示例#1
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	if (bytesRead)
		*bytesRead = vertex_count * vdecoder.VertexSize();

	// Frame skipping.
	if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;

	switch (prim_type) {
	case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
	case GE_PRIM_LINES: vtcs_per_prim = 2; break;
	case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
	case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
	}

	VertexData data[max_vtcs_per_prim];

	// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
	// then resolve the indices. This lets us avoid transforming shared vertices twice.

	switch (prim_type) {
	case GE_PRIM_POINTS:
	case GE_PRIM_LINES:
	case GE_PRIM_TRIANGLES:
	case GE_PRIM_RECTANGLES:
		{
			for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
				for (int i = 0; i < vtcs_per_prim; ++i) {
					if (indices) {
						if (indices_32bit) {
							vreader.Goto(indices32[vtx + i]);
						} else if (indices_16bit) {
							vreader.Goto(indices16[vtx + i]);
						} else {
							vreader.Goto(indices8[vtx + i]);
						}
					} else {
						vreader.Goto(vtx+i);
					}

					data[i] = ReadVertex(vreader);
					if (outside_range_flag)
						break;
				}
				if (outside_range_flag) {
					outside_range_flag = false;
					continue;
				}

				switch (prim_type) {
				case GE_PRIM_TRIANGLES:
				{
					if (!gstate.isCullEnabled() || gstate.isModeClear()) {
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					} else if (!gstate.getCullMode())
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					else
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
					break;
				}

				case GE_PRIM_RECTANGLES:
					Clipper::ProcessRect(data[0], data[1]);
					break;

				case GE_PRIM_LINES:
					Clipper::ProcessLine(data[0], data[1]);
					break;

				case GE_PRIM_POINTS:
					Clipper::ProcessPoint(data[0]);
					break;
				}
			}
			break;
		}

	case GE_PRIM_LINE_STRIP:
		{
			int skip_count = 1; // Don't draw a line when loading the first vertex
			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx & 1] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
				} else {
					Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_STRIP:
		{
			int skip_count = 2; // Don't draw a triangle when loading the first two vertices

			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx % 3] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_FAN:
		{
			unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

			if (indices)
				vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
			else
				vreader.Goto(0);
			data[0] = ReadVertex(vreader);

			for (int vtx = 1; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[2 - (vtx % 2)] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}
	}

	host->GPUNotifyDraw();
}
示例#2
0
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType) {
	PROFILE_THIS_SCOPE("spline");
	DispatchFlush();

	// TODO: Verify correct functionality with < 4.
	if (count_u < 4 || count_v < 4)
		return;

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		if (indices)
			points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
		else
			points[idx] = simplified_control_points + idx;
	}

	int count = 0;

	u8 *dest = splineBuffer;

	SplinePatchLocal patch;
	patch.tess_u = tess_u;
	patch.tess_v = tess_v;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;
	patch.computeNormals = computeNormals;
	patch.primType = prim_type;
	patch.patchFacing = patchFacing;

	int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize;
	TesselateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount);

	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	int bytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeWithIndex16, &bytesRead);

	DispatchFlush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
示例#3
0
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType) {
	PROFILE_THIS_SCOPE("bezier");

	DispatchFlush();

	// TODO: Verify correct functionality with < 4.
	if (count_u < 4 || count_v < 4)
		return;

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
			patch.index = patch_v * num_patches_u + patch_u;
			patch.primType = prim_type;
			patch.computeNormals = computeNormals;
			patch.patchFacing = patchFacing;
		}
	}

	int count = 0;
	u8 *dest = splineBuffer;

	// Simple approximation of the real tesselation factor.
	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".
	if (num_patches_u == 0) num_patches_u = 1;
	if (num_patches_v == 0) num_patches_v = 1;
	if (tess_u < 4) tess_u = 4;
	if (tess_v < 4) tess_v = 4;

	u16 *inds = quadIndices_;
	int maxVertices = SPLINE_BUFFER_SIZE / vertexSize;
	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType, maxVertices);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	int bytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeWithIndex16, &bytesRead);

	DispatchFlush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
示例#4
0
文件: Spline.cpp 项目: ANR2ME/ppsspp
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;
	
	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		if (indices)
			points[idx] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
		else
			points[idx] = simplified_control_points + idx;
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	SplinePatchLocal patch;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;

	TesselateSplinePatch(dest, count, patch, origVertType);

	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}
	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);

	Flush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
示例#5
0
文件: Spline.cpp 项目: ANR2ME/ppsspp
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
		}
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	// Simple approximation of the real tesselation factor.
	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".
	if (num_patches_u == 0) num_patches_u = 1;
	if (num_patches_v == 0) num_patches_v = 1;
	int tess_u = gstate.getPatchDivisionU() / num_patches_u;
	int tess_v = gstate.getPatchDivisionV() / num_patches_v;
	if (tess_u < 4) tess_u = 4;
	if (tess_v < 4) tess_v = 4;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, count, tess_u, tess_v, patch, origVertType);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (g_Config.bPrescaleUV) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, 0);
	Flush();

	if (g_Config.bPrescaleUV) {
		gstate_c.uv = prevUVScale;
	}
}
示例#6
0
JittedVertexDecoder VertexDecoderJitCache::Compile(const VertexDecoder &dec) {
	dec_ = &dec;
	const u8 *start = this->GetCodePtr();

#ifdef _M_IX86
	// Store register values
	PUSH(ESI);
	PUSH(EDI);
	PUSH(EBX);
	PUSH(EBP);

	// Read parameters
	int offset = 4;
	MOV(32, R(srcReg), MDisp(ESP, 16 + offset + 0));
	MOV(32, R(dstReg), MDisp(ESP, 16 + offset + 4));
	MOV(32, R(counterReg), MDisp(ESP, 16 + offset + 8));
#endif

	// Save XMM4/XMM5 which apparently can be problematic?
	// Actually, if they are, it must be a compiler bug because they SHOULD be ok.
	// So I won't bother.
	SUB(PTRBITS, R(ESP), Imm8(64));
	MOVUPS(MDisp(ESP, 0), XMM4);
	MOVUPS(MDisp(ESP, 16), XMM5);
	MOVUPS(MDisp(ESP, 32), XMM6);
	MOVUPS(MDisp(ESP, 48), XMM7);

	bool prescaleStep = false;
	// Look for prescaled texcoord steps
	for (int i = 0; i < dec.numSteps_; i++) {
		if (dec.steps_[i] == &VertexDecoder::Step_TcU8Prescale ||
			dec.steps_[i] == &VertexDecoder::Step_TcU16Prescale ||
			dec.steps_[i] == &VertexDecoder::Step_TcFloatPrescale) {
				prescaleStep = true;
		}
	}

	// Add code to convert matrices to 4x4.
	// Later we might want to do this when the matrices are loaded instead.
	// This is mostly proof of concept.
	int boneCount = 0;
	if (dec.weighttype && g_Config.bSoftwareSkinning) {
		for (int i = 0; i < 8; i++) {
			MOVUPS(XMM0, M((gstate.boneMatrix + 12 * i)));
			MOVUPS(XMM1, M((gstate.boneMatrix + 12 * i + 3)));
			MOVUPS(XMM2, M((gstate.boneMatrix + 12 * i + 3 * 2)));
			MOVUPS(XMM3, M((gstate.boneMatrix + 12 * i + 3 * 3)));
			ANDPS(XMM0, M(&threeMasks));
			ANDPS(XMM1, M(&threeMasks));
			ANDPS(XMM2, M(&threeMasks));
			ANDPS(XMM3, M(&threeMasks));
			ORPS(XMM3, M(&aOne));
			MOVAPS(M((bones + 16 * i)), XMM0);
			MOVAPS(M((bones + 16 * i + 4)), XMM1);
			MOVAPS(M((bones + 16 * i + 8)), XMM2);
			MOVAPS(M((bones + 16 * i + 12)), XMM3);
		}
	}

	// Keep the scale/offset in a few fp registers if we need it.
	if (prescaleStep) {
#ifdef _M_X64
		MOV(64, R(tempReg1), Imm64((u64)(&gstate_c.uv)));
#else
		MOV(32, R(tempReg1), Imm32((u32)(&gstate_c.uv)));
#endif
		MOVSS(fpScaleOffsetReg, MDisp(tempReg1, 0));
		MOVSS(fpScratchReg, MDisp(tempReg1, 4));
		UNPCKLPS(fpScaleOffsetReg, R(fpScratchReg));
		if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_8BIT) {
			MULPS(fpScaleOffsetReg, M(&by128));
		} else if ((dec.VertexType() & GE_VTYPE_TC_MASK) == GE_VTYPE_TC_16BIT) {
			MULPS(fpScaleOffsetReg, M(&by32768));
		}
		MOVSS(fpScratchReg, MDisp(tempReg1, 8));
		MOVSS(fpScratchReg2, MDisp(tempReg1, 12));
		UNPCKLPS(fpScratchReg, R(fpScratchReg2));
		UNPCKLPD(fpScaleOffsetReg, R(fpScratchReg));
	}

	// Let's not bother with a proper stack frame. We just grab the arguments and go.
	JumpTarget loopStart = GetCodePtr();
	for (int i = 0; i < dec.numSteps_; i++) {
		if (!CompileStep(dec, i)) {
			// Reset the code ptr and return zero to indicate that we failed.
			SetCodePtr(const_cast<u8 *>(start));
			return 0;
		}
	}

	ADD(PTRBITS, R(srcReg), Imm32(dec.VertexSize()));
	ADD(PTRBITS, R(dstReg), Imm32(dec.decFmt.stride));
	SUB(32, R(counterReg), Imm8(1));
	J_CC(CC_NZ, loopStart, true);

	MOVUPS(XMM4, MDisp(ESP, 0));
	MOVUPS(XMM5, MDisp(ESP, 16));
	MOVUPS(XMM6, MDisp(ESP, 32));
	MOVUPS(XMM7, MDisp(ESP, 48));
	ADD(PTRBITS, R(ESP), Imm8(64));

#ifdef _M_IX86
	// Restore register values
	POP(EBP);
	POP(EBX);
	POP(EDI);
	POP(ESI);
#endif

	RET();

	return (JittedVertexDecoder)start;
}
示例#7
0
void DrawEngineCommon::SubmitBezier(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
	PROFILE_THIS_SCOPE("bezier");

	DispatchFlush();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	IndexConverter idxConv(vertType, indices);
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
	*bytesRead = count_u * count_v * origVDecoder->VertexSize();

	// Real hardware seems to draw nothing when given < 4 either U or V.
	// This would result in num_patches_u / num_patches_v being 0.
	if (count_u < 4 || count_v < 4) {
		return;
	}

	// Simplify away bones and morph before proceeding
	// There are normally not a lot of control points so just splitting decoded should be reasonably safe, although not great.
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	float *pos = (float*)(decoded + 65536 * 18); // Size 4 float
	float *tex = pos + count_u * count_v * 4; // Size 4 float
	float *col = tex + count_u * count_v * 4; // Size 4 float
	const bool hasColor = (origVertType & GE_VTYPE_COL_MASK) != 0;
	const bool hasTexCoords = (origVertType & GE_VTYPE_TC_MASK) != 0;

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch *patches = nullptr;
	if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) {
		int posStride, texStride, colStride;
		tessDataTransfer->PrepareBuffers(pos, tex, col, posStride, texStride, colStride, count_u * count_v, hasColor, hasTexCoords);
		float *p = pos;
		float *t = tex;
		float *c = col;
		for (int idx = 0; idx < count_u * count_v; idx++) {
			SimpleVertex *point = simplified_control_points + (indices ? idxConv.convert(idx) : idx);
			memcpy(p, point->pos.AsArray(), 3 * sizeof(float));
			p += posStride;
			if (hasTexCoords) {
				memcpy(t, point->uv, 2 * sizeof(float));
				t += texStride;
			}
			if (hasColor) {
				memcpy(c, Vec4f::FromRGBA(point->color_32).AsArray(), 4 * sizeof(float));
				c += colStride;
			}
		}
		if (!hasColor) {
			SimpleVertex *point = simplified_control_points + (indices ? idxConv.convert(0) : 0);
			memcpy(col, Vec4f::FromRGBA(point->color_32).AsArray(), 4 * sizeof(float));
		}
	} else {
		patches = new BezierPatch[num_patches_u * num_patches_v];
		for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
			for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
				BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
				for (int point = 0; point < 16; ++point) {
					int idx = (patch_u * 3 + point % 4) + (patch_v * 3 + point / 4) * count_u;
					patch.points[point] = simplified_control_points + (indices ? idxConv.convert(idx) : idx);
				}
				patch.u_index = patch_u * 3;
				patch.v_index = patch_v * 3;
				patch.index = patch_v * num_patches_u + patch_u;
				patch.primType = prim_type;
				patch.computeNormals = computeNormals;
				patch.patchFacing = patchFacing;
			}
		}
	}

	int count = 0;
	u8 *dest = splineBuffer;

	// We shouldn't really split up into separate 4x4 patches, instead we should do something that works
	// like the splines, so we subdivide across the whole "mega-patch".

	// If specified as 0, uses 1.
	if (tess_u < 1) {
		tess_u = 1;
	}
	if (tess_v < 1) {
		tess_v = 1;
	}

	u16 *inds = quadIndices_;
	if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) {
		tessDataTransfer->SendDataToShader(pos, tex, col, count_u * count_v, hasColor, hasTexCoords);
		TessellateBezierPatchHardware(dest, inds, count, tess_u, tess_v, prim_type);
		numPatches = num_patches_u * num_patches_v;
	} else {
		int maxVertices = SPLINE_BUFFER_SIZE / vertexSize;
		// Downsample until it fits, in case crazy tessellation factors are sent.
		while ((tess_u + 1) * (tess_v + 1) * num_patches_u * num_patches_v > maxVertices) {
			tess_u /= 2;
			tess_v /= 2;
		}
		for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
			const BezierPatch &patch = patches[patch_idx];
			TessellateBezierPatch(dest, inds, count, tess_u, tess_v, patch, origVertType);
		}
		delete[] patches;
	}

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if (origVertType & GE_VTYPE_TC_MASK) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0;
		gstate_c.uv.vOff = 0;
	}

	uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());
	int generatedBytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeID, &generatedBytesRead);

	DispatchFlush();

	if (origVertType & GE_VTYPE_TC_MASK) {
		gstate_c.uv = prevUVScale;
	}
}
示例#8
0
void DrawEngineCommon::SubmitSpline(const void *control_points, const void *indices, int tess_u, int tess_v, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, bool computeNormals, bool patchFacing, u32 vertType, int *bytesRead) {
	PROFILE_THIS_SCOPE("spline");
	DispatchFlush();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	IndexConverter idxConv(vertType, indices);
	if (indices)
		GetIndexBounds(indices, count_u * count_v, vertType, &index_lower_bound, &index_upper_bound);

	VertexDecoder *origVDecoder = GetVertexDecoder((vertType & 0xFFFFFF) | (gstate.getUVGenMode() << 24));
	*bytesRead = count_u * count_v * origVDecoder->VertexSize();

	// Real hardware seems to draw nothing when given < 4 either U or V.
	if (count_u < 4 || count_v < 4) {
		return;
	}

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 18;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}

	// TODO: Do something less idiotic to manage this buffer
	SimpleVertex **points = new SimpleVertex *[count_u * count_v];

	// Make an array of pointers to the control points, to get rid of indices.
	for (int idx = 0; idx < count_u * count_v; idx++) {
		points[idx] = simplified_control_points + (indices ? idxConv.convert(idx) : idx);
	}

	int count = 0;

	u8 *dest = splineBuffer;

	SplinePatchLocal patch;
	patch.tess_u = tess_u;
	patch.tess_v = tess_v;
	patch.type_u = type_u;
	patch.type_v = type_v;
	patch.count_u = count_u;
	patch.count_v = count_v;
	patch.points = points;
	patch.computeNormals = computeNormals;
	patch.primType = prim_type;
	patch.patchFacing = patchFacing;

	if (g_Config.bHardwareTessellation && g_Config.bHardwareTransform && !g_Config.bSoftwareRendering) {
	
		float *pos = (float*)(decoded + 65536 * 18); // Size 4 float
		float *tex = pos + count_u * count_v * 4; // Size 4 float
		float *col = tex + count_u * count_v * 4; // Size 4 float
		const bool hasColor = (origVertType & GE_VTYPE_COL_MASK) != 0;
		const bool hasTexCoords = (origVertType & GE_VTYPE_TC_MASK) != 0;

		int posStride, texStride, colStride;
		tessDataTransfer->PrepareBuffers(pos, tex, col, posStride, texStride, colStride, count_u * count_v, hasColor, hasTexCoords);
		float *p = pos;
		float *t = tex;
		float *c = col;
		for (int idx = 0; idx < count_u * count_v; idx++) {
			memcpy(p, points[idx]->pos.AsArray(), 3 * sizeof(float));
			p += posStride;
			if (hasTexCoords) {
				memcpy(t, points[idx]->uv, 2 * sizeof(float));
				t += texStride;
			}
			if (hasColor) {
				memcpy(c, Vec4f::FromRGBA(points[idx]->color_32).AsArray(), 4 * sizeof(float));
				c += colStride;
			}
		}
		if (!hasColor)
			memcpy(col, Vec4f::FromRGBA(points[0]->color_32).AsArray(), 4 * sizeof(float));

		tessDataTransfer->SendDataToShader(pos, tex, col, count_u * count_v, hasColor, hasTexCoords);
		TessellateSplinePatchHardware(dest, quadIndices_, count, patch);
		numPatches = (count_u - 3) * (count_v - 3);
	} else {
		int maxVertexCount = SPLINE_BUFFER_SIZE / vertexSize;
		TessellateSplinePatch(dest, quadIndices_, count, patch, origVertType, maxVertexCount);
	}
	delete[] points;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	UVScale prevUVScale;
	if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
		// We scaled during Normalize already so let's turn it off when drawing.
		prevUVScale = gstate_c.uv;
		gstate_c.uv.uScale = 1.0f;
		gstate_c.uv.vScale = 1.0f;
		gstate_c.uv.uOff = 0.0f;
		gstate_c.uv.vOff = 0.0f;
	}

	uint32_t vertTypeID = GetVertTypeID(vertTypeWithIndex16, gstate.getUVGenMode());

	int generatedBytesRead;
	DispatchSubmitPrim(splineBuffer, quadIndices_, primType[prim_type], count, vertTypeID, &generatedBytesRead);

	DispatchFlush();

	if ((origVertType & GE_VTYPE_TC_MASK) != 0) {
		gstate_c.uv = prevUVScale;
	}
}
示例#9
0
void TransformDrawEngine::SubmitBezier(void* control_points, void* indices, int count_u, int count_v, GEPatchPrimType prim_type, u32 vertType) {
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertType & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	const u8* indices8 = (const u8*)indices;
	const u16* indices16 = (const u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertType, &index_lower_bound, &index_upper_bound);

	// Simplify away bones and morph before proceeding
	SimpleVertex *simplified_control_points = (SimpleVertex *)(decoded + 65536 * 12);
	u8 *temp_buffer = decoded + 65536 * 24;

	u32 origVertType = vertType;
	vertType = NormalizeVertices((u8 *)simplified_control_points, temp_buffer, (u8 *)control_points, index_lower_bound, index_upper_bound, vertType);

	VertexDecoder *vdecoder = GetVertexDecoder(vertType);

	int vertexSize = vdecoder->VertexSize();
	if (vertexSize != sizeof(SimpleVertex)) {
		ERROR_LOG(G3D, "Something went really wrong, vertex size: %i vs %i", vertexSize, (int)sizeof(SimpleVertex));
	}
	const DecVtxFormat& vtxfmt = vdecoder->GetDecVtxFmt();

	// Bezier patches share less control points than spline patches. Otherwise they are pretty much the same (except bezier don't support the open/close thing)
	int num_patches_u = (count_u - 1) / 3;
	int num_patches_v = (count_v - 1) / 3;
	BezierPatch* patches = new BezierPatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; patch_u++) {
		for (int patch_v = 0; patch_v < num_patches_v; patch_v++) {
			BezierPatch& patch = patches[patch_u + patch_v * num_patches_u];
			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u * 3 + point%4) + (patch_v * 3 + point/4) * count_u;
				if (indices)
					patch.points[point] = simplified_control_points + (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = simplified_control_points + idx;
			}
			patch.u_index = patch_u * 3;
			patch.v_index = patch_v * 3;
		}
	}

	u8 *decoded2 = decoded + 65536 * 36;

	int count = 0;
	u8 *dest = decoded2;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		BezierPatch& patch = patches[patch_idx];
		TesselateBezierPatch(dest, count, patch, origVertType);
	}
	delete[] patches;

	u32 vertTypeWithIndex16 = (vertType & ~GE_VTYPE_IDX_MASK) | GE_VTYPE_IDX_16BIT;

	SubmitPrim(decoded2, quadIndices_, GE_PRIM_TRIANGLES, count, vertTypeWithIndex16, -1, 0);
	Flush();
}
示例#10
0
void TransformDrawEngine::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, u32 prim_type, u32 vertex_type)
{
	Flush();

	if (prim_type != GE_PATCHPRIM_TRIANGLES) {
		// Only triangles supported!
		return;
	}

	// We're not actually going to decode, only reshuffle.
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);

	int undecodedVertexSize = vdecoder.VertexSize();

	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	// TODO: Do something less idiotic to manage this buffer
	HWSplinePatch* patches = new HWSplinePatch[num_patches_u * num_patches_v];
	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			HWSplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
				if (indices)
					patch.points[point] = (u8 *)control_points + undecodedVertexSize * (indices_16bit ? indices16[idx] : indices8[idx]);
				else
					patch.points[point] = (u8 *)control_points + undecodedVertexSize * idx;
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	u8 *decoded2 = decoded + 65536 * 24;

	int count = 0;
	u8 *dest = decoded2;

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		HWSplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				u8 *v0 = patch.points[point_index];
				u8 *v1 = patch.points[point_index+1];
				u8 *v2 = patch.points[point_index+4];
				u8 *v3 = patch.points[point_index+5];

				// TODO: Insert UVs where applicable. Actually subdivide.
				CopyTriangle(dest, v0, v1, v2, undecodedVertexSize);
				CopyTriangle(dest, v2, v1, v0, undecodedVertexSize);
				CopyTriangle(dest, v2, v1, v3, undecodedVertexSize);
				CopyTriangle(dest, v3, v1, v2, undecodedVertexSize);
				count += 12;
			}
		}
	}
	delete[] patches;

	u32 vertTypeWithoutIndex = vertex_type & ~GE_VTYPE_IDX_MASK;

	SubmitPrim(decoded2, 0, GE_PRIM_TRIANGLES, count, vertTypeWithoutIndex, GE_VTYPE_IDX_NONE, 0);
	Flush();
}