void spline1dfitpenalizedw(const real_1d_array &x, const real_1d_array &y, const real_1d_array &w, const ae_int_t m, const double rho, ae_int_t &info, spline1dinterpolant &s, spline1dfitreport &rep) { alglib_impl::ae_state _alglib_env_state; ae_int_t n; if( (x.length()!=y.length()) || (x.length()!=w.length())) throw ap_error("Error while calling 'spline1dfitpenalizedw': looks like one of arguments has wrong size"); n = x.length(); alglib_impl::ae_state_init(&_alglib_env_state); try { alglib_impl::spline1dfitpenalizedw(const_cast<alglib_impl::ae_vector*>(x.c_ptr()), const_cast<alglib_impl::ae_vector*>(y.c_ptr()), const_cast<alglib_impl::ae_vector*>(w.c_ptr()), n, m, rho, &info, const_cast<alglib_impl::spline1dinterpolant*>(s.c_ptr()), const_cast<alglib_impl::spline1dfitreport*>(rep.c_ptr()), &_alglib_env_state); alglib_impl::ae_state_clear(&_alglib_env_state); return; } catch(alglib_impl::ae_error_type) { throw ap_error(_alglib_env_state.error_msg); } catch(...) { throw; } }
/************************************************************************* Cash-Karp adaptive ODE solver. This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys (here Y may be single variable or vector of N variables). INPUT PARAMETERS: Y - initial conditions, array[0..N-1]. contains values of Y[] at X[0] N - system size X - points at which Y should be tabulated, array[0..M-1] integrations starts at X[0], ends at X[M-1], intermediate values at X[i] are returned too. SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING! M - number of intermediate points + first point + last point: * M>2 means that you need both Y(X[M-1]) and M-2 values at intermediate points * M=2 means that you want just to integrate from X[0] to X[1] and don't interested in intermediate values. * M=1 means that you don't want to integrate :) it is degenerate case, but it will be handled correctly. * M<1 means error Eps - tolerance (absolute/relative error on each step will be less than Eps). When passing: * Eps>0, it means desired ABSOLUTE error * Eps<0, it means desired RELATIVE error. Relative errors are calculated with respect to maximum values of Y seen so far. Be careful to use this criterion when starting from Y[] that are close to zero. H - initial step lenth, it will be adjusted automatically after the first step. If H=0, step will be selected automatically (usualy it will be equal to 0.001 of min(x[i]-x[j])). OUTPUT PARAMETERS State - structure which stores algorithm state between subsequent calls of OdeSolverIteration. Used for reverse communication. This structure should be passed to the OdeSolverIteration subroutine. SEE ALSO AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults. -- ALGLIB -- Copyright 01.09.2009 by Bochkanov Sergey *************************************************************************/ void odesolverrkck(const real_1d_array &y, const real_1d_array &x, const double eps, const double h, odesolverstate &state) { alglib_impl::ae_state _alglib_env_state; ae_int_t n; ae_int_t m; n = y.length(); m = x.length(); alglib_impl::ae_state_init(&_alglib_env_state); try { alglib_impl::odesolverrkck(const_cast<alglib_impl::ae_vector*>(y.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(x.c_ptr()), m, eps, h, const_cast<alglib_impl::odesolverstate*>(state.c_ptr()), &_alglib_env_state); alglib_impl::ae_state_clear(&_alglib_env_state); return; } catch(alglib_impl::ae_error_type) { throw ap_error(_alglib_env_state.error_msg); } }
void function1_grad(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr){ CasADi::SXFunction &fun = ((CasADi::SXFunction*)ptr)[0]; CasADi::SXFunction &grad_fun = ((CasADi::SXFunction*)ptr)[1]; VectorXd eig_x(x.length()); for (int i = 0; i < eig_x.size(); ++i) eig_x[i] = x[i]; static VectorXd f,g; CASADI::evaluate(fun, eig_x, f); CASADI::evaluate(grad_fun, eig_x, g); assert_eq(f.size(),1); assert_eq(g.size(), grad.length()); assert_eq(g.norm(), g.norm()); assert_eq(f[0], f[0]); func = f[0]; for (int i = 0; i < g.size(); ++i) grad[i] = g[i]; DEBUG_LOG("f = "<<func); }
CostCalculator_eigen::CostCalculator_eigen(const real_1d_array expectReturn, const real_2d_array &varMatrix, const real_1d_array &tradingCost, const real_1d_array ¤tWeight) { assert(expectReturn.length() == varMatrix.rows()); assert(varMatrix.rows() == varMatrix.cols()); assert(tradingCost.length() == varMatrix.rows()); assert(currentWeight.length() == varMatrix.rows()); variableNumber_ = expectReturn.length(); xReal_.resize(variableNumber_, 1); varMatrix_.resize(variableNumber_, variableNumber_); expectReturn_.resize(variableNumber_); tradingCost_.resize(variableNumber_); currentWeight_.resize(variableNumber_); for (int i = 0; i != variableNumber_; ++i) { expectReturn_(i) = expectReturn[i]; tradingCost_(i) = tradingCost[i]; currentWeight_(i) = currentWeight[i]; for (int j = 0; j != variableNumber_; ++j) varMatrix_(i, j) = varMatrix[i][j]; } }