示例#1
0
void VehicleDemo::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // Create scene subsystem components
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<PhysicsWorld>();
    
    // Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
    // so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
    cameraNode_ = new Node(context_);
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(500.0f);
    GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));
    
    // Create static scene content. First create a zone for ambient lighting and fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
    zone->SetFogStart(300.0f);
    zone->SetFogEnd(500.0f);
    zone->SetBoundingBox(BoundingBox(-2000.0f, 2000.0f));
    
    // Create a directional light with cascaded shadow mapping
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    light->SetSpecularIntensity(0.5f);
    
    // Create heightmap terrain with collision
    Node* terrainNode = scene_->CreateChild("Terrain");
    terrainNode->SetPosition(Vector3::ZERO);
    Terrain* terrain = terrainNode->CreateComponent<Terrain>();
    terrain->SetPatchSize(64);
    terrain->SetSpacing(Vector3(2.0f, 0.1f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
    terrain->SetSmoothing(true);
    terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
    terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
    // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
    // terrain patches and other objects behind it
    terrain->SetOccluder(true);
    
    RigidBody* body = terrainNode->CreateComponent<RigidBody>();
    body->SetCollisionLayer(2); // Use layer bitmask 2 for static geometry
    CollisionShape* shape = terrainNode->CreateComponent<CollisionShape>();
    shape->SetTerrain();
    
    // Create 1000 mushrooms in the terrain. Always face outward along the terrain normal
    const unsigned NUM_MUSHROOMS = 1000;
    for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
    {
        Node* objectNode = scene_->CreateChild("Mushroom");
        Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
        position.y_ = terrain->GetHeight(position) - 0.1f;
        objectNode->SetPosition(position);
        // Create a rotation quaternion from up vector to terrain normal
        objectNode->SetRotation(Quaternion(Vector3::UP, terrain->GetNormal(position)));
        objectNode->SetScale(3.0f);
        StaticModel* object = objectNode->CreateComponent<StaticModel>();
        object->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
        object->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
        object->SetCastShadows(true);
        
        RigidBody* body = objectNode->CreateComponent<RigidBody>();
        body->SetCollisionLayer(2);
        CollisionShape* shape = objectNode->CreateComponent<CollisionShape>();
        shape->SetTriangleMesh(object->GetModel(), 0);
    }
}
示例#2
0
void Water::CreateScene()
{
    ResourceCache* cache = GetContext()->m_ResourceCache.get();

    scene_ = new Scene(GetContext());

    // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
    scene_->CreateComponent<Octree>();

    // Create a Zone component for ambient lighting & fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
    zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(1.0f, 1.0f, 1.0f));
    zone->SetFogStart(500.0f);
    zone->SetFogEnd(750.0f);

    // Create a directional light to the world. Enable cascaded shadows on it
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    light->SetSpecularIntensity(0.5f);
    // Apply slightly overbright lighting to match the skybox
    light->SetColor(Color(1.2f, 1.2f, 1.2f));

    // Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
    // illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
    // generate the necessary 3D texture coordinates for cube mapping
    Node* skyNode = scene_->CreateChild("Sky");
    skyNode->SetScale(500.0f); // The scale actually does not matter
    Skybox* skybox = skyNode->CreateComponent<Skybox>();
    skybox->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
    skybox->SetMaterial(cache->GetResource<Material>("Materials/Skybox.xml"));

    // Create heightmap terrain
    Node* terrainNode = scene_->CreateChild("Terrain");
    terrainNode->SetPosition(Vector3(0.0f, 0.0f, 0.0f));
    Terrain* terrain = terrainNode->CreateComponent<Terrain>();
    terrain->SetPatchSize(64);
    terrain->SetSpacing(Vector3(2.0f, 0.5f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
    terrain->SetSmoothing(true);
    terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
    terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
    // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
    // terrain patches and other objects behind it
    terrain->SetOccluder(true);

    // Create 1000 boxes in the terrain. Always face outward along the terrain normal
    unsigned NUM_OBJECTS = 1000;
    for (unsigned i = 0; i < NUM_OBJECTS; ++i)
    {
        Node* objectNode = scene_->CreateChild("Box");
        Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
        position.y_ = terrain->GetHeight(position) + 2.25f;
        objectNode->SetPosition(position);
        // Create a rotation quaternion from up vector to terrain normal
        objectNode->SetRotation(Quaternion(Vector3(0.0f, 1.0f, 0.0f), terrain->GetNormal(position)));
        objectNode->SetScale(5.0f);
        StaticModel* object = objectNode->CreateComponent<StaticModel>();
        object->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
        object->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
        object->SetCastShadows(true);
    }
    Node* shipNode = scene_->CreateChild("Ship");
    shipNode->SetPosition(Vector3(0.0f, 4.6f, 0.0f));
    //shipNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
    shipNode->SetScale(0.5f + Random(2.0f));
    StaticModel* shipObject = shipNode->CreateComponent<StaticModel>();
    shipObject->SetModel(cache->GetResource<Model>("Models/ship04.mdl"));
    shipObject->SetMaterial(0,cache->GetResource<Material>("Materials/ship04_Material0.xml"));
    shipObject->SetMaterial(1,cache->GetResource<Material>("Materials/ship04_Material1.xml"));
    shipObject->SetMaterial(2,cache->GetResource<Material>("Materials/ship04_Material2.xml"));
    shipObject->SetCastShadows(true);

    // Create a water plane object that is as large as the terrain
    waterNode_ = scene_->CreateChild("Water");
    waterNode_->SetScale(Vector3(2048.0f, 1.0f, 2048.0f));
    waterNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
    StaticModel* water = waterNode_->CreateComponent<StaticModel>();
    water->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
    water->SetMaterial(cache->GetResource<Material>("Materials/Water.xml"));
    // Set a different viewmask on the water plane to be able to hide it from the reflection camera
    water->SetViewMask(0x80000000);

    // Create the camera. Set far clip to match the fog. Note: now we actually create the camera node outside
    // the scene, because we want it to be unaffected by scene load / save
    cameraNode_ = new Node(GetContext());
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->setFarClipDistance(750.0f);

    // Set an initial position for the camera scene node above the ground
    cameraNode_->SetPosition(Vector3(0.0f, 7.0f, -20.0f));
}
示例#3
0
文件: T08.cpp 项目: saggita/r5ge
void TestApp::Run()
{
	if (*mCore << "Config/T08.txt")
	{
		mCore->Lock();

		// First we need to create a heightmap we'll use to create the terrain. R5 has a fairly flexible
		// noise library with a variety of simple filters that we can use for just that purpose.

		Noise noise;

		// We want to generate a 256x256 heightmap
		noise.SetSize(256, 256);

		// You can combine a variety of filters to create the terrain's "final" look, but for the sake
		// of simplicity, let's only use one -- a perlin noise. The numbers that follow are optional
		// parameters. In this case '8' means generate an 8-octave noise, and 0.65 means that the noise
		// with values above 0.65 will be mirrored, turning high peaks into volcano-like crevices.
		// This type of noise is also known as ridged multifractal due to the ridges it tends to produce.

		noise.ApplyFilter("Perlin").Set(8.0f, 0.65f);

		// Now that we have our heightmap, we should create our terrain.
		mTerrain = mCore->GetRoot()->AddObject<Terrain>("First Terrain");

		// We want to partition our terrain into an 8 by 8 grid. This will create 64 subdivisions
		// that the terrain will use together with frustum culling to automatically discard portions
		// of the terrain that are not visible. We can actually see what percentage of the terrain
		// is being rendered by using the Terrain::GetVisibility() function after the scene has been
		// culled... but more on that later.

		mTerrain->PartitionInto(8, 8);

		// In order to fill the terrain's partitions with geometry we need to provide additional
		// information about the heightmap that will be used and how it will be used to begin with.
		// Terrain::Heightmap struct exists for just this purpose.

		// Provide the heightmap itself
		Terrain::Heightmap hm (noise.GetBuffer(), noise.GetWidth(), noise.GetHeight());

		// We want each subdivided mesh to be 32 by 32 quads. As you might recall there are 64 subdivisions
		// in total, and now each of those 64 will contain (32 x 32) = 1024 quads, or 2048 triangles.
		// When the terrain is generated the provided heightmap will be sampled using bicubic filtering,
		// so you can make the mesh much more tessellated than the heightmap, if you wish.

		hm.mMeshSize.Set(32, 32);

		// By default the terrain will be generated with dimensions of (0, 0, 0) to (1, 1, 1). Of course
		// that's not what we want. Let's apply a different scaling property here, stretching the terrain
		// along the horizontal plane (and a little bit along the vertical as well).
		hm.mTerrainScale.Set(20.0f, 20.0f, 4.0f);

		// By default the terrain starts at (0, 0, 0). Let's somwhat-center it instead.
		hm.mTerrainOffset.Set(-10.0f, -10.0f, -3.0f);

		// Time to fill the actual geometry. One last important thing to note is the optional bounding
		// box padding parameter that QuadTree::Fill function accepts. This parameter is used to extrude
		// the height of the bounding box vertically in both directions so that child objects can
		// fit easier. Objects that "fit" into the bounding box of the terrain's subdivisioned
		// nodes will get culled faster, speeding up your game. I recommend setting this property to
		// the height of the tallest building or tree you expect to place on your map. In this
		// example we don't have any objects placed as children of the terrain, but it's worth
		// noting nonetheless.

		mTerrain->FillGeometry(&hm, 0.0f);

		// And now... we need to be able to see the terrain we've just created.
		// The best way to visualize a terrain without any textures on it is to display it in wireframe.
		// You can easily do that in R5 by using a material that has a "Wireframe" technique as one of
		// its draw methods. As long as you won't forget to use that technique in the OnDraw function,
		// your wireframe object will show up in your scene. In this case it will be used for our terrain.

		// Wireframe is an R5-recognized technique so we don't need to set up any states.
		ITechnique* wireframe = mGraphics->GetTechnique("Wireframe");

		// Save it for our Draw function
		//mTechniques.Expand() = wireframe;

		// We'll be using a custom material to draw our terrain. Let's just give it the same name.
		IMaterial* mat = mGraphics->GetMaterial("Terrain");

		// Se need to change the material's color as all newly created materials start invisible (alpha of 0)
		mat->SetDiffuse( Color4ub(255, 255, 255, 255) );

		// Add this technique to the material
		mat->GetDrawMethod(wireframe, true);

		// Tell the terrain to use this material
		mTerrain->SetMaterial(mat);

		// Last thing we should do is find the label I've added to the "T08.txt" configuration file.
		// The reason it's not created via code is to simplify this tutorial. If you're curious,
		// have a look at that resource file and see how it was created inside. Since the label is
		// part of the configuration file that we've loaded at the top of this function, it's already
		// in memory and all we have to do is find it using this handy template:

		mLabel = mUI->FindWidget<UILabel>("Status");

		// Add a custom draw function that will update the label showing us how much of the terrain is
		// actually visible at any given time. Look below to see exactly what it does.
		mCore->AddOnDraw( bind(&TestApp::OnDraw, this) );

		// Enter the message processing loop
		mCore->Unlock();
		while (mCore->Update());

		//*mCore >> "Config/T08.txt";
	}
}
示例#4
0
void VehicleDemo::CreateScene()
{
    ResourceCache* cache = GetSubsystem<ResourceCache>();
    
    scene_ = new Scene(context_);
    
    // Create scene subsystem components
    scene_->CreateComponent<Octree>();
    scene_->CreateComponent<PhysicsWorld>();
    scene_->CreateComponent<DebugRenderer>();
    
    // Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
    // so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
    cameraNode_ = new Node(context_);
    Camera* camera = cameraNode_->CreateComponent<Camera>();
    camera->SetFarClip(500.0f);
    GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));
    //GetSubsystem<Renderer>()->SetHDRRendering(true);
    RenderPath* effectRenderPath=GetSubsystem<Renderer>()->GetViewport(0)->GetRenderPath();
    //effectRenderPath->Append(cache->GetResource<XMLFile>("PostProcess/AutoExposure.xml"));
    effectRenderPath->Append(cache->GetResource<XMLFile>("PostProcess/Blur.xml"));
    
    effectRenderPath->SetShaderParameter("BlurRadius", Variant(0.002f) );
    effectRenderPath->SetShaderParameter("BlurSigma", Variant(0.001f) );
    effectRenderPath->SetEnabled("Blur", false);
    

    
    // Create static scene content. First create a zone for ambient lighting and fog control
    Node* zoneNode = scene_->CreateChild("Zone");
    Zone* zone = zoneNode->CreateComponent<Zone>();
    //zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
    zone->SetFogColor(Color(0.2f, 0.2f, 0.3f));
    zone->SetFogStart(300.0f);
    zone->SetFogEnd(500.0f);
    zone->SetBoundingBox(BoundingBox(-2000.0f, 2000.0f));

 /*
    // Create a directional light with cascaded shadow mapping
    Node* lightNode = scene_->CreateChild("DirectionalLight");
    lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
    Light* light = lightNode->CreateComponent<Light>();
    light->SetLightType(LIGHT_DIRECTIONAL);
    light->SetCastShadows(true);
    light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
    light->SetShadowCascade(CascadeParameters(20.0f, 50.0f, 200.0f, 0.0f, 0.8f));
    light->SetSpecularIntensity(0.5f);
*/
    
    
    
    
    // Create heightmap terrain with collision
    Node* terrainNode = scene_->CreateChild("Terrain");
    terrainNode->SetPosition(Vector3::ZERO);
    Terrain* terrain = terrainNode->CreateComponent<Terrain>();
    terrain->SetPatchSize(64);
    terrain->SetSpacing(Vector3(2.0f, 0.1f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
    terrain->SetSmoothing(true);
    terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
    terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
    // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
    // terrain patches and other objects behind it
    terrain->SetOccluder(true);
    
    RigidBody* body = terrainNode->CreateComponent<RigidBody>();
    body->SetCollisionLayer(2); // Use layer bitmask 2 for static geometry
    CollisionShape* shape = terrainNode->CreateComponent<CollisionShape>();
    shape->SetTerrain();
    
    
    // Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
    // illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
    // generate the necessary 3D texture coordinates for cube mapping

/*
    Node* skyNode2 = scene_->CreateChild("Sky");
    skyNode2->SetScale(80.0f); // The scale actually does not matter
    Skybox* skybox2 = skyNode2->CreateComponent<Skybox>();
    skybox2->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
    skybox2->SetMaterial(cache->GetResource<Material>("Materials/Skybox.xml"));
   */
    
    
    Node* skyNode = scene_->CreateChild("ProcSkyNode");
    skyNode->SetEnabled(true);
    skyNode->SetName("ProcSkyNode");
    skyNode->SetPosition(Urho3D::Vector3(0.0, 0.0, 0.0));
    skyNode->SetRotation(Urho3D::Quaternion(1, 0, 0, 0));
    skyNode->SetScale(Urho3D::Vector3(100.0, 100.0, 100.0));
    
    
    ProcSky* procSky = skyNode->CreateComponent<ProcSky>();
    procSky->SetEnabled(true);
    
    Node* skyLightNode = skyNode->CreateChild("ProcSkyLight");
    skyLightNode->SetEnabled(true);
    skyLightNode->SetPosition(Urho3D::Vector3(0.0, 0.0, 0.0));
    skyLightNode->SetRotation(Urho3D::Quaternion(0.707107, 0, -0.707107, 0));
    skyLightNode->SetScale(Urho3D::Vector3(1, 1, 1));
    Light* skyLight = skyLightNode->CreateComponent<Light>();
    skyLight->SetLightType(LIGHT_DIRECTIONAL);
    skyLight->SetColor(Urho3D::Color(0.753, 0.749, 0.678, 1));
    skyLight->SetSpecularIntensity(0);
    skyLight->SetOccludee(false);
    skyLight->SetOccluder(false);
    skyLight->SetCastShadows(true);
    skyLight->SetShadowCascade(Urho3D::CascadeParameters(20, 50, 100, 500, 0.8f));
    skyLight->SetShadowFocus(Urho3D::FocusParameters(true, true, true, 1.0f, 5.0f));
    skyLight->SetShadowBias(Urho3D::BiasParameters(1e-005, 0.001));

    

    
    
    
    if (skyNode) {
        //ProcSky* procSky(skyNode->GetComponent<ProcSky>());
        if (procSky) {
            // Can set other parameters here; e.g., SetUpdateMode(), SetUpdateInterval(), SetRenderSize()
            procSky->Initialize();
            URHO3D_LOGINFO("ProcSky Initialized.");
        } else {
            URHO3D_LOGERROR("ProcSky node missing ProcSky component.");
        }
    } else {
        URHO3D_LOGERROR("ProcSky node not found in scene.");
    }
    
    // Create 1000 mushrooms in the terrain. Always face outward along the terrain normal
   /*
    const unsigned NUM_MUSHROOMS = 0;
    for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
    {
        Node* objectNode = scene_->CreateChild("SafetyCone");
        Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
        position.y_ = terrain->GetHeight(position);
        objectNode->SetPosition(position);
        // Create a rotation quaternion from up vector to terrain normal
        objectNode->SetRotation(Quaternion(Vector3::UP, terrain->GetNormal(position)));
        objectNode->SetScale(3.0f);
        StaticModel* object = objectNode->CreateComponent<StaticModel>();
        object->SetModel(cache->GetResource<Model>("MyProjects/SafetyCone/SafetyCone.mdl"));
        object->SetMaterial(cache->GetResource<Material>("MyProjects/SafetyCone/ConeBase.xml"));
        object->SetMaterial(cache->GetResource<Material>("MyProjects/SafetyCone/SafetyCone.xml"));
        object->SetCastShadows(true);
        
        
        
        RigidBody* body = objectNode->CreateComponent<RigidBody>();
        //body->SetCollisionLayer(2);
        body->SetMass(2.0f);
        body->SetFriction(0.75f);
        CollisionShape* shape = objectNode->CreateComponent<CollisionShape>();
        //shape->SetTriangleMesh(object->GetModel(), 0);
        shape->SetConvexHull(object->GetModel(), 0);
    }
    */
}