= LAST_YEAR; i++) { fStatisticsYear->AddEntry(toStr(i), i+1-FIRST_YEAR); } fStatisticsYear->Resize(DROPDOWN_MENU_WIDTH, DROPDOWN_MENU_HEIGHT); fStatisticsYear->Select(time.GetYear()-FIRST_YEAR+1); vframe->AddFrame(fStatisticsYear, new TGLayoutHints(kLHintsLeft,5,10,5,5)); // update-button TGTextButton * update_button = new TGTextButton(vframe,"&Apply"); update_button -> SetFont("-*-times-bold-r-*-*-28-*-*-*-*-*-*-*"); update_button -> Connect("Clicked()", "TExpenser", this, "calculate_monthly()"); vframe -> AddFrame(update_button, new TGLayoutHints(kLHintsLeft,5,5,3,4)); // monthly sum TColor *color = gROOT->GetColor(kBlue); TGFont *font = gClient->GetFont("-*-times-bold-r-*-*-22-*-*-*-*-*-*-*"); fTotalMonthlyExpenses = new TGLabel(vframe, ""); vframe->AddFrame(fTotalMonthlyExpenses, new TGLayoutHints(kLHintsNormal, 5, 5, 3, 4)); fTotalMonthlyExpenses->SetTextColor(color); fTotalMonthlyExpenses -> SetTextFont(font); calculate_monthly(); }
//_________________________________________________________________________________________ Int_t checkPullTree(TString pathTree, TString pathNameThetaMap, TString pathNameSigmaMap, TString mapSuffix, const Int_t collType /*0: pp, 1: pPb, 2: PbPb*/, const Bool_t plotPull = kTRUE, const Double_t downScaleFactor = 1, TString pathNameSplinesFile = "", TString prSplinesName = "", TString fileNameTree = "bhess_PIDetaTree.root", TString treeName = "fTree") { const Bool_t isNonPP = collType != 0; const Double_t massProton = AliPID::ParticleMass(AliPID::kProton); Bool_t recalculateExpecteddEdx = pathNameSplinesFile != ""; TFile* f = 0x0; f = TFile::Open(Form("%s/%s", pathTree.Data(), fileNameTree.Data())); if (!f) { std::cout << "Failed to open tree file \"" << Form("%s/%s", pathTree.Data(), fileNameTree.Data()) << "\"!" << std::endl; return -1; } // Extract the data Tree TTree* tree = dynamic_cast<TTree*>(f->Get(treeName.Data())); if (!tree) { std::cout << "Failed to load data tree!" << std::endl; return -1; } // Extract the splines, if desired TSpline3* splPr = 0x0; if (recalculateExpecteddEdx) { std::cout << "Loading splines to recalculate expected dEdx!" << std::endl << std::endl; TFile* fSpl = TFile::Open(pathNameSplinesFile.Data()); if (!fSpl) { std::cout << "Failed to open spline file \"" << pathNameSplinesFile.Data() << "\"!" << std::endl; return 0x0; } TObjArray* TPCPIDResponse = (TObjArray*)fSpl->Get("TPCPIDResponse"); if (!TPCPIDResponse) { splPr = (TSpline3*)fSpl->Get(prSplinesName.Data()); // If splines are in file directly, without TPCPIDResponse object, try to load them if (!splPr) { std::cout << "Failed to load object array from spline file \"" << pathNameSplinesFile.Data() << "\"!" << std::endl; return 0x0; } } else { splPr = (TSpline3*)TPCPIDResponse->FindObject(prSplinesName.Data()); if (!splPr) { std::cout << "Failed to load splines from file \"" << pathNameSplinesFile.Data() << "\"!" << std::endl; return 0x0; } } } else std::cout << "Taking dEdxExpected from Tree..." << std::endl << std::endl; // Extract the correction maps TFile* fMap = TFile::Open(pathNameThetaMap.Data()); if (!fMap) { std::cout << "Failed to open thetaMap file \"" << pathNameThetaMap.Data() << "\"! Will not additionally correct data...." << std::endl; } TH2D* hMap = 0x0; if (fMap) { hMap = dynamic_cast<TH2D*>(fMap->Get(Form("hRefined%s", mapSuffix.Data()))); if (!hMap) { std::cout << "Failed to load theta map!" << std::endl; return -1; } } TFile* fSigmaMap = TFile::Open(pathNameSigmaMap.Data()); if (!fSigmaMap) { std::cout << "Failed to open simgaMap file \"" << pathNameSigmaMap.Data() << "\"!" << std::endl; return -1; } TH2D* hThetaMapSigmaPar1 = dynamic_cast<TH2D*>(fSigmaMap->Get("hThetaMapSigmaPar1")); if (!hThetaMapSigmaPar1) { std::cout << "Failed to load sigma map for par 1!" << std::endl; return -1; } Double_t c0 = -1; TNamed* c0Info = dynamic_cast<TNamed*>(fSigmaMap->Get("c0")); if (!c0Info) { std::cout << "Failed to extract c0 from file with sigma map!" << std::endl; return -1; } TString c0String = c0Info->GetTitle(); c0 = c0String.Atof(); printf("Loaded parameter 0 for sigma: %f\n\n", c0); if (plotPull) std::cout << "Plotting pull..." << std::endl << std::endl; else std::cout << "Plotting delta'..." << std::endl << std::endl; Long64_t nTreeEntries = tree->GetEntriesFast(); Double_t dEdx = 0.; // Measured dE/dx Double_t dEdxExpected = 0.; // Expected dE/dx according to parametrisation Double_t tanTheta = 0.; // Tangens of (local) theta at TPC inner wall Double_t pTPC = 0.; // Momentum at TPC inner wall UShort_t tpcSignalN = 0; // Number of clusters used for dEdx UChar_t pidType = 0; Int_t fMultiplicity = 0; //Double_t phiPrime = 0; // Only activate the branches of interest to save processing time tree->SetBranchStatus("*", 0); // Disable all branches tree->SetBranchStatus("pTPC", 1); tree->SetBranchStatus("dEdx", 1); tree->SetBranchStatus("dEdxExpected", 1); tree->SetBranchStatus("tanTheta", 1); tree->SetBranchStatus("tpcSignalN", 1); tree->SetBranchStatus("pidType", 1); //tree->SetBranchStatus("phiPrime", 1); if (isNonPP) tree->SetBranchStatus("fMultiplicity", 1); tree->SetBranchAddress("dEdx", &dEdx); tree->SetBranchAddress("dEdxExpected", &dEdxExpected); tree->SetBranchAddress("tanTheta", &tanTheta); tree->SetBranchAddress("tpcSignalN", &tpcSignalN); tree->SetBranchAddress("pTPC", &pTPC); tree->SetBranchAddress("pidType", &pidType); //tree->SetBranchAddress("phiPrime", &phiPrime); if (isNonPP) tree->SetBranchAddress("fMultiplicity", &fMultiplicity); // Output file TDatime daTime; TString savefileName = Form("%s%s_checkPullSigma_%04d_%02d_%02d__%02d_%02d.root", fileNameTree.ReplaceAll(".root", "").Data(), recalculateExpecteddEdx ? "_recalcdEdx" : "", daTime.GetYear(), daTime.GetMonth(), daTime.GetDay(), daTime.GetHour(), daTime.GetMinute()); TFile* fSave = TFile::Open(Form("%s/%s", pathTree.Data(), savefileName.Data()), "recreate"); if (!fSave) { std::cout << "Failed to open save file \"" << Form("%s/%s", pathTree.Data(), savefileName.Data()) << "\"!" << std::endl; return -1; } const Double_t pBoundLow = 0.1; const Double_t pBoundUp = 5; const Int_t nBins1 = TMath::Ceil(180 / downScaleFactor); const Int_t nBins2 = TMath::Ceil(100 / downScaleFactor); const Int_t nBins3 = TMath::Ceil(60 / downScaleFactor); const Int_t nPbinsForMap = nBins1 + nBins2 + nBins3; Double_t binsPforMap[nPbinsForMap + 1]; Double_t binWidth1 = (1.0 - pBoundLow) / nBins1; Double_t binWidth2 = (2.0 - 1.0 ) / nBins2; Double_t binWidth3 = (pBoundUp - 2.0) / nBins3; for (Int_t i = 0; i < nBins1; i++) { binsPforMap[i] = pBoundLow + i * binWidth1; } for (Int_t i = nBins1, j = 0; i < nBins1 + nBins2; i++, j++) { binsPforMap[i] = 1.0 + j * binWidth2; } for (Int_t i = nBins1 + nBins2, j = 0; i < nBins1 + nBins2 + nBins3; i++, j++) { binsPforMap[i] = 2.0 + j * binWidth3; } binsPforMap[nPbinsForMap] = pBoundUp; TH2D* hPull = new TH2D("hPull", "Pull vs. p_{TPC} integrated over tan(#Theta);p_{TPC} (GeV/c);Pull", nPbinsForMap, binsPforMap, plotPull ? 120 : 240, plotPull ? -6 : -0.6, plotPull ? 6 : 0.6); TH2D* hPullAdditionalCorr = (TH2D*)hPull->Clone("hPullAdditionalCorr"); hPullAdditionalCorr->SetTitle("Pull vs. p_{TPC} integrated over tan(#Theta) with additional dEdx correction w.r.t. tan(#Theta)"); /* const Int_t nThetaHistos = 3; TH2D* hPullTheta[nThetaHistos]; TH2D* hPullAdditionalCorrTheta[nThetaHistos]; Double_t tThetaLow[nThetaHistos] = { 0.0, 0.4, 0.9 }; Double_t tThetaHigh[nThetaHistos] = { 0.1, 0.5, 1.0 }; */ const Int_t nThetaHistos = 10; TH2D* hPullTheta[nThetaHistos]; TH2D* hPullAdditionalCorrTheta[nThetaHistos]; Double_t tThetaLow[nThetaHistos] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; Double_t tThetaHigh[nThetaHistos] = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 }; for (Int_t i = 0; i < nThetaHistos; i++) { hPullTheta[i] = new TH2D(Form("hPullTheta_%d", i), Form("Pull vs. p_{TPC} for %.2f <= |tan(#Theta)| < %.2f;p_{TPC} (GeV/c);Pull", tThetaLow[i], tThetaHigh[i]), nPbinsForMap, binsPforMap, plotPull ? 120 : 240, plotPull ? -6 : -0.6, plotPull ? 6 : 0.6); hPullAdditionalCorrTheta[i] = new TH2D(Form("hPullAdditionalCorrTheta_%d", i), Form("Pull vs. p_{TPC} for %.2f <= |tan(#Theta)| < %.2f with additional dEdx correction w.r.t. tan(#Theta);p_{TPC} (GeV/c);Pull", tThetaLow[i], tThetaHigh[i]), nPbinsForMap, binsPforMap, plotPull ? 120 : 240, plotPull ? -6 : -0.6, plotPull ? 6 : 0.6); } TF1 corrFuncMult("corrFuncMult", "[0] + [1]*TMath::Max([4], TMath::Min(x, [3])) + [2] * TMath::Power(TMath::Max([4], TMath::Min(x, [3])), 2)", 0., 0.2); TF1 corrFuncMultTanTheta("corrFuncMultTanTheta", "[0] * (x -[2]) + [1] * (x * x - [2] * [2])", -1.5, 1.5); TF1 corrFuncSigmaMult("corrFuncSigmaMul", "TMath::Max(0, [0] + [1]*TMath::Min(x, [3]) + [2] * TMath::Power(TMath::Min(x, [3]), 2))", 0., 0.2); // LHC13b.pass2 if (isNonPP) printf("Using corr Parameters for 13b.pass2\n!"); corrFuncMult.SetParameter(0, -5.906e-06); corrFuncMult.SetParameter(1, -5.064e-04); corrFuncMult.SetParameter(2, -3.521e-02); corrFuncMult.SetParameter(3, 2.469e-02); corrFuncMult.SetParameter(4, 0); corrFuncMultTanTheta.SetParameter(0, -5.32e-06); corrFuncMultTanTheta.SetParameter(1, 1.177e-05); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, 0.); corrFuncSigmaMult.SetParameter(1, 0.); corrFuncSigmaMult.SetParameter(2, 0.); corrFuncSigmaMult.SetParameter(3, 0.); /* OK, but PID task was not very satisfying corrFuncMult.SetParameter(0, -6.27187e-06); corrFuncMult.SetParameter(1, -4.60649e-04); corrFuncMult.SetParameter(2, -4.26450e-02); corrFuncMult.SetParameter(3, 2.40590e-02); corrFuncMult.SetParameter(4, 0); corrFuncMultTanTheta.SetParameter(0, -5.338e-06); corrFuncMultTanTheta.SetParameter(1, 1.220e-05); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, 7.89237e-05); corrFuncSigmaMult.SetParameter(1, -1.30662e-02); corrFuncSigmaMult.SetParameter(2, 8.91548e-01); corrFuncSigmaMult.SetParameter(3, 1.47931e-02); */ /* // LHC11a10a if (isNonPP) printf("Using corr Parameters for 11a10a\n!"); corrFuncMult.SetParameter(0, 6.90133e-06); corrFuncMult.SetParameter(1, -1.22123e-03); corrFuncMult.SetParameter(2, 1.80220e-02); corrFuncMult.SetParameter(3, 0.1); corrFuncMult.SetParameter(4, 6.45306e-03); corrFuncMultTanTheta.SetParameter(0, -2.85505e-07); corrFuncMultTanTheta.SetParameter(1, -1.31911e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -4.29665e-05); corrFuncSigmaMult.SetParameter(1, 1.37023e-02); corrFuncSigmaMult.SetParameter(2, -6.36337e-01); corrFuncSigmaMult.SetParameter(3, 1.13479e-02); */ /* OLD without saturation and large error for negative slopes corrFuncSigmaMult.SetParameter(0, -4.79684e-05); corrFuncSigmaMult.SetParameter(1, 1.49938e-02); corrFuncSigmaMult.SetParameter(2, -7.15269e-01); corrFuncSigmaMult.SetParameter(3, 1.06855e-02); */ /* OLD very good try, but with fewer pBins for the fitting corrFuncMult.SetParameter(0, 6.88365e-06); corrFuncMult.SetParameter(1, -1.22324e-03); corrFuncMult.SetParameter(2, 1.81625e-02); corrFuncMult.SetParameter(3, 0.1); corrFuncMult.SetParameter(4, 6.36890e-03); corrFuncMultTanTheta.SetParameter(0, -2.85505e-07); corrFuncMultTanTheta.SetParameter(1, -1.31911e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -4.28401e-05); corrFuncSigmaMult.SetParameter(1, 1.24812e-02); corrFuncSigmaMult.SetParameter(2, -5.28531e-01); corrFuncSigmaMult.SetParameter(3, 1.25147e-02); */ /*OLD good try corrFuncMult.SetParameter(0, 7.50321e-06); corrFuncMult.SetParameter(1, -1.25250e-03); corrFuncMult.SetParameter(2, 1.85437e-02); corrFuncMult.SetParameter(3, 0.1); corrFuncMult.SetParameter(4, 6.21192e-03); corrFuncMultTanTheta.SetParameter(0, -1.43112e-07); corrFuncMultTanTheta.SetParameter(1, -1.53e-06); corrFuncMultTanTheta.SetParameter(2, 0.3); corrFuncSigmaMult.SetParameter(0, -2.54019e-05); corrFuncSigmaMult.SetParameter(1, 8.68883e-03); corrFuncSigmaMult.SetParameter(2, -3.36176e-01); corrFuncSigmaMult.SetParameter(3, 1.29230e-02); */ /* // LHC10h.pass2 if (isNonPP) printf("Using corr Parameters for 10h.pass2\n!"); corrFuncMult.SetParameter(0, 3.21636e-07); corrFuncMult.SetParameter(1, -6.65876e-04); corrFuncMult.SetParameter(2, 1.28786e-03); corrFuncMult.SetParameter(3, 1.47677e-02); corrFuncMult.SetParameter(4, 0.); corrFuncMultTanTheta.SetParameter(0, 7.23591e-08); corrFuncMultTanTheta.SetParameter(1, 2.7469e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -1.22590e-05); corrFuncSigmaMult.SetParameter(1, 6.88888e-03); corrFuncSigmaMult.SetParameter(2, -3.20788e-01); corrFuncSigmaMult.SetParameter(3, 1.07345e-02); */ /*OLD bad try corrFuncMult.SetParameter(0, 2.71514e-07); corrFuncMult.SetParameter(1, -6.92031e-04); corrFuncMult.SetParameter(2, 3.56042e-03); corrFuncMult.SetParameter(3, 1.47497e-02); corrFuncMult.SetParameter(4, 0.); corrFuncMultTanTheta.SetParameter(0, 8.53204e-08); corrFuncMultTanTheta.SetParameter(1, 2.85591e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -6.82477e-06); corrFuncSigmaMult.SetParameter(1, 4.97051e-03); corrFuncSigmaMult.SetParameter(2, -1.64954e-01); corrFuncSigmaMult.SetParameter(3, 9.21061e-03); */ //TODO NOW TF1* fShapeSmallP = new TF1("fShapeSmallP", "pol5", -0.4, 0.4); fShapeSmallP->SetParameters(1.01712, -0.0202725, -0.260692, 0.261623, 0.671854, -1.14014); for (Long64_t i = 0; i < nTreeEntries; i++) { tree->GetEntry(i); if (dEdx <= 0 || dEdxExpected <= 0 || tpcSignalN <= 10) continue; /* Double_t pT = pTPC*TMath::Sin(-TMath::ATan(tanTheta)+TMath::Pi()/2.0); if ((phiPrime > 0.072/pT+TMath::Pi()/18.0-0.035 && phiPrime < 0.07/pT/pT+0.1/pT+TMath::Pi()/18.0+0.035)) continue; */ if (pidType != kMCid) { if (pidType == kTPCid && pTPC > 0.6) continue; if (pidType == kTPCandTOFid && (pTPC < 0.6 || pTPC > 2.0)) continue; if ((collType == 2) && pidType == kTPCandTOFid && pTPC > 1.0) continue;// Only V0's in case of PbPb above 1.0 GeV/c if (pidType == kV0idPlusTOFrejected) //TODO NOW NEW continue; } if (recalculateExpecteddEdx) { dEdxExpected = 50. * splPr->Eval(pTPC / massProton); //WARNING: What, if MIP is different from 50.? Seems not to be used (tested for pp, MC_pp, PbPb and MC_PbPb), but can in principle happen } //TODO NOW /* if (TMath::Abs(tanTheta) <= 0.4) { Double_t p0 = fShapeSmallP->Eval(tanTheta) - 1.0; // Strength of the correction Double_t p1 = -9.0; // How fast the correction is turned off Double_t p2 = -0.209; // Turn off correction around 0.2 GeV/c Double_t p3 = 1.0; // Delta' for large p should be 1 Double_t corrFactor = TMath::Erf((pTPC + p2) * p1) * p0 + p3 + p0; // Add p0 to have 1 for p3 = 1 and large pTPC dEdxExpected *= corrFactor; }*/ /*TODO old unsuccessful try Double_t thetaGlobalTPC = -TMath::ATan(tanTheta) + TMath::Pi() / 2.; Double_t pTtpc = pTPC * TMath::Sin(thetaGlobalTPC); Double_t pTtpcInv = (pTtpc > 0) ? 1. / pTtpc : 0; Double_t p0 = 1.0; Double_t p1 = 1./ 0.5;//TODO 2.0; Double_t p2 = -0.2;//TODO 0.1 Double_t pTcorrFactor = p0 + (pTtpcInv > p1) * p2 * (pTtpcInv - p1); dEdxExpected *= pTcorrFactor; */ // From the momentum (via dEdxExpected) and the tanTheta of the track, the expected dEdx can be calculated (correctedDeDxExpected). // If the splines are correct, this should give in average the same value as dEdx. // Now valid: Maps created from corrected data with splines adopted to corrected data, so lookup should be for dEdxExpected=dEdxSplines (no further // eta correction) or the corrected dEdx from the track (which should ideally be = dEdxSplines) // Tested with corrected data for LHC10d.pass2: using dEdx for the lookup (which is the corrected value and should ideally be = dEdxSplines): // Results almost the same. Maybe slightly better for dEdxExpected. // No longer valid: Note that the maps take always the uncorrected dEdx w.r.t. // tanTheta, so that correctedDeDxExpected is needed here normally. However, the information for the correction will be lost at some point. // Therefore, dEdxExpected can be used instead and should provide a good approximation. Double_t c1FromSigmaMap = hThetaMapSigmaPar1->GetBinContent(getBinX(hThetaMapSigmaPar1, tanTheta), getBinY(hThetaMapSigmaPar1, 1./dEdxExpected)); Double_t expectedSigma = dEdxExpected * TMath::Sqrt( c0 * c0 + (c1FromSigmaMap * c1FromSigmaMap) / tpcSignalN); Double_t pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); // Fill pull histo hPull->Fill(pTPC, pull); Double_t tanThetaAbs = TMath::Abs(tanTheta); for (Int_t j = 0; j < nThetaHistos; j++) { if (tanThetaAbs >= tThetaLow[j] && tanThetaAbs < tThetaHigh[j]) { hPullTheta[j]->Fill(pTPC, pull); } } if (!hMap) continue; Double_t correctionFactor = 1.; if (isNonPP) { // 1. Correct eta dependence correctionFactor = hMap->GetBinContent(getBinX(hMap, tanTheta), getBinY(hMap, 1./dEdxExpected)); // 2. Correct for multiplicity dependence: Double_t multCorrectionFactor = 1.; if (fMultiplicity > 0) { Double_t relSlope = corrFuncMult.Eval(1. / (dEdxExpected * correctionFactor)); relSlope += corrFuncMultTanTheta.Eval(tanTheta); multCorrectionFactor = 1. + relSlope * fMultiplicity; } c1FromSigmaMap = hThetaMapSigmaPar1->GetBinContent(getBinX(hThetaMapSigmaPar1, tanTheta), getBinY(hThetaMapSigmaPar1, 1./dEdxExpected)); // Multiplicity dependence of sigma depends on the real dEdx at zero multiplicity, i.e. the eta (only) corrected dEdxExpected value has to be used // since all maps etc. have been created for ~zero multiplicity Double_t relSigmaSlope = corrFuncSigmaMult.Eval(1. / (dEdxExpected * correctionFactor)); Double_t multSigmaCorrectionFactor = 1. + relSigmaSlope * fMultiplicity; dEdxExpected *= correctionFactor * multCorrectionFactor; expectedSigma = dEdxExpected * TMath::Sqrt( c0 * c0 + (c1FromSigmaMap * c1FromSigmaMap) / tpcSignalN); expectedSigma *= multSigmaCorrectionFactor; pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); } else { correctionFactor = hMap->GetBinContent(getBinX(hMap, tanTheta), getBinY(hMap, 1./dEdxExpected)); c1FromSigmaMap = hThetaMapSigmaPar1->GetBinContent(getBinX(hThetaMapSigmaPar1, tanTheta), getBinY(hThetaMapSigmaPar1, 1./dEdxExpected)); dEdxExpected *= correctionFactor; // If data is not corrected, but the sigma map is for corrected data, re-do analysis with corrected dEdx expectedSigma = dEdxExpected * TMath::Sqrt( c0 * c0 + (c1FromSigmaMap * c1FromSigmaMap) / tpcSignalN); pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); } pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); hPullAdditionalCorr->Fill(pTPC, pull); for (Int_t j = 0; j < nThetaHistos; j++) { if (tanThetaAbs >= tThetaLow[j] && tanThetaAbs < tThetaHigh[j]) { hPullAdditionalCorrTheta[j]->Fill(pTPC, pull); } } } /* // Mean, Sigma, chi^2/NDF of pull of different theta bins and all in one plot TCanvas* canvPullMean = new TCanvas("canvPullMean", "canvPullMean", 100,10,1380,800); canvPullMean->SetLogx(kTRUE); canvPullMean->SetGridx(kTRUE); canvPullMean->SetGridy(kTRUE); TCanvas* canvPullSigma = new TCanvas("canvPullSigma", "canvPullSigma", 100,10,1380,800); canvPullSigma->SetLogx(kTRUE); canvPullSigma->SetGridx(kTRUE); canvPullSigma->SetGridy(kTRUE); TCanvas* canvPullChi2 = new TCanvas("canvPullChi2", "canvPullChi2", 100,10,1380,800); canvPullChi2->SetLogx(kTRUE); canvPullChi2->SetGridx(kTRUE); canvPullChi2->SetGridy(kTRUE); TCanvas* canvPull[nThetaHistos + 1]; for (Int_t i = 0, j = nThetaHistos; i < nThetaHistos + 1; i++, j--) { canvPull[i] = new TCanvas(Form("canvPull_%d", i), "canvPull", 100,10,1380,800); canvPull[i]->cd(); canvPull[i]->SetLogx(kTRUE); canvPull[i]->SetLogz(kTRUE); canvPull[i]->SetGrid(kTRUE, kTRUE); TH2D* hTemp = 0x0; TString thetaString = ""; if (i == nThetaHistos) { hTemp = hPull; thetaString = "tan(#Theta) integrated"; } else { hTemp = hPullTheta[i]; thetaString = Form("%.2f #leq |tan(#Theta)| < %.2f", tThetaLow[i], tThetaHigh[i]); } normaliseHisto(hTemp); hTemp->FitSlicesY(); hTemp->GetYaxis()->SetNdivisions(12); hTemp->GetXaxis()->SetMoreLogLabels(kTRUE); TH1D* hTempMean = (TH1D*)gDirectory->Get(Form("%s_1", hTemp->GetName())); hTempMean->SetTitle(Form("mean(pull), %s", thetaString.Data())); hTempMean->GetXaxis()->SetMoreLogLabels(kTRUE); hTempMean->SetLineWidth(2); hTempMean->SetMarkerStyle(20); TH1D* hTempSigma = (TH1D*)gDirectory->Get(Form("%s_2", hTemp->GetName())); hTempSigma->SetTitle(Form("#sigma(pull), %s", thetaString.Data())); hTempSigma->GetXaxis()->SetMoreLogLabels(kTRUE); hTempSigma->SetLineColor(kMagenta); hTempSigma->SetMarkerStyle(20); hTempSigma->SetMarkerColor(kMagenta); hTempSigma->SetLineWidth(2); TH1D* hTempChi2 = (TH1D*)gDirectory->Get(Form("%s_chi2", hTemp->GetName())); hTempChi2->SetTitle(Form("#chi^{2} / NDF (pull), %s", thetaString.Data())); hTempChi2->GetXaxis()->SetMoreLogLabels(kTRUE); hTempChi2->SetLineColor(kMagenta + 2); hTempChi2->SetMarkerStyle(20); hTempChi2->SetMarkerColor(kMagenta + 2); hTempChi2->SetLineWidth(2); hTemp->DrawCopy("colz"); hTempMean->DrawCopy("same"); hTempSigma->DrawCopy("same"); hTempChi2->Scale(-1./10.); hTempChi2->DrawCopy("same"); hTempChi2->Scale(-10.); canvPullMean->cd(); hTempMean->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->DrawCopy((i == 0 ? "" : "same")); canvPullSigma->cd(); hTempSigma->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->DrawCopy((i == 0 ? "" : "same")); canvPullChi2->cd(); hTempChi2->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->DrawCopy((i == 0 ? "" : "same")); } canvPullMean->BuildLegend(); canvPullSigma->BuildLegend(); canvPullChi2->BuildLegend(); */ // Histograms with additional correction TCanvas* canvPullMeanCorr = 0x0; TCanvas* canvPullSigmaCorr = 0x0; TCanvas* canvPullChi2Corr = 0x0; TCanvas* canvPullCorr[nThetaHistos + 1]; for (Int_t i = 0; i < nThetaHistos + 1; i++) canvPullCorr[i] = 0x0; if (hMap) { // Mean, Sigma, chi^2/NDF of pull of different theta bins and all in one plot canvPullMeanCorr = new TCanvas("canvPullMeanCorr", "canvPullMeanCorr", 100,10,1380,800); canvPullMeanCorr->SetLogx(kTRUE); canvPullMeanCorr->SetGridx(kTRUE); canvPullMeanCorr->SetGridy(kTRUE); canvPullSigmaCorr = new TCanvas("canvPullSigmaCorr", "canvPullSigmaCorr", 100,10,1380,800); canvPullSigmaCorr->SetLogx(kTRUE); canvPullSigmaCorr->SetGridx(kTRUE); canvPullSigmaCorr->SetGridy(kTRUE); canvPullChi2Corr = new TCanvas("canvPullChi2Corr", "canvPullChi2Corr", 100,10,1380,800); canvPullChi2Corr->SetLogx(kTRUE); canvPullChi2Corr->SetGridx(kTRUE); canvPullChi2Corr->SetGridy(kTRUE); for (Int_t i = 0, j = nThetaHistos; i < nThetaHistos + 1; i++, j--) { canvPullCorr[i] = new TCanvas(Form("canvPullCorr_%d", i), "canvPullCorr", 100,10,1380,800); canvPullCorr[i]->cd(); canvPullCorr[i]->SetLogx(kTRUE); canvPullCorr[i]->SetLogz(kTRUE); canvPullCorr[i]->SetGrid(kTRUE, kTRUE); TH2D* hTemp = 0x0; TString thetaString = ""; if (i == nThetaHistos) { hTemp = hPullAdditionalCorr; thetaString = "tan(#Theta) integrated"; } else { hTemp = hPullAdditionalCorrTheta[i]; thetaString = Form("%.2f #leq |tan(#Theta)| < %.2f", tThetaLow[i], tThetaHigh[i]); } normaliseHisto(hTemp); hTemp->FitSlicesY(); hTemp->GetYaxis()->SetNdivisions(12); hTemp->GetXaxis()->SetMoreLogLabels(kTRUE); TH1D* hTempMean = (TH1D*)gDirectory->Get(Form("%s_1", hTemp->GetName())); hTempMean->SetTitle(Form("mean(pull), %s", thetaString.Data())); hTempMean->GetXaxis()->SetMoreLogLabels(kTRUE); hTempMean->SetLineWidth(2); hTempMean->SetMarkerStyle(20); TH1D* hTempSigma = (TH1D*)gDirectory->Get(Form("%s_2", hTemp->GetName())); hTempSigma->SetTitle(Form("#sigma(pull), %s", thetaString.Data())); hTempSigma->GetXaxis()->SetMoreLogLabels(kTRUE); hTempSigma->SetLineColor(kMagenta); hTempSigma->SetMarkerStyle(20); hTempSigma->SetMarkerColor(kMagenta); hTempSigma->SetLineWidth(2); TH1D* hTempChi2 = (TH1D*)gDirectory->Get(Form("%s_chi2", hTemp->GetName())); hTempChi2->SetTitle(Form("#chi^{2} / NDF (pull), %s", thetaString.Data())); hTempChi2->GetXaxis()->SetMoreLogLabels(kTRUE); hTempChi2->SetLineColor(kMagenta + 2); hTempChi2->SetMarkerStyle(20); hTempChi2->SetMarkerColor(kMagenta + 2); hTempChi2->SetLineWidth(2); hTemp->DrawCopy("colz"); hTempMean->DrawCopy("same"); hTempSigma->DrawCopy("same"); hTempChi2->Scale(-1./10.); hTempChi2->DrawCopy("same"); hTempChi2->Scale(-10.); canvPullMeanCorr->cd(); hTempMean->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->DrawCopy((i == 0 ? "" : "same")); canvPullSigmaCorr->cd(); hTempSigma->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->DrawCopy((i == 0 ? "" : "same")); canvPullChi2Corr->cd(); hTempChi2->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->DrawCopy((i == 0 ? "" : "same")); } canvPullMeanCorr->BuildLegend(); canvPullSigmaCorr->BuildLegend(); canvPullChi2Corr->BuildLegend(); } fSave->cd(); /*canvPullMean->Write(); canvPullSigma->Write(); canvPullChi2->Write(); for (Int_t i = 0; i < nThetaHistos + 1; i++) { canvPull[i]->Write(); }*/ canvPullMeanCorr->Write(); canvPullSigmaCorr->Write(); canvPullChi2Corr->Write(); for (Int_t i = 0; i < nThetaHistos + 1; i++) { canvPullCorr[i]->Write(); } TNamed* info = new TNamed(Form("Theta map: %s\n\nSigma map: %s\n\nSplines file: %s\n\nSplines name: %s", pathNameThetaMap.Data(), pathNameSigmaMap.Data(), pathNameSplinesFile.Data(), prSplinesName.Data()), "info"); info->Write(); fSave->Close(); return 0; }
//____________________________________________________________ void AverageDmesonRaa( const char* fD0Raa="", const char* fD0ppRef="", const char* fDplusRaa="", const char* fDplusppRef="", const char* fDstarRaa="", const char* fDstarppRef="", const char* outfile="", Int_t averageOption=kRelativeStatUnc, Int_t cc=kpPb0100, Int_t ccestimator=kV0M, Bool_t isReadAllPPUnc=false, Bool_t isPPRefExtrapD0=false, Bool_t isPPRefExtrapDplus=false, Bool_t isPPRefExtrapDstar=false) { FILE *resultFile; TString foutname = "Average"; if(fD0Raa) foutname += "Dzero"; if(fDplusRaa) foutname += "Dplus"; if(fDstarRaa) foutname += "Dstar"; if(averageOption==kRelativeStatUnc) foutname+= "_RelStatUncWeight"; else if(averageOption==kAbsoluteStatUnc) foutname+= "_AbsStatUncWeight"; else if(averageOption==kRelativeStatUncorrWoPidSyst) foutname+= "_RelStatUncorrWeight"; else if(averageOption==kRelativeStatRawYieldSyst) foutname+= "_RelStatRawYieldSystWeight"; if(!useExtrapPPref) foutname+= "_NoExtrapBins"; TDatime d; TString ndate = Form("%02d%02d%04d",d.GetDay(),d.GetMonth(),d.GetYear()); resultFile = fopen( Form("%s_result_%s.txt",foutname.Data(),ndate.Data()),"w"); fprintf(resultFile,"Ptmin (GeV/c) Ptmax (GeV/c) Raa(Daverage) +-(stat) +(syst) - (syst) \n\n"); // Define here all needed histograms/graphs to be retrieved TH1D *hDmesonRaa[3]; TH1I *hCombinedReferenceFlag[3]; TGraphAsymmErrors *gDataSystematicsPP[3], *gDataSystematicsAB[3]; TGraphAsymmErrors *gScalingUncPP[3]; TGraphAsymmErrors *gRABFeedDownSystematicsElossHypothesis[3]; TGraphAsymmErrors *gRAB_GlobalSystematics[3]; TH1D *hDmesonPPRef[3], *hDmesonPPYieldExtrUnc[3], *hDmesonPPCutVarUnc[3], *hDmesonPPIDPUnc[3], *hDmesonPPMCPtUnc[3]; // Define here all output histograms/graphs TH1D *hDmesonAverageRAB = new TH1D("hDmesonAverageRAB","D meson average Raa ; p_{T} (GeV/c)",nbins,ptbinlimits); TGraphAsymmErrors *gRABNorm; TGraphAsymmErrors *gRAB_DmesonAverage_GlobalSystematics = new TGraphAsymmErrors(0); TGraphAsymmErrors *gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis = new TGraphAsymmErrors(0); TGraphAsymmErrors *gRAB_DmesonAverage_ScalingSystematicsPP = new TGraphAsymmErrors(0); TGraphAsymmErrors *gRAB_DmesonAverage_DataSystematicsPP = new TGraphAsymmErrors(0); TGraphAsymmErrors *gRAB_DmesonAverage_DataSystematicsAB = new TGraphAsymmErrors(0); TGraphAsymmErrors *gRAB_DmesonAverage_TrackingSystematicsPP = new TGraphAsymmErrors(0); TGraphAsymmErrors *gRAB_DmesonAverage_TrackingSystematicsAB = new TGraphAsymmErrors(0); gRAB_DmesonAverage_GlobalSystematics->SetNameTitle("gRAB_DmesonAverage_GlobalSystematics","DmesonAverage GlobalSystematics"); gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->SetNameTitle("gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis","DmesonAverage FeedDownSystematicsElossHypothesis"); gRAB_DmesonAverage_ScalingSystematicsPP->SetNameTitle("gRAB_DmesonAverage_ScalingSystematicsPP","DmesonAverage Scaling uncertainty PP"); gRAB_DmesonAverage_DataSystematicsPP->SetNameTitle("gRAB_DmesonAverage_DataSystematicsPP","DmesonRaaAverage DataSystematicsPP - tracking uncertainty PP"); gRAB_DmesonAverage_DataSystematicsAB->SetNameTitle("gRAB_DmesonAverage_DataSystematicsAB","DmesonRaaAverage DataSystematicsAB - tracking uncertainty AB"); gRAB_DmesonAverage_TrackingSystematicsPP->SetNameTitle("gRAB_DmesonAverage_TrackingSystematicsPP","DmesonRaaAverage tracking uncertainty PP"); gRAB_DmesonAverage_TrackingSystematicsAB->SetNameTitle("gRAB_DmesonAverage_TrackingSystematicsAB","DmesonRaaAverage tracking uncertainty AB"); const char *filenamesRaa[3] = { fD0Raa, fDplusRaa, fDstarRaa }; const char *filenamesReference[3] = { fD0ppRef, fDplusppRef, fDstarppRef }; const char *filenamesSuffixes[3] = { "Dzero", "Dplus", "Dstar" }; Bool_t isDmeson[3] = { true, true, true }; if(strcmp(filenamesRaa[0],"")==0) { cout<<" Dzero not set, error"<<endl; return; } // // Get Raa file histos and graphs // AliHFSystErr *ppSyst[3]; AliHFSystErr *ABSyst[3]; Double_t ppTracking[3][nbins], ppSystRawYield[3][nbins], ppSystCutVar[3][nbins], ppSystPid[3][nbins]; Double_t ABTracking[3][nbins], ABSystRawYield[3][nbins], ABSystCutVar[3][nbins], ABSystPid[3][nbins]; for(Int_t j=0; j<3; j++) { if(strcmp(filenamesRaa[j],"")==0) { isDmeson[j]=false; continue; } cout<<" Reading file "<<filenamesRaa[j]<<"..."<<endl; TFile *fDRaa = TFile::Open(filenamesRaa[j],"read"); if(!fDRaa){ cout<<" Error on file !!!!!"<<filenamesRaa[j]<<endl; return; } hDmesonRaa[j] = (TH1D*)fDRaa->Get("hRABvsPt"); hDmesonRaa[j]->SetName(Form("%s_%s",hDmesonRaa[j]->GetName(),filenamesSuffixes[j])); // cout<< hDmesonRaa[j]<< " bins="<< hDmesonRaa[j]->GetNbinsX()<<", value bin 1 ="<<hDmesonRaa[j]->GetBinContent(1)<<endl; if(j==0) gRABNorm = (TGraphAsymmErrors*)fDRaa->Get("gRAB_Norm"); // gDataSystematicsPP[j] = (TGraphAsymmErrors*)fDRaa->Get("gRAB_DataSystematicsPP"); gDataSystematicsPP[j]->SetName(Form("%s_%s",gDataSystematicsPP[j]->GetName(),filenamesSuffixes[j])); gDataSystematicsAB[j] = (TGraphAsymmErrors*)fDRaa->Get("gRAB_DataSystematicsAB"); gDataSystematicsAB[j]->SetName(Form("%s_%s",gDataSystematicsAB[j]->GetName(),filenamesSuffixes[j])); gRABFeedDownSystematicsElossHypothesis[j] = (TGraphAsymmErrors*)fDRaa->Get("gRAB_FeedDownSystematicsElossHypothesis"); gRABFeedDownSystematicsElossHypothesis[j]->SetName(Form("%s_%s",gRABFeedDownSystematicsElossHypothesis[j]->GetName(),filenamesSuffixes[j])); gRAB_GlobalSystematics[j] = (TGraphAsymmErrors*)fDRaa->Get("gRAB_GlobalSystematics"); gRAB_GlobalSystematics[j]->SetName(Form("%s_%s",gRAB_GlobalSystematics[j]->GetName(),filenamesSuffixes[j])); Bool_t shouldDelete=kFALSE; if(fDRaa->Get("AliHFSystErrPP")){ ppSyst[j]=(AliHFSystErr*)fDRaa->Get("AliHFSystErrPP"); printf("AliHFSystErr object for meson %d in pp (%s) read from HFPtSpectrumRaa output file\n",j,ppSyst[j]->GetTitle()); }else{ printf("Create instance of AliHFSystErr for meson %d in pp \n",j); ppSyst[j] = new AliHFSystErr(Form("ppSyst_%d",j),Form("ppSyst_%d",j)); ppSyst[j]->SetIsPass4Analysis(kTRUE); ppSyst[j]->Init(j+1); shouldDelete=kTRUE; } for(Int_t ipt=0; ipt<nbins; ipt++) { Double_t ptval = ptbinlimits[ipt] + (ptbinlimits[ipt+1]-ptbinlimits[ipt])/2.; ppTracking[j][ipt]=0.; ppSystRawYield[j][ipt]=0; ppSystCutVar[j][ipt]=0; ppSystPid[j][ipt]=0.; ppTracking[j][ipt] =ppSyst[j]->GetTrackingEffErr(ptval); ppSystRawYield[j][ipt]=ppSyst[j]->GetRawYieldErr(ptval); ppSystCutVar[j][ipt] =ppSyst[j]->GetCutsEffErr(ptval); ppSystPid[j][ipt] =ppSyst[j]->GetPIDEffErr(ptval); } if(shouldDelete) delete ppSyst[j]; shouldDelete=kFALSE; if(fDRaa->Get("AliHFSystErrAA")){ ABSyst[j]=(AliHFSystErr*)fDRaa->Get("AliHFSystErrAA"); printf("AliHFSystErr object for meson %d in AA (%s) read from HFPtSpectrumRaa output file\n",j,ppSyst[j]->GetTitle()); }else{ printf("Create instance of AliHFSystErr for meson %d in AA \n",j); ABSyst[j] = new AliHFSystErr(Form("ABSyst_%d",j),Form("ABSyst_%d",j)); ABSyst[j]->SetCollisionType(1); // PbPb by default if ( cc == k010 ) ABSyst[j]->SetCentrality("010"); else if ( cc == k1020 ) ABSyst[j]->SetCentrality("1020"); else if ( cc == k2040 || cc == k2030 || cc == k3040 ) { ABSyst[j]->SetCentrality("2040"); ABSyst[j]->SetIsPbPb2010EnergyScan(true); } else if ( cc == k3050 ) ABSyst[j]->SetCentrality("3050"); else if ( cc == k4060 || cc == k4050 || cc == k5060 ) ABSyst[j]->SetCentrality("4060"); else if ( cc == k6080 || cc == k5080 ) ABSyst[j]->SetCentrality("6080"); else if ( cc == k4080 ) ABSyst[j]->SetCentrality("4080"); // Going to pPb systematics else if ( cc == kpPb0100 || cc == kpPb020 || cc == kpPb2040 || cc == kpPb4060 || cc == kpPb60100 ) { ABSyst[j]->SetCollisionType(2); ABSyst[j]->SetRunNumber(16); if(ccestimator==kV0A) { if(cc == kpPb020) ABSyst[j]->SetCentrality("020V0A"); else if(cc == kpPb2040) ABSyst[j]->SetCentrality("2040V0A"); else if(cc == kpPb4060) ABSyst[j]->SetCentrality("4060V0A"); else if(cc == kpPb60100) ABSyst[j]->SetCentrality("60100V0A"); } else if (ccestimator==kZNA) { if(cc == kpPb020) ABSyst[j]->SetCentrality("020ZNA"); else if(cc == kpPb2040) ABSyst[j]->SetCentrality("2040ZNA"); else if(cc == kpPb4060) ABSyst[j]->SetCentrality("4060ZNA"); else if(cc == kpPb60100) ABSyst[j]->SetCentrality("60100ZNA"); } else if (ccestimator==kCL1) { if(cc == kpPb020) ABSyst[j]->SetCentrality("020CL1"); else if(cc == kpPb2040) ABSyst[j]->SetCentrality("2040CL1"); else if(cc == kpPb4060) ABSyst[j]->SetCentrality("4060CL1"); else if(cc == kpPb60100) ABSyst[j]->SetCentrality("60100CL1"); } else { if(!(cc == kpPb0100)) { cout <<" Error on the pPb options"<<endl; return; } } } ABSyst[j]->Init(j+1); shouldDelete=kTRUE; } for(Int_t ipt=0; ipt<nbins; ipt++) { Double_t ptval = ptbinlimits[ipt] + (ptbinlimits[ipt+1]-ptbinlimits[ipt])/2.; ABTracking[j][ipt]=0.; ABSystRawYield[j][ipt]=0; ABSystCutVar[j][ipt]=0; ABSystPid[j][ipt]=0.; ABTracking[j][ipt] =ABSyst[j]->GetTrackingEffErr(ptval); ABSystRawYield[j][ipt]=ABSyst[j]->GetRawYieldErr(ptval); ABSystCutVar[j][ipt] =ABSyst[j]->GetCutsEffErr(ptval); ABSystPid[j][ipt] =ABSyst[j]->GetPIDEffErr(ptval); } if(shouldDelete) delete ABSyst[j]; } // // Get pp-reference file histos and graphs // const char *pprefhgnames[6] = { "fhScaledData","gScaledDataSystExtrap", "fhScaledSystRebinYieldExtraction","fhScaledSystRebinCutVariation","fhScaledSystRebinPIDUnc","fhScaledSystRebinMCPt"}; Bool_t isPPRefExtrap[3] = { isPPRefExtrapD0, isPPRefExtrapDplus, isPPRefExtrapDstar }; for(Int_t j=0; j<3; j++) { if(strcmp(filenamesReference[j],"")==0) { isDmeson[j]=false; continue; } cout<<" Reading file "<<filenamesReference[j]<<"..."<<endl; TFile *fRef = TFile::Open(filenamesReference[j],"read"); gScalingUncPP[j] = (TGraphAsymmErrors*)fRef->Get(pprefhgnames[1]); gScalingUncPP[j]->SetName(Form("%s_%s",gScalingUncPP[j]->GetName(),filenamesSuffixes[j])); if(isPPRefExtrap[j]) { hCombinedReferenceFlag[j] = (TH1I*)fRef->Get("hCombinedReferenceFlag"); hCombinedReferenceFlag[j]->SetName(Form("%s_%s",hCombinedReferenceFlag[j]->GetName(),filenamesSuffixes[j])); } if(isReadAllPPUnc){ const char*hname="fhScaledData"; if(isPPRefExtrap[j]) hname="hReference"; hDmesonPPRef[j] = (TH1D*)fRef->Get(hname); hDmesonPPRef[j]->SetName(Form("%s_%s",hDmesonPPRef[j]->GetName(),filenamesSuffixes[j])); hDmesonPPYieldExtrUnc[j] = (TH1D*)fRef->Get(pprefhgnames[2]); hDmesonPPYieldExtrUnc[j]->SetName(Form("%s_%s",hDmesonPPYieldExtrUnc[j]->GetName(),filenamesSuffixes[j])); hDmesonPPCutVarUnc[j] = (TH1D*)fRef->Get(pprefhgnames[3]); hDmesonPPCutVarUnc[j]->SetName(Form("%s_%s",hDmesonPPCutVarUnc[j]->GetName(),filenamesSuffixes[j])); hDmesonPPIDPUnc[j] = (TH1D*)fRef->Get(pprefhgnames[4]); hDmesonPPIDPUnc[j]->SetName(Form("%s_%s",hDmesonPPIDPUnc[j]->GetName(),filenamesSuffixes[j])); hDmesonPPMCPtUnc[j] = (TH1D*)fRef->Get(pprefhgnames[5]); hDmesonPPMCPtUnc[j]->SetName(Form("%s_%s",hDmesonPPMCPtUnc[j]->GetName(),filenamesSuffixes[j])); } } // // Loop per pt bin // for(Int_t ipt=0; ipt<nbins; ipt++) { cout<<" Calculation for pt bin ("<<ptbinlimits[ipt]<<","<<ptbinlimits[ipt+1]<<")"<<endl; Double_t ptval = ptbinlimits[ipt] + (ptbinlimits[ipt+1]-ptbinlimits[ipt])/2.; Double_t RaaDmeson[3]={0.,0.,0.}; Double_t RaaDmesonStat[3]={0.,0.,0.}; Double_t RaaDmesonSystLow[3]={0.,0.,0.}; Double_t RaaDmesonSystHigh[3]={0.,0.,0.}; Double_t weight[3]={0.,0.,0.}; Double_t ppSystLow[3]={0.,0.,0.}; Double_t ppSystHigh[3]={0.,0.,0.}; Double_t ppSystUncorrLow[3]={0.,0.,0.}; Double_t ppSystUncorrHigh[3]={0.,0.,0.}; // Double_t ppTracking[3]={0.,0.,0.}; Double_t ScalingLow[3]={0.,0.,0.}; Double_t ScalingHigh[3]={0.,0.,0.}; Double_t ppSystRawYieldOnly[3]={0.,0.,0.}; Double_t ppSystRawYieldCutVar[3]={0.,0.,0.}; Double_t ppSystRawYieldCutVarPid[3]={0.,0.,0.}; Double_t ABSystLow[3]={0.,0.,0.}; Double_t ABSystHigh[3]={0.,0.,0.}; Double_t ABSystUncorrLow[3]={0.,0.,0.}; Double_t ABSystUncorrHigh[3]={0.,0.,0.}; Double_t ABSystRawYieldOnly[3]={0.,0.,0.}; Double_t ABSystRawYieldCutVar[3]={0.,0.,0.}; Double_t ABSystRawYieldCutVarPid[3]={0.,0.,0.}; // Double_t ABTracking[3]={0.,0.,0.}; Double_t RabFdElossLow[3]={0.,0.,0.}; Double_t RabFdElossHigh[3]={0.,0.,0.}; Double_t RabGlobalLow[3]={0.,0.,0.}; Double_t RabGlobalHigh[3]={0.,0.,0.}; Double_t average=0., averageStat=0.; Double_t weightTot=0.; Double_t ppTrackingAv=0., ABTrackingAv=0.; Double_t ppDataSystAvLow=0., ppDataSystAvHigh=0.; Double_t ABDataSystAvLow=0., ABDataSystAvHigh=0.; Double_t scalingLowAv=0., scalingHighAv=0.; Double_t raaSystUncorrLow=0., raaSystUncorrHigh=0.; Double_t raabeautyLow=0., raabeautyHigh=0.; Int_t histoBin=-1; // Get tracking uncertainties and raw yield and cut-variation and pid-systematics if(isDebug) cout<<" Retrieving tracking + rawyield systematics"<<endl; for(Int_t j=0; j<3; j++) { if(!isDmeson[j]) continue; ppSystRawYieldOnly[j] = ppSystRawYield[j][ipt]; ppSystRawYieldCutVar[j] = TMath::Sqrt( ppSystRawYield[j][ipt]*ppSystRawYield[j][ipt] + ppSystCutVar[j][ipt]*ppSystCutVar[j][ipt] ); ppSystRawYieldCutVarPid[j] = TMath::Sqrt( ppSystRawYield[j][ipt]*ppSystRawYield[j][ipt] + ppSystCutVar[j][ipt]*ppSystCutVar[j][ipt] + ppSystPid[j][ipt]*ppSystPid[j][ipt] ); ABSystRawYieldOnly[j] = ABSystRawYield[j][ipt]; ABSystRawYieldCutVar[j] = TMath::Sqrt( ABSystRawYield[j][ipt]*ABSystRawYield[j][ipt] + ABSystCutVar[j][ipt]*ABSystCutVar[j][ipt] ); ABSystRawYieldCutVarPid[j] = TMath::Sqrt( ABSystRawYield[j][ipt]*ABSystRawYield[j][ipt] + ABSystCutVar[j][ipt]*ABSystCutVar[j][ipt] + ABSystPid[j][ipt]*ABSystPid[j][ipt] ); if(isDebug) cout<<" j="<<j<<" pt="<< ptval<<" ppref unc RY+CV="<<ppSystRawYieldCutVar[j]<<" RY+CV+PID="<<ppSystRawYieldCutVarPid[j]<<endl; if(isDebug) cout<<" j="<<j<<" pt="<< ptval<<" AB unc RY+CV="<<ABSystRawYieldCutVar[j]<<" RY+CV+PID="<<ABSystRawYieldCutVarPid[j]<<endl; } if(isReadAllPPUnc){ if(isDebug) cout<<" Retrieving all pp reference systematics from the rebinned file"<<endl; for(Int_t j=0; j<3; j++) { if(!isDmeson[j]) continue; Int_t ibin = hDmesonPPRef[j]->FindBin(ptval); Double_t ppval = hDmesonPPRef[j]->GetBinContent(ibin); Double_t rawyield = hDmesonPPYieldExtrUnc[j]->GetBinContent( hDmesonPPYieldExtrUnc[j]->FindBin(ptval) )/ppval; Double_t cutvar = hDmesonPPCutVarUnc[j]->GetBinContent( hDmesonPPCutVarUnc[j]->FindBin(ptval) )/ppval; Double_t pid = hDmesonPPIDPUnc[j]->GetBinContent( hDmesonPPIDPUnc[j]->FindBin(ptval) )/ppval; ppSystRawYieldCutVar[j] = TMath::Sqrt( rawyield*rawyield + cutvar*cutvar ); ppSystRawYieldCutVarPid[j] = TMath::Sqrt( rawyield*rawyield + cutvar*cutvar + pid*pid ); if(isDebug) cout<<"redo j="<<j<<" pt="<< ptval<<" ppref unc RY+CV="<<ppSystRawYieldCutVar[j]<<" RY+CV+PID="<<ppSystRawYieldCutVarPid[j]<<endl; } } // Check for the pp reference systematics for extrapolated pt bins for(Int_t j=0; j<3; j++) { if(isPPRefExtrap[j]){ // if(ptval>ptmaxPPRefData[j]) { Int_t ippbin = hCombinedReferenceFlag[j]->FindBin(ptval); Bool_t flag = hCombinedReferenceFlag[j]->GetBinContent(ippbin); if(!flag) continue; // cout<<" pp ref flag="<<flag<<" >>> "; // Get pp reference relative systematics Double_t ppSystTotLow=0., ppSystTotHigh=0.; FindGraphRelativeUnc(gDataSystematicsPP[j],ptval,ppSystTotLow,ppSystTotHigh); ppSystRawYieldCutVar[j] = ppSystTotLow > ppSystTotHigh ? ppSystTotLow : ppSystTotHigh ; ppSystRawYieldCutVarPid[j] = ppSystRawYieldCutVar[j]; ppSystRawYieldOnly[j] = ppSystRawYieldCutVar[j]; } } // // Loop per meson to get the Raa values and uncertainties for the given pt bin // if(isDebug) cout<<" Retrieving all Raa values and uncertainties"<<endl; for(Int_t j=0; j<3; j++) { // Get value, stat unc and weight if(!isDmeson[j]) continue; if(!hDmesonRaa[j]) continue; histoBin = hDmesonRaa[j]->FindBin(ptval); RaaDmeson[j] = hDmesonRaa[j]->GetBinContent( histoBin ); if (RaaDmeson[j]<=0) continue; RaaDmesonStat[j] = hDmesonRaa[j]->GetBinError( histoBin ); // Get global systematics FindGraphRelativeUnc(gRAB_GlobalSystematics[j],ptval,RaaDmesonSystLow[j],RaaDmesonSystHigh[j]); // Evaluate the weight weight[j] = GetWeight(averageOption,ptval,hDmesonRaa[j], RaaDmesonSystLow[j],RaaDmesonSystHigh[j], ppSystRawYieldOnly[j],ppSystRawYieldCutVar[j],ppSystRawYieldCutVarPid[j], ABSystRawYieldOnly[j],ABSystRawYieldCutVar[j],ABSystRawYieldCutVarPid[j]); cout<<" raa "<<filenamesSuffixes[j]<<" meson = "<<RaaDmeson[j]<<" +-"<<RaaDmesonStat[j]<<"(stat) -> (weight="<<weight[j]<<") ,"; // Get pp reference relative systematics FindGraphRelativeUnc(gDataSystematicsPP[j],ptval,ppSystLow[j],ppSystHigh[j]); // Get pp-extrapolation relative uncertainty FindGraphRelativeUnc(gScalingUncPP[j],ptval,ScalingHigh[j],ScalingLow[j]); // exchanging low-high bc has oposite influence on Raa if(isPPRefExtrap[j]){ Int_t ippbin = hCombinedReferenceFlag[j]->FindBin(ptval); Bool_t flag = hCombinedReferenceFlag[j]->GetBinContent(ippbin); if(isDebug) cout<< " bin="<<j<<" pp ref flag on? "<<flag; if(flag){ ScalingHigh[j]=0.; ScalingLow[j]=0.; ppTracking[j][ipt]=0.; } if(flag && !useExtrapPPref){ weight[j] =0; cout<<"weight set to 0"; } } // Get pp reference systematics minus tracking systematics minus extrapolation uncertainties ppSystUncorrLow[j] = TMath::Sqrt( ppSystLow[j]*ppSystLow[j] - ScalingLow[j]*ScalingLow[j] - ppTracking[j][ipt]*ppTracking[j][ipt] ); ppSystUncorrHigh[j] = TMath::Sqrt( ppSystHigh[j]*ppSystHigh[j] - ScalingHigh[j]*ScalingHigh[j] - ppTracking[j][ipt]*ppTracking[j][ipt] ); // Get AB relative systematics FindGraphRelativeUnc(gDataSystematicsAB[j],ptval,ABSystLow[j],ABSystHigh[j]); // Get AB relative systematics minus tracking systematics ABSystUncorrLow[j] = TMath::Sqrt( ABSystLow[j]*ABSystLow[j] - ABTracking[j][ipt]*ABTracking[j][ipt] ); ABSystUncorrHigh[j] = TMath::Sqrt( ABSystHigh[j]*ABSystHigh[j] - ABTracking[j][ipt]*ABTracking[j][ipt] ); // Get Feed-Down and Eloss relative uncertainties on the Raa FindGraphRelativeUnc(gRABFeedDownSystematicsElossHypothesis[j],ptval,RabFdElossLow[j],RabFdElossHigh[j]); // // Check with global Raa uncertainties FindGraphRelativeUnc(gRAB_GlobalSystematics[j],ptval,RabGlobalLow[j],RabGlobalHigh[j]); Double_t testLow = TMath::Sqrt( RabFdElossLow[j]*RabFdElossLow[j] + ABSystLow[j]*ABSystLow[j] + ppSystLow[j]*ppSystLow[j] + ScalingLow[j]*ScalingLow[j] ); Double_t testHigh = TMath::Sqrt( RabFdElossHigh[j]*RabFdElossHigh[j] + ABSystHigh[j]*ABSystHigh[j] + ppSystHigh[j]*ppSystHigh[j] + ScalingHigh[j]*ScalingHigh[j] ); if (TMath::Abs( testLow - RabGlobalLow[j] ) > 0.015) { cout << endl<<" >>>> Error on the global Raa uncertainties low : test-sum = "<< testLow<<", global = "<< RabGlobalLow[j]<<" ppref="<<ppSystLow[j]<<endl; } if (TMath::Abs( testHigh - RabGlobalHigh[j] ) > 0.015) { cout << endl<<" >>>> Error on the global Raa uncertainties high : test-sum = "<< testHigh<<", global = "<< RabGlobalHigh[j]<<" ppref="<<ppSystHigh[j]<<endl<<endl; } // histoBin = -1; cout<<endl; } cout<<endl; // // Evaluate Dmeson average // if(isDebug) cout<<" Evaluating the average"<<endl; for(Int_t j=0; j<3; j++){ if(!isDmeson[j]) continue; if( !(RaaDmeson[j]>0.) ) continue; weightTot += weight[j]; // weighted average average += RaaDmeson[j]*weight[j]; // stat absolute uncertainty (uncorrelated) : sum in quadrature averageStat += (RaaDmesonStat[j]*weight[j])*(RaaDmesonStat[j]*weight[j]); // pp tracking relative uncertainty (correlated) : linear sum ppTrackingAv += ppTracking[j][ipt]*RaaDmeson[j]*weight[j]; // AB tracking relative uncertainty (correlated) : linear sum ABTrackingAv += ABTracking[j][ipt]*RaaDmeson[j]*weight[j]; // pp scaling relative uncertainty (correlated) : linear sum scalingLowAv += ScalingLow[j]*RaaDmeson[j]*weight[j]; scalingHighAv += ScalingHigh[j]*RaaDmeson[j]*weight[j]; // Get pp and AB relative uncorrelated systematics : sum in quadrature raaSystUncorrLow += (ppSystUncorrLow[j]*RaaDmeson[j]*weight[j])*(ppSystUncorrLow[j]*RaaDmeson[j]*weight[j]) + (ABSystUncorrLow[j]*RaaDmeson[j]*weight[j])*(ABSystUncorrLow[j]*RaaDmeson[j]*weight[j]); raaSystUncorrHigh += (ppSystUncorrHigh[j]*RaaDmeson[j]*weight[j])*(ppSystUncorrHigh[j]*RaaDmeson[j]*weight[j]) + (ABSystUncorrHigh[j]*RaaDmeson[j]*weight[j])*(ABSystUncorrHigh[j]*RaaDmeson[j]*weight[j]); ppDataSystAvLow += (ppSystUncorrLow[j]*RaaDmeson[j]*weight[j])*(ppSystUncorrLow[j]*RaaDmeson[j]*weight[j]); ABDataSystAvLow += (ABSystUncorrLow[j]*RaaDmeson[j]*weight[j])*(ABSystUncorrLow[j]*RaaDmeson[j]*weight[j]); ppDataSystAvHigh += (ppSystUncorrHigh[j]*RaaDmeson[j]*weight[j])*(ppSystUncorrHigh[j]*RaaDmeson[j]*weight[j]); ABDataSystAvHigh += (ABSystUncorrHigh[j]*RaaDmeson[j]*weight[j])*(ABSystUncorrHigh[j]*RaaDmeson[j]*weight[j]); // Beauty uncertainties: evaluate Raa average for the upper / lower bands raabeautyLow += (1-RabFdElossLow[j])*RaaDmeson[j]*weight[j]; raabeautyHigh += (1+RabFdElossHigh[j])*RaaDmeson[j]*weight[j]; } average /= weightTot; averageStat = TMath::Sqrt(averageStat)/weightTot; ppTrackingAv /= weightTot; ABTrackingAv /= weightTot; scalingLowAv /= weightTot; scalingHighAv /= weightTot; raaSystUncorrLow = TMath::Sqrt(raaSystUncorrLow)/weightTot; raaSystUncorrHigh = TMath::Sqrt(raaSystUncorrHigh)/weightTot; ppDataSystAvLow = TMath::Sqrt(ppDataSystAvLow)/weightTot; ppDataSystAvHigh = TMath::Sqrt(ppDataSystAvHigh)/weightTot; ABDataSystAvLow = TMath::Sqrt(ABDataSystAvLow)/weightTot; ABDataSystAvHigh = TMath::Sqrt(ABDataSystAvHigh)/weightTot; // finalization beauty uncertainties raabeautyLow /= weightTot; raabeautyHigh /= weightTot; Double_t RaaBeauty[3] = { average, raabeautyLow, raabeautyHigh }; Double_t beautyUncLow = average-TMath::MinElement(3,RaaBeauty); Double_t beautyUncHigh = TMath::MaxElement(3,RaaBeauty)-average; // finalization global uncertainties Double_t totalUncLow = TMath::Sqrt( raaSystUncorrLow*raaSystUncorrLow + ppTrackingAv*ppTrackingAv + ABTrackingAv*ABTrackingAv + scalingLowAv*scalingLowAv + beautyUncLow*beautyUncLow ); Double_t totalUncHigh = TMath::Sqrt( raaSystUncorrHigh*raaSystUncorrHigh + ppTrackingAv*ppTrackingAv + ABTrackingAv*ABTrackingAv + scalingHighAv*scalingHighAv + beautyUncHigh*beautyUncHigh ); if(isDebug) cout<<" Raa="<<average<<" +-"<<averageStat<<"(stat) +"<<ppDataSystAvHigh<<" -"<<ppDataSystAvLow<<" (pp-data) +-"<<ppTrackingAv<<" (pp-track) +"<<ABDataSystAvHigh<<" -"<<ABDataSystAvLow<<" (ab-data) +-"<<ABTrackingAv<<" (ab-track) +"<<scalingHighAv<<" -"<<scalingLowAv<<" (scal) +"<<beautyUncHigh<<" -"<<beautyUncLow<<" (fd)"<<endl; // // Fill output histos/graphs // histoBin = hDmesonAverageRAB->FindBin(ptval); hDmesonAverageRAB->SetBinContent(histoBin,average); hDmesonAverageRAB->SetBinError(histoBin,averageStat); Double_t ept = hDmesonAverageRAB->GetBinWidth(histoBin)/2.; ept=0.3; gRAB_DmesonAverage_GlobalSystematics->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_GlobalSystematics->SetPointError(ipt,ept,ept,totalUncLow,totalUncHigh); ept=0.2; gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->SetPointError(ipt,ept,ept,beautyUncLow,beautyUncHigh); // ept=0.1; gRAB_DmesonAverage_TrackingSystematicsPP->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_TrackingSystematicsPP->SetPointError(ipt,ept,ept,ppTrackingAv,ppTrackingAv); gRAB_DmesonAverage_TrackingSystematicsAB->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_TrackingSystematicsAB->SetPointError(ipt,ept,ept,ABTrackingAv,ABTrackingAv); gRAB_DmesonAverage_ScalingSystematicsPP->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_ScalingSystematicsPP->SetPointError(ipt,ept,ept,scalingLowAv,scalingHighAv); gRAB_DmesonAverage_DataSystematicsPP->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_DataSystematicsPP->SetPointError(ipt,ept,ept,ppDataSystAvLow,ppDataSystAvHigh); gRAB_DmesonAverage_DataSystematicsAB->SetPoint(ipt,ptval,average); gRAB_DmesonAverage_DataSystematicsAB->SetPointError(ipt,ept,ept,ABDataSystAvLow,ABDataSystAvHigh); histoBin = -1; // // Printout cout<< " pt min (GeV/c), pt max (GeV/c), Raa(Daverage), +- (stat), + (syst) , - (syst) "<<endl; cout<< ptbinlimits[ipt] <<" "<< ptbinlimits[ipt+1]<< " "<< average<< " "<< averageStat<< " "<< totalUncHigh<<" "<<totalUncLow<<endl; fprintf(resultFile,"%02.0f %02.0f %5.3f %5.3f %5.3f %5.3f\n",ptbinlimits[ipt],ptbinlimits[ipt+1],average,averageStat,totalUncHigh,totalUncLow); } // end loop on pt bins fclose(resultFile); // // Now can start drawing // TH2F* hempty=new TH2F("hempty"," ; p_{T} (GeV/c} ; Nucl. modif. fact.",100,0.,ptbinlimits[nbins],100,0.,2.); hempty->SetStats(0); TCanvas *cAvCheck = new TCanvas("cAvCheck","Average Dmeson check"); hempty->Draw(); hDmesonAverageRAB->SetLineColor(kBlack); hDmesonAverageRAB->SetMarkerStyle(20); hDmesonAverageRAB->SetMarkerColor(kBlack); hDmesonAverageRAB->Draw("esame"); for(Int_t j=0; j<3; j++) { if(!isDmeson[j]) continue; hDmesonRaa[j]->SetLineColor(kBlack); hDmesonRaa[j]->SetMarkerColor(2+j); hDmesonRaa[j]->SetMarkerStyle(21+j); gRAB_GlobalSystematics[j]->SetFillStyle(0); gRAB_GlobalSystematics[j]->SetLineColor(2+j); gRAB_GlobalSystematics[j]->Draw("2"); hDmesonRaa[j]->Draw("esame"); } gRAB_DmesonAverage_GlobalSystematics->SetFillStyle(0); gRAB_DmesonAverage_GlobalSystematics->SetLineColor(kBlack); gRAB_DmesonAverage_GlobalSystematics->Draw("2"); hDmesonAverageRAB->Draw("esame"); cAvCheck->Update(); cAvCheck->SaveAs(Form("%s_result_%s.gif",foutname.Data(),ndate.Data())); TCanvas *cAv = new TCanvas("cAv","Average Dmeson"); hDmesonAverageRAB->Draw("e"); gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->SetFillStyle(1001); gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->SetFillColor(kMagenta-7); gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->Draw("2"); gRAB_DmesonAverage_GlobalSystematics->Draw("2"); hDmesonAverageRAB->Draw("esame"); cAv->Update(); // // Now can start saving the output // TFile *fout = new TFile(Form("HFPtSpectrumRaa_%s_%s.root",foutname.Data(),ndate.Data()),"recreate"); hDmesonAverageRAB->Write(); gRABNorm->Write(); gRAB_DmesonAverage_GlobalSystematics->Write(); gRAB_DmesonAverage_FeedDownSystematicsElossHypothesis->Write(); gRAB_DmesonAverage_TrackingSystematicsPP->Write(); gRAB_DmesonAverage_TrackingSystematicsAB->Write(); gRAB_DmesonAverage_ScalingSystematicsPP->Write(); gRAB_DmesonAverage_DataSystematicsPP->Write(); gRAB_DmesonAverage_DataSystematicsAB->Write(); fout->Write(); }