/** Compute the context-sensitive FOLLOW set for current rule. * This is set of token types that can follow a specific rule * reference given a specific call chain. You get the set of * viable tokens that can possibly come next (lookahead depth 1) * given the current call chain. Contrast this with the * definition of plain FOLLOW for rule r: * * FOLLOW(r)={x | S=>*alpha r beta in G and x in FIRST(beta)} * * where x in T* and alpha, beta in V*; T is set of terminals and * V is the set of terminals and nonterminals. In other words, * FOLLOW(r) is the set of all tokens that can possibly follow * references to r in *any* sentential form (context). At * runtime, however, we know precisely which context applies as * we have the call chain. We may compute the exact (rather * than covering superset) set of following tokens. * * For example, consider grammar: * * stat : ID '=' expr ';' // FOLLOW(stat)=={EOF} * | "return" expr '.' * ; * expr : atom ('+' atom)* ; // FOLLOW(expr)=={';','.',')'} * atom : INT // FOLLOW(atom)=={'+',')',';','.'} * | '(' expr ')' * ; * * The FOLLOW sets are all inclusive whereas context-sensitive * FOLLOW sets are precisely what could follow a rule reference. * For input input "i=(3);", here is the derivation: * * stat => ID '=' expr ';' * => ID '=' atom ('+' atom)* ';' * => ID '=' '(' expr ')' ('+' atom)* ';' * => ID '=' '(' atom ')' ('+' atom)* ';' * => ID '=' '(' INT ')' ('+' atom)* ';' * => ID '=' '(' INT ')' ';' * * At the "3" token, you'd have a call chain of * * stat -> expr -> atom -> expr -> atom * * What can follow that specific nested ref to atom? Exactly ')' * as you can see by looking at the derivation of this specific * input. Contrast this with the FOLLOW(atom)={'+',')',';','.'}. * * You want the exact viable token set when recovering from a * token mismatch. Upon token mismatch, if LA(1) is member of * the viable next token set, then you know there is most likely * a missing token in the input stream. "Insert" one by just not * throwing an exception. */ static pANTLR3_BITSET computeCSRuleFollow (pANTLR3_BASE_RECOGNIZER recognizer) { return recognizer->combineFollows(recognizer, ANTLR3_FALSE); }
/** * Documentation below is from the Java implementation. * * Compute the error recovery set for the current rule. During * rule invocation, the parser pushes the set of tokens that can * follow that rule reference on the stack; this amounts to * computing FIRST of what follows the rule reference in the * enclosing rule. This local follow set only includes tokens * from within the rule; i.e., the FIRST computation done by * ANTLR stops at the end of a rule. * * EXAMPLE * * When you find a "no viable alt exception", the input is not * consistent with any of the alternatives for rule r. The best * thing to do is to consume tokens until you see something that * can legally follow a call to r *or* any rule that called r. * You don't want the exact set of viable next tokens because the * input might just be missing a token--you might consume the * rest of the input looking for one of the missing tokens. * * Consider grammar: * * a : '[' b ']' * | '(' b ')' * ; * b : c '^' INT ; * c : ID * | INT * ; * * At each rule invocation, the set of tokens that could follow * that rule is pushed on a stack. Here are the various "local" * follow sets: * * FOLLOW(b1_in_a) = FIRST(']') = ']' * FOLLOW(b2_in_a) = FIRST(')') = ')' * FOLLOW(c_in_b) = FIRST('^') = '^' * * Upon erroneous input "[]", the call chain is * * a -> b -> c * * and, hence, the follow context stack is: * * depth local follow set after call to rule * 0 <EOF> a (from main()) * 1 ']' b * 3 '^' c * * Notice that ')' is not included, because b would have to have * been called from a different context in rule a for ')' to be * included. * * For error recovery, we cannot consider FOLLOW(c) * (context-sensitive or otherwise). We need the combined set of * all context-sensitive FOLLOW sets--the set of all tokens that * could follow any reference in the call chain. We need to * resync to one of those tokens. Note that FOLLOW(c)='^' and if * we resync'd to that token, we'd consume until EOF. We need to * sync to context-sensitive FOLLOWs for a, b, and c: {']','^'}. * In this case, for input "[]", LA(1) is in this set so we would * not consume anything and after printing an error rule c would * return normally. It would not find the required '^' though. * At this point, it gets a mismatched token error and throws an * exception (since LA(1) is not in the viable following token * set). The rule exception handler tries to recover, but finds * the same recovery set and doesn't consume anything. Rule b * exits normally returning to rule a. Now it finds the ']' (and * with the successful match exits errorRecovery mode). * * So, you cna see that the parser walks up call chain looking * for the token that was a member of the recovery set. * * Errors are not generated in errorRecovery mode. * * ANTLR's error recovery mechanism is based upon original ideas: * * "Algorithms + Data Structures = Programs" by Niklaus Wirth * * and * * "A note on error recovery in recursive descent parsers": * http://portal.acm.org/citation.cfm?id=947902.947905 * * Later, Josef Grosch had some good ideas: * * "Efficient and Comfortable Error Recovery in Recursive Descent * Parsers": * ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip * * Like Grosch I implemented local FOLLOW sets that are combined * at run-time upon error to avoid overhead during parsing. */ static pANTLR3_BITSET computeErrorRecoverySet (pANTLR3_BASE_RECOGNIZER recognizer) { return recognizer->combineFollows(recognizer, ANTLR3_FALSE); }