ALGEB minpoly(MKernelVector kv, ALGEB* args) { int i; ALGEB retlist, blank; char err[] = "ERROR! Associated blackbox object does not exist!"; int key = MapleToInteger32(kv,args[1]), flag; std::map<int,int>::iterator f_i; std::map<int,void*>::iterator h_i; // Get the data from the hash table f_i = typeTable.find(key); if( f_i == typeTable.end() ) MapleRaiseError(kv,err); else flag = f_i->second; h_i = hashTable.find(key); if(h_i != hashTable.end() ) { // We've got data switch( flag ) { // Getting the minimal polynomial is rather complicated, so both instances of this code were // wrapped up inside a block, to cut down at the clutter at the top of this function. // First declares a vector of the proper type and casts the pointer. Then computes the minimal // polynomial. It then builds the proper Maple list structure for this application. case BlackBoxi: { Vectorl mpreturn; Vectorl::iterator mp_i; TriplesBBi* BB = (TriplesBBi*) h_i->second; LinBox::minpoly( mpreturn, *BB, BB->field() ); retlist = MapleListAlloc(kv, mpreturn.size() ); for(i = 1, mp_i = mpreturn.begin(); mp_i != mpreturn.end(); ++mp_i, ++i) MapleListAssign(kv, retlist, i, ToMapleInteger(kv, *mp_i)); } break; case BlackBoxI: { VectorI mpreturn; VectorI::iterator mp_i; TriplesBBI* BB = (TriplesBBI*) h_i->second; LinBox::minpoly( mpreturn, *BB, BB->field() ); retlist = MapleListAlloc(kv, mpreturn.size()); for(i = 1, mp_i = mpreturn.begin(); mp_i != mpreturn.end(); ++mp_i, ++i) MapleListAssign(kv, retlist, i, LiToM(kv, *mp_i, blank)); } break; } } else MapleRaiseError(kv,err); return retlist; }
ALGEB getVector(MKernelVector kv, ALGEB* args) { // Get the key, declare variables int key = MapleToInteger32(kv,args[1]), flag; char err[] = "ERROR! The associated Vector object does not exist!"; M_INT index, bound[2]; RTableData d; RTableSettings s; ALGEB rtable, blank; char MapleStatement[100] = "rtable(1.."; // Check to see if the object pointed to by key is in the type table. If not, panic std::map<int,int>::iterator f_i = typeTable.find(key); if(f_i == typeTable.end() ) { MapleRaiseError(kv, err); } // Otherwise, we have our object flag = f_i->second; // Get a pointer to the actual data std::map<int,void*>::iterator h_i = hashTable.find(key); if(h_i != hashTable.end() ) { // Diverge over whether we are using maple 7 or 8 ( and 5 & 6) // in Maple, arg 3 is a flag indicating which method to use switch( MapleToInteger32(kv, args[3])) { // In this case, Maple 7 is being used, we have to construct a call using "EvalMapleStatement()" // to call the RTable constructor case 1: switch(flag) { case SmallV:{ // Get the vector Vectorl* V = (Vectorl*) h_i->second; Vectorl::const_iterator V_i; // Create the Maple object sprintf(MapleStatement + strlen(MapleStatement), "%d", V->size() ); strcat(MapleStatement, ", subtype=Vector[column], storage=sparse)"); rtable = kv->evalMapleStatement(MapleStatement); // populate the Maple vector w/ the entries from V above for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { d.dag = ToMapleInteger(kv, *V_i); // d is a union, dag is the // ALGEB union field RTableAssign(kv, rtable, &index, d); } } break; case LargeV: { // This part works the same way as above VectorI* V = (VectorI*) h_i->second; VectorI::const_iterator V_i; sprintf(MapleStatement + strlen(MapleStatement), "%d", V->size() ); strcat(MapleStatement, ",subtype=Vector[column], storage=sparse)"); rtable = kv->evalMapleStatement(MapleStatement); // Use maple callback to call the procedure from Maple that translates a gmp integer // into a large maple integer. Then put this into the Maple vector for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { /* Okay, here's how this line works. Basically, * in order to set the entries of this RTable to * multi-precision integers, I have to first use my own conversion * method, LiToM, to convert the integer entry to a ALGEB structure, * then do a callback into Maple that calls the ExToM procedure, * which converts the results of LiToM into a Maple multi-precision * integer. At the moment, this is the best idea I've got as to * how to convert a GMP integer into a Maple representation in one shot. */ d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *V_i, blank)); RTableAssign(kv, rtable, &index, d); } } break; default: MapleRaiseError(kv, err); break; } break; // In this case, use the simpler RTableCreate function, rather than building a string // that must be parsed by maple case 2: kv->rtableGetDefaults(&s); // Get default settings - set datatype to Maple, // DAGTAG to anything s.subtype = 2; // Subtype set to column vector s.storage = 4; // Storage set to rectangular s.num_dimensions = 1; // What do you think this means :-) bound[0] = 1; // Set the lower bounds of each dimension to 0 switch(flag) {// Switch on data type of vector case SmallV:{ // single word integer entry vector Vectorl* V = (Vectorl*) h_i->second; Vectorl::const_iterator V_i; bound[1] = V->size(); rtable = kv->rtableCreate(&s, NULL, bound); // Create the Maple vector for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { d.dag = ToMapleInteger(kv, *V_i); // d is a union, dag is the // ALGEB union field RTableAssign(kv, rtable, &index, d); } } break; case LargeV: { // Same as above for multi-word integer entry vector VectorI* V = (VectorI*) h_i->second; VectorI::const_iterator V_i; bound[1] = V->size(); rtable = kv->rtableCreate(&s, NULL, bound); for(index = 1, V_i = V->begin(); V_i != V->end(); ++V_i, ++index) { /* Okay, here's how this line works. Basically, * in order to set the entries of this RTable to * multi-precision integers, I have to first use my own conversion * method, LiToM, to convert the integer entry to a ALGEB structure, * then do a callback into Maple that calls the ExToM procedure, * which converts the results of LiToM into a Maple multi-precision * integer. At the moment, this is the best idea I've got as to * how to convert a GMP integer into a Maple representation in one shot. */ d.dag = EvalMapleProc(kv,args[2],1,LiToM(kv, *V_i, blank)); RTableAssign(kv, rtable, &index, d); } } break; default: MapleRaiseError(kv, err); break; } break; // breaks case 2. // This was causing a wicked error :-) default: MapleRaiseError(kv, err); break; } } else { MapleRaiseError(kv, err); } return rtable; }