Beispiel #1
0
/*************************************************************************
* This function checks whether or not the boundary information is correct
**************************************************************************/
idxtype CheckBnd2(GraphType *graph) 
{
  idxtype i, j, nvtxs, nbnd, id, ed;
  idxtype *xadj, *adjncy, *where, *bndptr, *bndind;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  where = graph->where;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  for (nbnd=0, i=0; i<nvtxs; i++) {
    id = ed = 0;
    for (j=xadj[i]; j<xadj[i+1]; j++) {
      if (where[i] != where[adjncy[j]]) 
        ed += graph->adjwgt[j];
      else
        id += graph->adjwgt[j];
    }
    if (ed - id >= 0 && xadj[i] < xadj[i+1]) {
      nbnd++;
      ASSERTP(bndptr[i] != -1, ("%d %d %d\n", i, id, ed));
      ASSERT(bndind[bndptr[i]] == i);
    }
  }

  ASSERTP(nbnd == graph->nbnd, ("%d %d\n", nbnd, graph->nbnd));

  return 1;
}
Beispiel #2
0
/*************************************************************************
* This function checks whether or not the boundary information is correct
**************************************************************************/
idxtype CheckNodeBnd(GraphType *graph, idxtype onbnd) 
{
  idxtype i, j, nvtxs, nbnd;
  idxtype *xadj, *adjncy, *where, *bndptr, *bndind;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  where = graph->where;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  for (nbnd=0, i=0; i<nvtxs; i++) {
    if (where[i] == 2) 
      nbnd++;   
  }

  ASSERTP(nbnd == onbnd, ("%d %d\n", nbnd, onbnd));

  for (i=0; i<nvtxs; i++) {
    if (where[i] != 2) {
      ASSERTP(bndptr[i] == -1, ("%d %d\n", i, bndptr[i]));
    }
    else {
      ASSERTP(bndptr[i] != -1, ("%d %d\n", i, bndptr[i]));
    }
  }

  return 1;
}
Beispiel #3
0
/**
 * Begin an object. Only allowed at the beginning of the output,
 * after adding an object or inside an array.
 */
void Saver::beginObject(void) throw(io::IOException) {
	ASSERTP(state != END, "json: ended output!");
	ASSERTP(!isObject(state), "json: object creation only allowed in a field or an array");
	doIndent();
	_out << "{";
	if(isArray(state))
		stack.push(state);
	state = OBJECT;
}
Beispiel #4
0
/**
 * Begin an array. Only allowed inside an array or in a field.
 */
void Saver::beginArray(void) throw(io::IOException) {
	ASSERTP(state != END, "json: ended output!");
	ASSERTP(state == FIELD || isArray(state), "json: array only allowed in a field or in an array");
	doIndent();
	_out << "[";
	if(state != FIELD)
		stack.push(state);
	state = ARRAY;
}
Beispiel #5
0
/**
 * Adds an attribute to this element, replacing any existing attribute with the
 * same local name and namespace URI.
 * @param attribute the attribute to add
 * @throw MultipleParentException if the attribute is already attached to an
 * element
 * @throw NamespaceConflictException - if the attribute's prefix is mapped to a
 * different namespace URI than the same prefix is mapped to by this element,
 * another attribute of this element, or an additional namespace declaration of
 * this element.
 */
void Element::addAttribute(Attribute *attribute) {
	ASSERTP(attribute, "null attribute");
	ASSERTP(!attribute->getNode(), "already added attribute");
	xmlAttrPtr attr;
	// !!TODO!! add support for namespace
	attr = xmlSetProp(NODE(node), attribute->getLocalName(), attribute->getValue());
	ASSERT(attr);
	attribute->setNode(attr);
}
/**
 * Add the given node to the tree.
 * @param node		Node to add.
 */
void SortedBinTree::insert(Node *node) {
	ASSERTP(node, "null node");
	if(isEmpty())
		setRoot(node);
	else
		insert(root(), node);
}
Beispiel #7
0
void Project2WayNodePartition(ctrl_t *ctrl, graph_t *graph)
{
  idx_t i, j, nvtxs;
  idx_t *cmap, *where, *cwhere;
  graph_t *cgraph;

  cgraph = graph->coarser;
  cwhere = cgraph->where;

  nvtxs = graph->nvtxs;
  cmap  = graph->cmap;

  Allocate2WayNodePartitionMemory(ctrl, graph);
  where = graph->where;
  
  /* Project the partition */
  for (i=0; i<nvtxs; i++) {
    where[i] = cwhere[cmap[i]];
    ASSERTP(where[i] >= 0 && where[i] <= 2, ("%"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX"\n", 
          i, cmap[i], where[i], cwhere[cmap[i]]));
  }

  FreeGraph(&graph->coarser);
  graph->coarser = NULL;

  Compute2WayNodePartitionParams(ctrl, graph);
}
Beispiel #8
0
/*************************************************************************
* This function checks whether or not the boundary information is correct
**************************************************************************/
idxtype CheckBnd(GraphType *graph) 
{
  idxtype i, j, nvtxs, nbnd;
  idxtype *xadj, *adjncy, *where, *bndptr, *bndind;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  where = graph->where;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  for (nbnd=0, i=0; i<nvtxs; i++) {
    if (xadj[i+1]-xadj[i] == 0)
      nbnd++;   /* Islands are considered to be boundary vertices */

    for (j=xadj[i]; j<xadj[i+1]; j++) {
      if (where[i] != where[adjncy[j]]) {
        nbnd++;
        ASSERT(bndptr[i] != -1);
        ASSERT(bndind[bndptr[i]] == i);
        break;
      }
    }
  }

  ASSERTP(nbnd == graph->nbnd, ("%d %d\n", nbnd, graph->nbnd));

  return 1;
}
Beispiel #9
0
/**
 * End an array. Only allowed inside an array.
 */
void Saver::endArray(void) throw(io::IOException) {
	ASSERTP(isArray(state), "json: not inside an array!");
	state_t new_state = next(stack.pop());
	state = ARRAY;
	doIndent(true);
	_out << "]";
	state = new_state;
}
Beispiel #10
0
/**
 * Put a double value.
 * @param val	Value to put.
 */
void Saver::put(double val) throw(io::IOException) {
	ASSERTP(state == FIELD || isArray(state), "json: cannot put a value out of a field or an array!");
	doIndent();
	_out << val;
	if(state == FIELD)
		state = stack.pop();
	state = next(state);
}
Beispiel #11
0
/**
 * End an object. Only allowed inside an object.
 */
void Saver::endObject(void) throw(io::IOException) {
	ASSERTP(isObject(state), "json: not inside an object!");
	if(!stack)
		state = END;
	else
		state = next(stack.pop());
	doIndent(true);
	_out << "}";
}
Beispiel #12
0
/**
 * Selects an attribute by index. The index is purely for convenience and has no
 * particular meaning. In particular, it is not necessarily the position of this
 * attribute in the original document from which this Element object was read.
 * As with most lists in Java, attributes are numbered from 0 to one less than
 * the length of the list.
 * @par
 * In general, you should not add attributes to or remove attributes from the
 * list while iterating across it. Doing so will change the indexes of the other
 * attributes in the list. it is, however, safe to remove an attribute from
 * either end of the list (0 or getAttributeCount()-1) until there are no
 * attributes left.
 * @param index the attribute to return.
 * @return the indexth attribute of this element
 */
Attribute *Element::getAttribute(int index) {
	int cnt = 0;
	for(struct _xmlAttr *attr = NODE(node)->properties; attr; attr = attr->next) {
		if(cnt == index)
			return static_cast<Attribute *>(get(attr));
		cnt++;
	}
	ASSERTP(false, "attribute index out of element bound");
	return 0;
}
Beispiel #13
0
/**
 * Add a field. Only allowed inside an object.
 */
void Saver::addField(string id) throw(io::IOException) {
	ASSERTP(isObject(state), "json: field only allowed inside an object!");
	doIndent();
	_out << '"';
	try {
		for(utf8::Iter i(id); i; i++)
			escape(*i);
	}
	catch(utf8::Exception& e) {
		ASSERTP(false, _ << "json: bad utf8 string: \"" << id << "\"");
	}
	_out << '"';
	if(isReadable())
		_out << ": ";
	else
		_out << ":";
	stack.push(state);
	state = FIELD;
}
Beispiel #14
0
/*************************************************************************
* This function checks whether or not the rinfo of a vertex is consistent
**************************************************************************/
idxtype CheckRInfo(RInfoType *rinfo)
{
  idxtype i, j;

  for (i=0; i<rinfo->ndegrees; i++) {
    for (j=i+1; j<rinfo->ndegrees; j++)
      ASSERTP(rinfo->edegrees[i].pid != rinfo->edegrees[j].pid, ("%d %d %d %d\n", i, j, rinfo->edegrees[i].pid, rinfo->edegrees[j].pid));
  }

  return 1;
}
Beispiel #15
0
/**
 * Put a boolean value.
 * @param val	Value to put.
 */
void Saver::put(bool val) throw(io::IOException) {
	ASSERTP(state == FIELD || isArray(state), "json: cannot put a value out of a field or an array!");
	doIndent();
	if(val)
		_out << "true";
	else
		_out << "false";
	if(state == FIELD)
		state = stack.pop();
	state = next(state);
}
Beispiel #16
0
/**
 * Put a string value.
 * @param val	String to put.
 */
void Saver::put(string val) throw(io::IOException) {
	ASSERTP(state == FIELD || isArray(state), "json: cannot put a value out of a field or an array!");
	doIndent();
	_out << '"';
	for(utf8::Iter i(val); i; i++)
		escape(*i);
	_out << '"';
	if(state == FIELD)
		state = stack.pop();
	state = next(state);
}
Beispiel #17
0
/**
 * Returns the indexth namespace prefix declared on this element. Namespaces
 * inherited from ancestors are not included. The index is purely for
 * convenience, and has no meaning in itself. This includes the namespaces of
 * the element name and of all attributes' names (except for those with the
 * prefix xml such as xml:space) as well as additional declarations made for
 * attribute values and element content. However, prefixes used multiple times
 * (e.g. on several attribute values) are only reported once. The default
 * namespace is reported with an empty string prefix if present. Like most lists
 * in Java, the first prefix is at index 0.
 * @par
 * If the namespaces on the element change for any reason (adding or removing an
 * attribute in a namespace, adding or removing a namespace declaration,
 * changing the prefix of an element, etc.) then then this method may skip or
 * repeat prefixes. Don't change the prefixes of an element while iterating
 * across them.
 * @param index The prefix to return.
 * @return The prefix.
 **/
String Element::getNamespacePrefix(int index) {
	for(xmlNs *ns = NODE(node)->nsDef; ns; ns = ns->next) {
		if(index)
			index--;
		else if(ns->prefix)
			return ns->prefix;
		else
			return "";
	}
	ASSERTP(false, "namespace index out of bounds");
	return "";
}
/**
 * Get the node from the tree that is equal to the given one.
 * @param	node	Node to test for.
 * @return	Found node or null.
 */
SortedBinTree::Node *SortedBinTree::get(Node *node) {
	ASSERTP(node, "null node");
	Node *cur = root();
	while(cur) {
		int result = compare(node, cur);
		if(!result)
			break;
		else if(result < 0)
			cur = cur->left();
		else
			cur = cur->right();
	}
	return cur;
}
Beispiel #19
0
/**
 * Create a random access stream from a file, removing it if it already exists.
 * @param path			Path of the file to open.
 * @param access		Type of access (one of READ, WRITE, READ_WRITE).
 * @return				Opened file.
 * @throws IOException	Thrown if there is an error.
 */
io::RandomAccessStream *System::createRandomFile(
		const sys::Path& path,
		access_t access)
throw(SystemException)
{
	ASSERTP(access != READ, "file creation requires at least a write mode");
	int fd = ::open(&path.toString(), makeFlags(access) | O_CREAT | O_TRUNC, 0666);
	if(fd < 0)
		throw SystemException(errno, _ << "cannot create \"" << path << "\"");
	else
#		if defined(__unix)  || defined(__APPLE__)
			return new UnixRandomAccessStream(fd);
#		elif defined(__WIN32) || defined(__WIN64)
			return new WinRandomAccessStream(fd);
#		else
#			error "Unsupported on this OS !"
#		endif
}
Beispiel #20
0
/*************************************************************************
* This function checks if the separator is indeed a separator
**************************************************************************/
idxtype IsSeparable(GraphType *graph)
{
  idxtype i, j, nvtxs, other;
  idxtype *xadj, *adjncy, *where;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  where = graph->where;

  for (i=0; i<nvtxs; i++) {
    if (where[i] == 2)
      continue;
    other = (where[i]+1)%2;
    for (j=xadj[i]; j<xadj[i+1]; j++) {
      ASSERTP(where[adjncy[j]] != other, ("%d %d %d %d %d %d\n", i, where[i], adjncy[j], where[adjncy[j]], xadj[i+1]-xadj[i], xadj[adjncy[j]+1]-xadj[adjncy[j]]));
    }
  }

  return 1;
}
Beispiel #21
0
/**
 * Test if the first basic block postdominates the second one.
 * @param bb1	Dominator BB.
 * @param bb2	Dominated BB.
 * @return		True if bb1 postdominates bb2.
 */
bool PostDominance::postDominates(BasicBlock *bb1, BasicBlock *bb2) {
	ASSERTP(bb1, "null BB 1");
	ASSERTP(bb2, "null BB 2");
	ASSERTP(bb1->cfg() == bb2->cfg(), "both BB are not owned by the same CFG");
	int index = bb1->number();
	ASSERTP(index >= 0, "no index for BB 1");
	BitSet *set = REVERSE_POSTDOM(bb2);
	ASSERTP(set, "no index for BB 2");

	ASSERTP(bb1 == bb2
		||	!REVERSE_POSTDOM(bb1)->contains(bb2->number())
		||  !REVERSE_POSTDOM(bb2)->contains(bb1->number()),
			"CFG with disconnected nodes");

	return set->contains(index);
}
Beispiel #22
0
/*************************************************************************
* This function creates the coarser graph
**************************************************************************/
void CreateCoarseGraphNoMask(CtrlType *ctrl, GraphType *graph, int cnvtxs, idxtype *match, idxtype *perm)
{
  int i, j, k, m, istart, iend, nvtxs, nedges, ncon, cnedges, v, u, dovsize;
  idxtype *xadj, *vwgt, *vsize, *adjncy, *adjwgt, *adjwgtsum, *auxadj;
  idxtype *cmap, *htable;
  idxtype *cxadj, *cvwgt, *cvsize, *cadjncy, *cadjwgt, *cadjwgtsum;
  float *nvwgt, *cnvwgt;
  GraphType *cgraph;

  dovsize = (ctrl->optype == OP_KVMETIS ? 1 : 0);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ContractTmr));

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  vsize = graph->vsize;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  adjwgtsum = graph->adjwgtsum;
  cmap = graph->cmap;


  /* Initialize the coarser graph */
  cgraph = SetUpCoarseGraph(graph, cnvtxs, dovsize);
  cxadj = cgraph->xadj;
  cvwgt = cgraph->vwgt;
  cvsize = cgraph->vsize;
  cnvwgt = cgraph->nvwgt;
  cadjwgtsum = cgraph->adjwgtsum;
  cadjncy = cgraph->adjncy;
  cadjwgt = cgraph->adjwgt;


  htable = idxset(cnvtxs, -1, idxwspacemalloc(ctrl, cnvtxs));

  iend = xadj[nvtxs];
  auxadj = ctrl->wspace.auxcore; 
  memcpy(auxadj, adjncy, iend*sizeof(idxtype)); 
  for (i=0; i<iend; i++)
    auxadj[i] = cmap[auxadj[i]];

  cxadj[0] = cnvtxs = cnedges = 0;
  for (i=0; i<nvtxs; i++) {
    v = perm[i];
    if (cmap[v] != cnvtxs) 
      continue;

    u = match[v];
    if (ncon == 1)
      cvwgt[cnvtxs] = vwgt[v];
    else
      scopy(ncon, nvwgt+v*ncon, cnvwgt+cnvtxs*ncon);

    if (dovsize)
      cvsize[cnvtxs] = vsize[v];

    cadjwgtsum[cnvtxs] = adjwgtsum[v];
    nedges = 0;

    istart = xadj[v];
    iend = xadj[v+1];
    for (j=istart; j<iend; j++) {
      k = auxadj[j];
      if ((m = htable[k]) == -1) {
        cadjncy[nedges] = k;
        cadjwgt[nedges] = adjwgt[j];
        htable[k] = nedges++;
      }
      else {
        cadjwgt[m] += adjwgt[j];
      }
    }

    if (v != u) { 
      if (ncon == 1)
        cvwgt[cnvtxs] += vwgt[u];
      else
        saxpy(ncon, 1.0, nvwgt+u*ncon, 1, cnvwgt+cnvtxs*ncon, 1);

      if (dovsize)
        cvsize[cnvtxs] += vsize[u];

      cadjwgtsum[cnvtxs] += adjwgtsum[u];

      istart = xadj[u];
      iend = xadj[u+1];
      for (j=istart; j<iend; j++) {
        k = auxadj[j];
        if ((m = htable[k]) == -1) {
          cadjncy[nedges] = k;
          cadjwgt[nedges] = adjwgt[j];
          htable[k] = nedges++;
        }
        else {
          cadjwgt[m] += adjwgt[j];
        }
      }

      /* Remove the contracted adjacency weight */
      if ((j = htable[cnvtxs]) != -1) {
        ASSERT(cadjncy[j] == cnvtxs);
        cadjwgtsum[cnvtxs] -= cadjwgt[j];
        cadjncy[j] = cadjncy[--nedges];
        cadjwgt[j] = cadjwgt[nedges];
        htable[cnvtxs] = -1;
      }
    }

    ASSERTP(cadjwgtsum[cnvtxs] == idxsum(nedges, cadjwgt), ("%d %d\n", cadjwgtsum[cnvtxs], idxsum(nedges, cadjwgt)));

    for (j=0; j<nedges; j++)
      htable[cadjncy[j]] = -1;  /* Zero out the htable */

    cnedges += nedges;
    cxadj[++cnvtxs] = cnedges;
    cadjncy += nedges;
    cadjwgt += nedges;
  }

  cgraph->nedges = cnedges;

  ReAdjustMemory(graph, cgraph, dovsize);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ContractTmr));

  idxwspacefree(ctrl, cnvtxs);
}
Beispiel #23
0
/*************************************************************************
* This function creates the coarser graph
**************************************************************************/
void CreateCoarseGraph_NVW(CtrlType *ctrl, GraphType *graph, int cnvtxs, idxtype *match, idxtype *perm)
{
  int i, j, jj, k, kk, l, m, istart, iend, nvtxs, nedges, ncon, cnedges, v, u, mask;
  idxtype *xadj, *adjncy, *adjwgtsum, *auxadj;
  idxtype *cmap, *htable;
  idxtype *cxadj, *cvwgt, *cadjncy, *cadjwgt, *cadjwgtsum;
  float *nvwgt, *cnvwgt;
  GraphType *cgraph;


  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ContractTmr));

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  nvwgt = graph->nvwgt;
  adjncy = graph->adjncy;
  adjwgtsum = graph->adjwgtsum;
  cmap = graph->cmap;

  /* Initialize the coarser graph */
  cgraph = SetUpCoarseGraph(graph, cnvtxs, 0);
  cxadj = cgraph->xadj;
  cvwgt = cgraph->vwgt;
  cnvwgt = cgraph->nvwgt;
  cadjwgtsum = cgraph->adjwgtsum;
  cadjncy = cgraph->adjncy;
  cadjwgt = cgraph->adjwgt;


  iend = xadj[nvtxs];
  auxadj = ctrl->wspace.auxcore; 
  memcpy(auxadj, adjncy, iend*sizeof(idxtype)); 
  for (i=0; i<iend; i++)
    auxadj[i] = cmap[auxadj[i]];

  mask = HTLENGTH;
  htable = idxset(mask+1, -1, idxwspacemalloc(ctrl, mask+1)); 

  cxadj[0] = cnvtxs = cnedges = 0;
  for (i=0; i<nvtxs; i++) {
    v = perm[i];
    if (cmap[v] != cnvtxs) 
      continue;

    u = match[v];
    cvwgt[cnvtxs] = 1;
    cadjwgtsum[cnvtxs] = adjwgtsum[v];
    nedges = 0;

    istart = xadj[v];
    iend = xadj[v+1];
    for (j=istart; j<iend; j++) {
      k = auxadj[j];
      kk = k&mask;
      if ((m = htable[kk]) == -1) {
        cadjncy[nedges] = k;
        cadjwgt[nedges] = 1;
        htable[kk] = nedges++;
      }
      else if (cadjncy[m] == k) {
        cadjwgt[m]++;
      }
      else {
        for (jj=0; jj<nedges; jj++) {
          if (cadjncy[jj] == k) {
            cadjwgt[jj]++;
            break;
          }
        }
        if (jj == nedges) {
          cadjncy[nedges] = k;
          cadjwgt[nedges++] = 1;
        }
      }
    }

    if (v != u) { 
      cvwgt[cnvtxs]++;
      cadjwgtsum[cnvtxs] += adjwgtsum[u];

      istart = xadj[u];
      iend = xadj[u+1];
      for (j=istart; j<iend; j++) {
        k = auxadj[j];
        kk = k&mask;
        if ((m = htable[kk]) == -1) {
          cadjncy[nedges] = k;
          cadjwgt[nedges] = 1;
          htable[kk] = nedges++;
        }
        else if (cadjncy[m] == k) {
          cadjwgt[m]++;
        }
        else {
          for (jj=0; jj<nedges; jj++) {
            if (cadjncy[jj] == k) {
              cadjwgt[jj]++;
              break;
            }
          }
          if (jj == nedges) {
            cadjncy[nedges] = k;
            cadjwgt[nedges++] = 1;
          }
        }
      }

      /* Remove the contracted adjacency weight */
      jj = htable[cnvtxs&mask];
      if (jj >= 0 && cadjncy[jj] != cnvtxs) {
        for (jj=0; jj<nedges; jj++) {
          if (cadjncy[jj] == cnvtxs) 
            break;
        }
      }
      if (jj >= 0 && cadjncy[jj] == cnvtxs) { /* This 2nd check is needed for non-adjacent matchings */
        cadjwgtsum[cnvtxs] -= cadjwgt[jj];
        cadjncy[jj] = cadjncy[--nedges];
        cadjwgt[jj] = cadjwgt[nedges];
      }
    }

    ASSERTP(cadjwgtsum[cnvtxs] == idxsum(nedges, cadjwgt), ("%d %d %d %d %d\n", cnvtxs, cadjwgtsum[cnvtxs], idxsum(nedges, cadjwgt), adjwgtsum[u], adjwgtsum[v]));

    for (j=0; j<nedges; j++)
      htable[cadjncy[j]&mask] = -1;  /* Zero out the htable */
    htable[cnvtxs&mask] = -1;

    cnedges += nedges;
    cxadj[++cnvtxs] = cnedges;
    cadjncy += nedges;
    cadjwgt += nedges;
  }

  cgraph->nedges = cnedges;

  ReAdjustMemory(graph, cgraph, 0);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ContractTmr));

  idxwspacefree(ctrl, mask+1);

}
Beispiel #24
0
/**
 * Set the write port size (at least 1).
 * @param read_write_size	Write port size.
 */
void Cache::setWritePortSize(int write_port_size) {
	ASSERTP(write_port_size >= 0, "bad write port size");
	_info.write_port_size = write_port_size;
}
Beispiel #25
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Moc_KWayFM(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace, int npasses)
{
  int h, i, ii, iii, j, k, c;
  int pass, nvtxs, nedges, ncon;
  int nmoves, nmoved, nswaps, nzgswaps;
/*  int gnswaps, gnzgswaps; */
  int me, firstvtx, lastvtx, yourlastvtx;
  int from, to = -1, oldto, oldcut, mydomain, yourdomain, imbalanced, overweight;
  int npes = ctrl->npes, mype = ctrl->mype, nparts = ctrl->nparts;
  int nlupd, nsupd, nnbrs, nchanged;
  idxtype *xadj, *ladjncy, *adjwgt, *vtxdist;
  idxtype *where, *tmp_where, *moved;
  floattype *lnpwgts, *gnpwgts, *ognpwgts, *pgnpwgts, *movewgts, *overfill;
  idxtype *update, *supdate, *rupdate, *pe_updates;
  idxtype *changed, *perm, *pperm, *htable;
  idxtype *peind, *recvptr, *sendptr;
  KeyValueType *swchanges, *rwchanges;
  RInfoType *rinfo, *myrinfo, *tmp_myrinfo, *tmp_rinfo;
  EdgeType *tmp_edegrees, *my_edegrees, *your_edegrees;
  floattype lbvec[MAXNCON], *nvwgt, *badmaxpwgt, *ubvec, *tpwgts, lbavg, ubavg;
  int *nupds_pe;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayTmr));

  /*************************/
  /* set up common aliases */
  /*************************/
  nvtxs = graph->nvtxs;
  nedges = graph->nedges;
  ncon = graph->ncon;

  vtxdist = graph->vtxdist;
  xadj = graph->xadj;
  ladjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  firstvtx = vtxdist[mype];
  lastvtx = vtxdist[mype+1];

  where   = graph->where;
  rinfo   = graph->rinfo;
  lnpwgts = graph->lnpwgts;
  gnpwgts = graph->gnpwgts;
  ubvec   = ctrl->ubvec;
  tpwgts  = ctrl->tpwgts;

  nnbrs = graph->nnbrs;
  peind = graph->peind;
  recvptr = graph->recvptr;
  sendptr = graph->sendptr;

  changed = idxmalloc(nvtxs, "KWR: changed");
  rwchanges = wspace->pairs;
  swchanges = rwchanges + recvptr[nnbrs];

  /************************************/
  /* set up important data structures */
  /************************************/
  perm = idxmalloc(nvtxs, "KWR: perm");
  pperm = idxmalloc(nparts, "KWR: pperm");

  update = idxmalloc(nvtxs, "KWR: update");
  supdate = wspace->indices;
  rupdate = supdate + recvptr[nnbrs];
  nupds_pe = imalloc(npes, "KWR: nupds_pe");
  htable = idxsmalloc(nvtxs+graph->nrecv, 0, "KWR: lhtable");
  badmaxpwgt = fmalloc(nparts*ncon, "badmaxpwgt");

  for (i=0; i<nparts; i++) {
    for (h=0; h<ncon; h++) {
      badmaxpwgt[i*ncon+h] = ubvec[h]*tpwgts[i*ncon+h];
    }
  }

  movewgts = fmalloc(nparts*ncon, "KWR: movewgts");
  ognpwgts = fmalloc(nparts*ncon, "KWR: ognpwgts");
  pgnpwgts = fmalloc(nparts*ncon, "KWR: pgnpwgts");
  overfill = fmalloc(nparts*ncon, "KWR: overfill");
  moved = idxmalloc(nvtxs, "KWR: moved");
  tmp_where = idxmalloc(nvtxs+graph->nrecv, "KWR: tmp_where");
  tmp_rinfo = (RInfoType *)GKmalloc(sizeof(RInfoType)*nvtxs, "KWR: tmp_rinfo");
  tmp_edegrees = (EdgeType *)GKmalloc(sizeof(EdgeType)*nedges, "KWR: tmp_edegrees");

  idxcopy(nvtxs+graph->nrecv, where, tmp_where);
  for (i=0; i<nvtxs; i++) {
    tmp_rinfo[i].id = rinfo[i].id;
    tmp_rinfo[i].ed = rinfo[i].ed;
    tmp_rinfo[i].ndegrees = rinfo[i].ndegrees;
    tmp_rinfo[i].degrees = tmp_edegrees+xadj[i];

    for (j=0; j<rinfo[i].ndegrees; j++) {
      tmp_rinfo[i].degrees[j].edge = rinfo[i].degrees[j].edge;
      tmp_rinfo[i].degrees[j].ewgt = rinfo[i].degrees[j].ewgt;
    }
  }

  nswaps = nzgswaps = 0;
  /*********************************************************/
  /* perform a small number of passes through the vertices */
  /*********************************************************/
  for (pass=0; pass<npasses; pass++) {
    if (mype == 0)
      RandomPermute(nparts, pperm, 1);
    MPI_Bcast((void *)pperm, nparts, IDX_DATATYPE, 0, ctrl->comm);
    FastRandomPermute(nvtxs, perm, 1);
    oldcut = graph->mincut;

    /* check to see if the partitioning is imbalanced */
    Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec);
    ubavg = savg(ncon, ubvec);
    lbavg = savg(ncon, lbvec);
    imbalanced = (lbavg > ubavg) ? 1 : 0;

    for (c=0; c<2; c++) {
      scopy(ncon*nparts, gnpwgts, ognpwgts);
      sset(ncon*nparts, 0.0, movewgts);
      nmoved = 0;

      /**********************************************/
      /* PASS ONE -- record stats for desired moves */
      /**********************************************/
      for (iii=0; iii<nvtxs; iii++) {
        i = perm[iii];
        from = tmp_where[i];
        nvwgt = graph->nvwgt+i*ncon;

        for (h=0; h<ncon; h++)
          if (fabs(nvwgt[h]-gnpwgts[from*ncon+h]) < SMALLFLOAT)
            break;

        if (h < ncon) {
          continue;
        }

        /* check for a potential improvement */
        if (tmp_rinfo[i].ed >= tmp_rinfo[i].id) {
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++) {
            to = my_edegrees[k].edge;
            if (ProperSide(c, pperm[from], pperm[to])) {
              for (h=0; h<ncon; h++)
                if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                  break;

              if (h == ncon)
                break;
            }
          }
          oldto = to;

          /* check if a subdomain was found that fits */
          if (k < tmp_rinfo[i].ndegrees) {
            for (j=k+1; j<tmp_rinfo[i].ndegrees; j++) {
              to = my_edegrees[j].edge;
              if (ProperSide(c, pperm[from], pperm[to])) {
                for (h=0; h<ncon; h++)
                  if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                    break;

                if (h == ncon) {
                  if (my_edegrees[j].ewgt > my_edegrees[k].ewgt ||
                   (my_edegrees[j].ewgt == my_edegrees[k].ewgt &&
                   IsHBalanceBetterTT(ncon,gnpwgts+oldto*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){
                    k = j;
                    oldto = my_edegrees[k].edge;
                  }
                }
              }
            }
            to = oldto;

            if (my_edegrees[k].ewgt > tmp_rinfo[i].id ||
            (my_edegrees[k].ewgt == tmp_rinfo[i].id &&
            (imbalanced ||  graph->level > 3  || iii % 8 == 0) &&
            IsHBalanceBetterFT(ncon,gnpwgts+from*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){

              /****************************************/
              /* Update tmp arrays of the moved vertex */
              /****************************************/
              tmp_where[i] = to;
              moved[nmoved++] = i;
              for (h=0; h<ncon; h++) {
                lnpwgts[to*ncon+h] += nvwgt[h];
                lnpwgts[from*ncon+h] -= nvwgt[h];
                gnpwgts[to*ncon+h] += nvwgt[h];
                gnpwgts[from*ncon+h] -= nvwgt[h];
                movewgts[to*ncon+h] += nvwgt[h];
                movewgts[from*ncon+h] -= nvwgt[h];
              }

              tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
              SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
              if (my_edegrees[k].ewgt == 0) {
                tmp_rinfo[i].ndegrees--;
                my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
                my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
              }
              else {
                my_edegrees[k].edge = from;
              }

              /* Update the degrees of adjacent vertices */
              for (j=xadj[i]; j<xadj[i+1]; j++) {
                /* no need to bother about vertices on different pe's */
                if (ladjncy[j] >= nvtxs)
                  continue;

                me = ladjncy[j];
                mydomain = tmp_where[me];

                myrinfo = tmp_rinfo+me;
                your_edegrees = myrinfo->degrees;

                if (mydomain == from) {
                  INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
                }
                else {
                  if (mydomain == to) {
                    INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                  }
                }

                /* Remove contribution from the .ed of 'from' */
                if (mydomain != from) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == from) {
                      if (your_edegrees[k].ewgt == adjwgt[j]) {
                        myrinfo->ndegrees--;
                        your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                        your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                      }
                      else {
                        your_edegrees[k].ewgt -= adjwgt[j];
                      }
                      break;
                    }
                  }
                }

                /* Add contribution to the .ed of 'to' */
                if (mydomain != to) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == to) {
                      your_edegrees[k].ewgt += adjwgt[j];
                      break;
                    }
                  }
                  if (k == myrinfo->ndegrees) {
                    your_edegrees[myrinfo->ndegrees].edge = to;
                    your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                  }
                }
              }
            }
          }
        }
      }

      /******************************************/
      /* Let processors know the subdomain wgts */
      /* if all proposed moves commit.          */
      /******************************************/
      MPI_Allreduce((void *)lnpwgts, (void *)pgnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);

      /**************************/
      /* compute overfill array */
      /**************************/
      overweight = 0;
      for (j=0; j<nparts; j++) {
        for (h=0; h<ncon; h++) {
          if (pgnpwgts[j*ncon+h] > ognpwgts[j*ncon+h]) {
            overfill[j*ncon+h] =
            (pgnpwgts[j*ncon+h]-badmaxpwgt[j*ncon+h]) /
            (pgnpwgts[j*ncon+h]-ognpwgts[j*ncon+h]);
          }
          else {
            overfill[j*ncon+h] = 0.0;
          }

          overfill[j*ncon+h] = amax(overfill[j*ncon+h], 0.0);
          overfill[j*ncon+h] *= movewgts[j*ncon+h];

          if (overfill[j*ncon+h] > 0.0)
            overweight = 1;

          ASSERTP(ctrl, ognpwgts[j*ncon+h] <= badmaxpwgt[j*ncon+h] ||
          pgnpwgts[j*ncon+h] <= ognpwgts[j*ncon+h],
          (ctrl, "%.4f %.4f %.4f\n", ognpwgts[j*ncon+h],
          badmaxpwgt[j*ncon+h], pgnpwgts[j*ncon+h]));
        }
      }

      /****************************************************/
      /* select moves to undo according to overfill array */
      /****************************************************/
      if (overweight == 1) {
        for (iii=0; iii<nmoved; iii++) {
          i = moved[iii];
          oldto = tmp_where[i];
          nvwgt = graph->nvwgt+i*ncon;
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++)
            if (my_edegrees[k].edge == where[i])
              break;

          for (h=0; h<ncon; h++)
            if (nvwgt[h] > 0.0 && overfill[oldto*ncon+h] > nvwgt[h]/4.0)
              break;

          /**********************************/
          /* nullify this move if necessary */
          /**********************************/
          if (k != tmp_rinfo[i].ndegrees && h != ncon) {
            moved[iii] = -1;
            from = oldto;
            to = where[i];

            for (h=0; h<ncon; h++) {
              overfill[oldto*ncon+h] = amax(overfill[oldto*ncon+h]-nvwgt[h], 0.0);
            }

            tmp_where[i] = to;
            tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
            SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
            if (my_edegrees[k].ewgt == 0) {
              tmp_rinfo[i].ndegrees--;
              my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
              my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
            }
            else {
              my_edegrees[k].edge = from;
            }

            for (h=0; h<ncon; h++) {
              lnpwgts[to*ncon+h] += nvwgt[h];
              lnpwgts[from*ncon+h] -= nvwgt[h];
            }

            /* Update the degrees of adjacent vertices */
            for (j=xadj[i]; j<xadj[i+1]; j++) {
              /* no need to bother about vertices on different pe's */
              if (ladjncy[j] >= nvtxs)
                continue;

              me = ladjncy[j];
              mydomain = tmp_where[me];

              myrinfo = tmp_rinfo+me;
              your_edegrees = myrinfo->degrees;

              if (mydomain == from) {
                INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
              }
              else {
                if (mydomain == to) {
                  INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                }
              }

              /* Remove contribution from the .ed of 'from' */
              if (mydomain != from) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == from) {
                    if (your_edegrees[k].ewgt == adjwgt[j]) {
                      myrinfo->ndegrees--;
                      your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                      your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                    }
                    else {
                      your_edegrees[k].ewgt -= adjwgt[j];
                    }
                    break;
                  }
                }
              }

              /* Add contribution to the .ed of 'to' */
              if (mydomain != to) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == to) {
                    your_edegrees[k].ewgt += adjwgt[j];
                    break;
                  }
                }
                if (k == myrinfo->ndegrees) {
                  your_edegrees[myrinfo->ndegrees].edge = to;
                  your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                }
              }
            }
          }
        }
      }

      /*************************************************/
      /* PASS TWO -- commit the remainder of the moves */
      /*************************************************/
      nlupd = nsupd = nmoves = nchanged = 0;
      for (iii=0; iii<nmoved; iii++) {
        i = moved[iii];
        if (i == -1)
          continue;

        where[i] = tmp_where[i];

        /* Make sure to update the vertex information */
        if (htable[i] == 0) {
          /* make sure you do the update */
          htable[i] = 1;
          update[nlupd++] = i;
        }

        /* Put the vertices adjacent to i into the update array */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          k = ladjncy[j];
          if (htable[k] == 0) {
            htable[k] = 1;
            if (k<nvtxs)
              update[nlupd++] = k;
            else
              supdate[nsupd++] = k;
          }
        }
        nmoves++;
        nswaps++;

        /* check number of zero-gain moves */
        for (k=0; k<rinfo[i].ndegrees; k++)
          if (rinfo[i].degrees[k].edge == to)
            break;
        if (rinfo[i].id == rinfo[i].degrees[k].ewgt)
          nzgswaps++;

        if (graph->pexadj[i+1]-graph->pexadj[i] > 0)
          changed[nchanged++] = i;
      }

      /* Tell interested pe's the new where[] info for the interface vertices */
      CommChangedInterfaceData(ctrl, graph, nchanged, changed, where,
      swchanges, rwchanges, wspace->pv4); 


      IFSET(ctrl->dbglvl, DBG_RMOVEINFO,
      rprintf(ctrl, "\t[%d %d], [%.4f],  [%d %d %d]\n",
      pass, c, badmaxpwgt[0],
      GlobalSESum(ctrl, nmoves),
      GlobalSESum(ctrl, nsupd),
      GlobalSESum(ctrl, nlupd)));

      /*-------------------------------------------------------------
      / Time to communicate with processors to send the vertices
      / whose degrees need to be update.
      /-------------------------------------------------------------*/
      /* Issue the receives first */
      for (i=0; i<nnbrs; i++) {
        MPI_Irecv((void *)(rupdate+sendptr[i]), sendptr[i+1]-sendptr[i], IDX_DATATYPE,
                  peind[i], 1, ctrl->comm, ctrl->rreq+i);
      }

      /* Issue the sends next. This needs some preporcessing */
      for (i=0; i<nsupd; i++) {
        htable[supdate[i]] = 0;
        supdate[i] = graph->imap[supdate[i]];
      }
      iidxsort(nsupd, supdate);

      for (j=i=0; i<nnbrs; i++) {
        yourlastvtx = vtxdist[peind[i]+1];
        for (k=j; k<nsupd && supdate[k] < yourlastvtx; k++); 
        MPI_Isend((void *)(supdate+j), k-j, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i);
        j = k;
      }

      /* OK, now get into the loop waiting for the send/recv operations to finish */
      MPI_Waitall(nnbrs, ctrl->rreq, ctrl->statuses);
      for (i=0; i<nnbrs; i++) 
        MPI_Get_count(ctrl->statuses+i, IDX_DATATYPE, nupds_pe+i);
      MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses);


      /*-------------------------------------------------------------
      / Place the recieved to-be updated vertices into update[] 
      /-------------------------------------------------------------*/
      for (i=0; i<nnbrs; i++) {
        pe_updates = rupdate+sendptr[i];
        for (j=0; j<nupds_pe[i]; j++) {
          k = pe_updates[j];
          if (htable[k-firstvtx] == 0) {
            htable[k-firstvtx] = 1;
            update[nlupd++] = k-firstvtx;
          }
        }
      }


      /*-------------------------------------------------------------
      / Update the rinfo of the vertices in the update[] array
      /-------------------------------------------------------------*/
      for (ii=0; ii<nlupd; ii++) {
        i = update[ii];
        ASSERT(ctrl, htable[i] == 1);

        htable[i] = 0;

        mydomain = where[i];
        myrinfo = rinfo+i;
        tmp_myrinfo = tmp_rinfo+i;
        my_edegrees = myrinfo->degrees;
        your_edegrees = tmp_myrinfo->degrees;

        graph->lmincut -= myrinfo->ed;
        myrinfo->ndegrees = 0;
        myrinfo->id = 0;
        myrinfo->ed = 0;

        for (j=xadj[i]; j<xadj[i+1]; j++) {
          yourdomain = where[ladjncy[j]];
          if (mydomain != yourdomain) {
            myrinfo->ed += adjwgt[j];

            for (k=0; k<myrinfo->ndegrees; k++) {
              if (my_edegrees[k].edge == yourdomain) {
                my_edegrees[k].ewgt += adjwgt[j];
                your_edegrees[k].ewgt += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              my_edegrees[k].edge = yourdomain;
              my_edegrees[k].ewgt = adjwgt[j];
              your_edegrees[k].edge = yourdomain;
              your_edegrees[k].ewgt = adjwgt[j];
              myrinfo->ndegrees++;
            }
            ASSERT(ctrl, myrinfo->ndegrees <= xadj[i+1]-xadj[i]);
            ASSERT(ctrl, tmp_myrinfo->ndegrees <= xadj[i+1]-xadj[i]);

          }
          else {
            myrinfo->id += adjwgt[j];
          }
        }
        graph->lmincut += myrinfo->ed;

        tmp_myrinfo->id = myrinfo->id;
        tmp_myrinfo->ed = myrinfo->ed;
        tmp_myrinfo->ndegrees = myrinfo->ndegrees;
      }

      /* finally, sum-up the partition weights */
      MPI_Allreduce((void *)lnpwgts, (void *)gnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);
    }
    graph->mincut = GlobalSESum(ctrl, graph->lmincut)/2;

    if (graph->mincut == oldcut)
      break;
  }

/*
  gnswaps = GlobalSESum(ctrl, nswaps);
  gnzgswaps = GlobalSESum(ctrl, nzgswaps);
  if (mype == 0)
    printf("niters: %d, nswaps: %d, nzgswaps: %d\n", pass+1, gnswaps, gnzgswaps);
*/

  GKfree((void **)&badmaxpwgt, (void **)&update, (void **)&nupds_pe, (void **)&htable, LTERM);
  GKfree((void **)&changed, (void **)&pperm, (void **)&perm, (void **)&moved, LTERM);
  GKfree((void **)&pgnpwgts, (void **)&ognpwgts, (void **)&overfill, (void **)&movewgts, LTERM);
  GKfree((void **)&tmp_where, (void **)&tmp_rinfo, (void **)&tmp_edegrees, LTERM);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayTmr));
}
Beispiel #26
0
/**
 * Set the read port size (at least 1).
 * @param read_port_size	Read port size.
 */
void Cache::setReadPortSize(int read_port_size) {
	ASSERTP(read_port_size >= 0, "bad read port size");
	_info.read_port_size = read_port_size;
}
Beispiel #27
0
/**
 * Set the write buffer size (0 for no write buffer).
 * @param write_buffer_size	Write buffer size.
 */
void Cache::setWriteBufferSize(int write_buffer_size) {
	ASSERTP(write_buffer_size >= 0, "bad write buffer size");
	_info.write_buffer_size = write_buffer_size;
}
Beispiel #28
0
/**
 * Set the write policy of the cache.
 * @param write	Write policy, one of WRITE_THROUGH or WRITE_BACK.
 */
void Cache::setWritePolicy(write_policy_t write) {
	ASSERTP(write >= WRITE_THROUGH && write <= WRITE_BACK, "bad write policy");
	_info.write = write;
}
Beispiel #29
0
/**
 * Set the replace policy of the cache.
 * @param replace	Replace policy, one of OTHER, LRU, RANDOM, FIFO, PLRU.
 */
void Cache::setReplacePolicy(replace_policy_t replace) {
	ASSERTP(replace >= OTHER && replace <= PLRU, "bad replace policy");
	_info.replace = replace;
}
Beispiel #30
0
/**
 * Set the way count as a number of bits. The actual way count is
 * 1 << way_bits.
 * @param way_bits	Way count in bits.
 */
void Cache::setWayBits(int way_bits) {
	ASSERTP(way_bits >= 0, "bad way bits");
	_info.way_bits = way_bits;
}