Beispiel #1
0
/**
 * PIOS_Board_Init()
 * initializes all the core subsystems on this specific hardware
 * called from System/openpilot.c
 */
void PIOS_Board_Init(void) {
    /* Brings up System using CMSIS functions, enables the LEDs. */
    PIOS_SYS_Init();

    PIOS_LED_On(LED1);

    /* Delay system */
    PIOS_DELAY_Init();

    /* Communication system */
#if !defined(PIOS_ENABLE_DEBUG_PINS)
#if defined(PIOS_INCLUDE_COM)
    if (PIOS_USART_Init(&pios_usart_aux_id, &pios_usart_aux_cfg)) {
        PIOS_DEBUG_Assert(0);
    }
    if (PIOS_COM_Init(&pios_com_aux_id, &pios_usart_com_driver, pios_usart_aux_id)) {
        PIOS_DEBUG_Assert(0);
    }
#endif	/* PIOS_INCLUDE_COM */
#endif

    /* IAP System Setup */
    PIOS_IAP_Init();

    /* ADC system */
    PIOS_ADC_Init();
    extern uint8_t adc_oversampling;
    PIOS_ADC_Config(adc_oversampling);
    extern void adc_callback(float *);
    PIOS_ADC_SetCallback(adc_callback);

    /* ADC buffer */
    extern t_fifo_buffer adc_fifo_buffer;
    fifoBuf_init(&adc_fifo_buffer, adc_fifo_buf, sizeof(adc_fifo_buf));

    /* Setup the Accelerometer FS (Full-Scale) GPIO */
    PIOS_GPIO_Enable(0);
    SET_ACCEL_6G;

#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
    /* Magnetic sensor system */
    if (PIOS_I2C_Init(&pios_i2c_main_adapter_id, &pios_i2c_main_adapter_cfg)) {
        PIOS_DEBUG_Assert(0);
    }
    PIOS_HMC5843_Init();
#endif

#if defined(PIOS_INCLUDE_SPI)
#include "ahrs_spi_comm.h"
    AhrsInitComms();

    /* Set up the SPI interface to the OP board */
    if (PIOS_SPI_Init(&pios_spi_op_id, &pios_spi_op_cfg)) {
        PIOS_DEBUG_Assert(0);
    }

    AhrsConnect(pios_spi_op_id);
#endif
}
/**
 * Initialise the module, called on startup
 * \returns 0 on success or -1 if initialisation failed
 */
int32_t AHRSCommsInitialize(void)
{
    AhrsInitComms();

    // Start main task
    xTaskCreate(ahrscommsTask, (signed char*)"AHRSComms", STACK_SIZE, NULL, TASK_PRIORITY, &taskHandle);

    return 0;
}
Beispiel #3
0
/**
 * PIOS_Board_Init()
 * initializes all the core subsystems on this specific hardware
 * called from System/openpilot.c
 */
void PIOS_Board_Init(void) {

	/* Remap AFIO pin */
	//GPIO_PinRemapConfig( GPIO_Remap_SWJ_NoJTRST, ENABLE);

	/* Debug services */
	PIOS_DEBUG_Init();

	/* Delay system */
	PIOS_DELAY_Init();	
	
#if defined(PIOS_INCLUDE_SPI)	
	/* Set up the SPI interface to the SD card */
	if (PIOS_SPI_Init(&pios_spi_sdcard_id, &pios_spi_sdcard_cfg)) {
		PIOS_Assert(0);
	}

	/* Enable and mount the SDCard */
	PIOS_SDCARD_Init(pios_spi_sdcard_id);
	PIOS_SDCARD_MountFS(0);
#endif /* PIOS_INCLUDE_SPI */

	/* Initialize UAVObject libraries */
	EventDispatcherInitialize();
	UAVObjInitialize();
	UAVObjectsInitializeAll();

#if defined(PIOS_INCLUDE_RTC)
	/* Initialize the real-time clock and its associated tick */
	PIOS_RTC_Init(&pios_rtc_main_cfg);
#endif

	/* Initialize the alarms library */
	AlarmsInitialize();

	/* Initialize the task monitor library */
	TaskMonitorInitialize();

	/* Prepare the AHRS Comms upper layer protocol */
	AhrsInitComms();

	/* Set up the SPI interface to the AHRS */
	if (PIOS_SPI_Init(&pios_spi_ahrs_id, &pios_spi_ahrs_cfg)) {
		PIOS_Assert(0);
	}

	/* Bind the AHRS comms layer to the AHRS SPI link */
	AhrsConnect(pios_spi_ahrs_id);

	/* Initialize the PiOS library */
#if defined(PIOS_INCLUDE_COM)
#if defined(PIOS_INCLUDE_TELEMETRY_RF)
	uint32_t pios_usart_telem_rf_id;
	if (PIOS_USART_Init(&pios_usart_telem_rf_id, &pios_usart_telem_cfg)) {
		PIOS_Assert(0);
	}
	if (PIOS_COM_Init(&pios_com_telem_rf_id, &pios_usart_com_driver, pios_usart_telem_rf_id)) {
		PIOS_Assert(0);
	}
#endif /* PIOS_INCLUDE_TELEMETRY_RF */

#if defined(PIOS_INCLUDE_GPS)
	uint32_t pios_usart_gps_id;
	if (PIOS_USART_Init(&pios_usart_gps_id, &pios_usart_gps_cfg)) {
		PIOS_Assert(0);
	}
	if (PIOS_COM_Init(&pios_com_gps_id, &pios_usart_com_driver, pios_usart_gps_id)) {
		PIOS_Assert(0);
	}
#endif	/* PIOS_INCLUDE_GPS */
#endif

	PIOS_Servo_Init();
	PIOS_ADC_Init();
	PIOS_GPIO_Init();

#if defined(PIOS_INCLUDE_SPEKTRUM)
#if (PIOS_SPEKTRUM_NUM_INPUTS > PIOS_RCVR_MAX_DEVS)
#error More receiver inputs than available devices
#endif
	/* SPEKTRUM init must come before comms */
	PIOS_SPEKTRUM_Init(&pios_spektrum_cfg, false);

	uint32_t pios_usart_spektrum_id;
	if (PIOS_USART_Init(&pios_usart_spektrum_id, &pios_usart_spektrum_cfg)) {
		PIOS_Assert(0);
	}
	for (uint8_t i = 0; i < PIOS_SPEKTRUM_NUM_INPUTS && i < PIOS_RCVR_MAX_DEVS; i++) {
		if (!PIOS_RCVR_Init(&pios_rcvr_channel_to_id_map[pios_rcvr_max_channel],
				   &pios_spektrum_rcvr_driver,
				   i)) {
			pios_rcvr_max_channel++;
		} else {
			PIOS_Assert(0);
		}
	}
#endif

#if defined(PIOS_INCLUDE_PWM)
#if (PIOS_PWM_NUM_INPUTS > PIOS_RCVR_MAX_DEVS)
#error More receiver inputs than available devices
#endif
	PIOS_PWM_Init();
	for (uint8_t i = 0; i < PIOS_PWM_NUM_INPUTS && i < PIOS_RCVR_MAX_DEVS; i++) {
		if (!PIOS_RCVR_Init(&pios_rcvr_channel_to_id_map[pios_rcvr_max_channel],
			   &pios_pwm_rcvr_driver,
			   i)) {
			pios_rcvr_max_channel++;
		} else {
			PIOS_Assert(0);
		}
	}
#endif
#if defined(PIOS_INCLUDE_PPM)
#if (PIOS_PPM_NUM_INPUTS > PIOS_RCVR_MAX_DEVS)
#error More receiver inputs than available devices
#endif
	PIOS_PPM_Init();
	for (uint8_t i = 0; i < PIOS_PPM_NUM_INPUTS && i < PIOS_RCVR_MAX_DEVS; i++) {
		if (!PIOS_RCVR_Init(&pios_rcvr_channel_to_id_map[pios_rcvr_max_channel],
			   &pios_ppm_rcvr_driver,
			   i)) {
			pios_rcvr_max_channel++;
		} else {
			PIOS_Assert(0);
		}
	}
#endif
#if defined(PIOS_INCLUDE_USB_HID)
	PIOS_USB_HID_Init(0);
#if defined(PIOS_INCLUDE_COM)
	if (PIOS_COM_Init(&pios_com_telem_usb_id, &pios_usb_com_driver, 0)) {
		PIOS_Assert(0);
	}
#endif	/* PIOS_INCLUDE_COM */
#endif  /* PIOS_INCLUDE_USB_HID */

#if defined(PIOS_INCLUDE_I2C)
	if (PIOS_I2C_Init(&pios_i2c_main_adapter_id, &pios_i2c_main_adapter_cfg)) {
		PIOS_Assert(0);
	}
#endif	/* PIOS_INCLUDE_I2C */
	PIOS_IAP_Init();
	PIOS_WDG_Init();
}
Beispiel #4
0
/**
 * PIOS_Board_Init()
 * initializes all the core subsystems on this specific hardware
 * called from System/openpilot.c
 */
void PIOS_Board_Init(void) {

	/* Remap AFIO pin */
	//GPIO_PinRemapConfig( GPIO_Remap_SWJ_NoJTRST, ENABLE);

#ifdef PIOS_DEBUG_ENABLE_DEBUG_PINS
	PIOS_DEBUG_Init(&pios_tim_servo_all_channels, NELEMENTS(pios_tim_servo_all_channels));
#endif	/* PIOS_DEBUG_ENABLE_DEBUG_PINS */

	/* Delay system */
	PIOS_DELAY_Init();	
	
#if defined(PIOS_INCLUDE_SPI)	
	/* Set up the SPI interface to the SD card */
	if (PIOS_SPI_Init(&pios_spi_sdcard_id, &pios_spi_sdcard_cfg)) {
		PIOS_Assert(0);
	}

	/* Enable and mount the SDCard */
	PIOS_SDCARD_Init(pios_spi_sdcard_id);
	PIOS_SDCARD_MountFS(0);
#endif /* PIOS_INCLUDE_SPI */

	/* Initialize UAVObject libraries */
	EventDispatcherInitialize();
	UAVObjInitialize();

	HwSettingsInitialize();

#if defined(PIOS_INCLUDE_RTC)
	/* Initialize the real-time clock and its associated tick */
	PIOS_RTC_Init(&pios_rtc_main_cfg);
#endif

	/* Initialize the alarms library */
	AlarmsInitialize();

	/* Initialize the task monitor library */
	TaskMonitorInitialize();

	/* Set up pulse timers */
	PIOS_TIM_InitClock(&tim_1_cfg);
	PIOS_TIM_InitClock(&tim_3_cfg);
	PIOS_TIM_InitClock(&tim_5_cfg);

	PIOS_TIM_InitClock(&tim_4_cfg);
	PIOS_TIM_InitClock(&tim_8_cfg);

	/* Prepare the AHRS Comms upper layer protocol */
	AhrsInitComms();

	/* Set up the SPI interface to the AHRS */
	if (PIOS_SPI_Init(&pios_spi_ahrs_id, &pios_spi_ahrs_cfg)) {
		PIOS_Assert(0);
	}

	/* Bind the AHRS comms layer to the AHRS SPI link */
	AhrsConnect(pios_spi_ahrs_id);

	/* Configure the main IO port */
	uint8_t hwsettings_op_mainport;
	HwSettingsOP_MainPortGet(&hwsettings_op_mainport);

	switch (hwsettings_op_mainport) {
	case HWSETTINGS_OP_MAINPORT_DISABLED:
		break;
	case HWSETTINGS_OP_MAINPORT_TELEMETRY:
#if defined(PIOS_INCLUDE_TELEMETRY_RF)
		{
			uint32_t pios_usart_telem_rf_id;
			if (PIOS_USART_Init(&pios_usart_telem_rf_id, &pios_usart_telem_cfg)) {
				PIOS_Assert(0);
			}

			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_RX_BUF_LEN);
			uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_TX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			PIOS_Assert(tx_buffer);
			if (PIOS_COM_Init(&pios_com_telem_rf_id, &pios_usart_com_driver, pios_usart_telem_rf_id,
							  rx_buffer, PIOS_COM_TELEM_RF_RX_BUF_LEN,
							  tx_buffer, PIOS_COM_TELEM_RF_TX_BUF_LEN)) {
				PIOS_Assert(0);
			}
		}
#endif /* PIOS_INCLUDE_TELEMETRY_RF */
		break;
	}

	/* Configure the flexi port */
	uint8_t hwsettings_op_flexiport;
	HwSettingsOP_FlexiPortGet(&hwsettings_op_flexiport);

	switch (hwsettings_op_flexiport) {
	case HWSETTINGS_OP_FLEXIPORT_DISABLED:
		break;
	case HWSETTINGS_OP_FLEXIPORT_GPS:
#if defined(PIOS_INCLUDE_GPS)
		{
			uint32_t pios_usart_gps_id;
			if (PIOS_USART_Init(&pios_usart_gps_id, &pios_usart_gps_cfg)) {
				PIOS_Assert(0);
			}
			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_GPS_RX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			if (PIOS_COM_Init(&pios_com_gps_id, &pios_usart_com_driver, pios_usart_gps_id,
						rx_buffer, PIOS_COM_GPS_RX_BUF_LEN,
						NULL, 0)) {
				PIOS_Assert(0);
			}
		}
#endif	/* PIOS_INCLUDE_GPS */
		break;
	}

#ifndef PIOS_DEBUG_ENABLE_DEBUG_PINS
	PIOS_Servo_Init(&pios_servo_cfg);
#endif	/* PIOS_DEBUG_ENABLE_DEBUG_PINS */

	PIOS_ADC_Init();
	PIOS_GPIO_Init();

	/* Configure the rcvr port */
	uint8_t hwsettings_rcvrport;
	HwSettingsOP_RcvrPortGet(&hwsettings_rcvrport);


	switch (hwsettings_rcvrport) {
	case HWSETTINGS_OP_RCVRPORT_DISABLED:
		break;
	case HWSETTINGS_OP_RCVRPORT_DEBUG:
		/* Not supported yet */
		break;
	case HWSETTINGS_OP_RCVRPORT_DSM2:
	case HWSETTINGS_OP_RCVRPORT_DSMX10BIT:
	case HWSETTINGS_OP_RCVRPORT_DSMX11BIT:
#if defined(PIOS_INCLUDE_DSM)
		{
			enum pios_dsm_proto proto;
			switch (hwsettings_rcvrport) {
			case HWSETTINGS_OP_RCVRPORT_DSM2:
				proto = PIOS_DSM_PROTO_DSM2;
				break;
			case HWSETTINGS_OP_RCVRPORT_DSMX10BIT:
				proto = PIOS_DSM_PROTO_DSMX10BIT;
				break;
			case HWSETTINGS_OP_RCVRPORT_DSMX11BIT:
				proto = PIOS_DSM_PROTO_DSMX11BIT;
				break;
			default:
				PIOS_Assert(0);
				break;
			}

			uint32_t pios_usart_dsm_id;
			if (PIOS_USART_Init(&pios_usart_dsm_id, &pios_usart_dsm_cfg)) {
				PIOS_Assert(0);
			}

			uint32_t pios_dsm_id;
			if (PIOS_DSM_Init(&pios_dsm_id,
					  &pios_dsm_cfg,
					  &pios_usart_com_driver,
					  pios_usart_dsm_id,
					  proto, 0)) {
				PIOS_Assert(0);
			}

			uint32_t pios_dsm_rcvr_id;
			if (PIOS_RCVR_Init(&pios_dsm_rcvr_id, &pios_dsm_rcvr_driver, pios_dsm_id)) {
				PIOS_Assert(0);
			}
			pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMMAINPORT] = pios_dsm_rcvr_id;
		}
#endif
		break;
	case HWSETTINGS_OP_RCVRPORT_PWM:
#if defined(PIOS_INCLUDE_PWM)
		{
			uint32_t pios_pwm_id;
			PIOS_PWM_Init(&pios_pwm_id, &pios_pwm_cfg);

			uint32_t pios_pwm_rcvr_id;
			if (PIOS_RCVR_Init(&pios_pwm_rcvr_id, &pios_pwm_rcvr_driver, pios_pwm_id)) {
				PIOS_Assert(0);
			}
			pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_PWM] = pios_pwm_rcvr_id;
		}
#endif	/* PIOS_INCLUDE_PWM */
		break;
	case HWSETTINGS_OP_RCVRPORT_PPM:
#if defined(PIOS_INCLUDE_PPM)
		{
			uint32_t pios_ppm_id;
			PIOS_PPM_Init(&pios_ppm_id, &pios_ppm_cfg);

			uint32_t pios_ppm_rcvr_id;
			if (PIOS_RCVR_Init(&pios_ppm_rcvr_id, &pios_ppm_rcvr_driver, pios_ppm_id)) {
				PIOS_Assert(0);
			}
			pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_PPM] = pios_ppm_rcvr_id;
		}
#endif	/* PIOS_INCLUDE_PPM */
		break;
	}

#if defined(PIOS_INCLUDE_USB_HID)
	uint32_t pios_usb_hid_id;
	PIOS_USB_HID_Init(&pios_usb_hid_id, &pios_usb_hid_main_cfg);
#if defined(PIOS_INCLUDE_COM)
	uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_RX_BUF_LEN);
	uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_TX_BUF_LEN);
	PIOS_Assert(rx_buffer);
	PIOS_Assert(tx_buffer);
	if (PIOS_COM_Init(&pios_com_telem_usb_id, &pios_usb_com_driver, pios_usb_hid_id,
			  rx_buffer, PIOS_COM_TELEM_USB_RX_BUF_LEN,
			  tx_buffer, PIOS_COM_TELEM_USB_TX_BUF_LEN)) {
		PIOS_Assert(0);
	}
#endif	/* PIOS_INCLUDE_COM */
#endif	/* PIOS_INCLUDE_USB_HID */

#if defined(PIOS_INCLUDE_I2C)
	if (PIOS_I2C_Init(&pios_i2c_main_adapter_id, &pios_i2c_main_adapter_cfg)) {
		PIOS_Assert(0);
	}
#endif	/* PIOS_INCLUDE_I2C */
	PIOS_IAP_Init();
	PIOS_WDG_Init();
}
Beispiel #5
0
/**
 * PIOS_Board_Init()
 * initializes all the core subsystems on this specific hardware
 * called from System/openpilot.c
 */
void PIOS_Board_Init(void) {

	/* Remap AFIO pin */
	//GPIO_PinRemapConfig( GPIO_Remap_SWJ_NoJTRST, ENABLE);

#ifdef PIOS_DEBUG_ENABLE_DEBUG_PINS
	PIOS_DEBUG_Init(&pios_tim_servo_all_channels, NELEMENTS(pios_tim_servo_all_channels));
#endif	/* PIOS_DEBUG_ENABLE_DEBUG_PINS */

	/* Delay system */
	PIOS_DELAY_Init();	
	
#if defined(PIOS_INCLUDE_SPI)	
	/* Set up the SPI interface to the SD card */
	if (PIOS_SPI_Init(&pios_spi_sdcard_id, &pios_spi_sdcard_cfg)) {
		PIOS_Assert(0);
	}

	/* Enable and mount the SDCard */
	PIOS_SDCARD_Init(pios_spi_sdcard_id);
	PIOS_SDCARD_MountFS(0);
#endif /* PIOS_INCLUDE_SPI */

	/* Initialize UAVObject libraries */
	EventDispatcherInitialize();
	UAVObjInitialize();

#if defined(PIOS_INCLUDE_RTC)
	/* Initialize the real-time clock and its associated tick */
	PIOS_RTC_Init(&pios_rtc_main_cfg);
#endif

#if defined(PIOS_INCLUDE_LED)
	PIOS_LED_Init(&pios_led_cfg);
#endif	/* PIOS_INCLUDE_LED */

	HwSettingsInitialize();

	PIOS_WDG_Init();

	/* Initialize the alarms library */
	AlarmsInitialize();

	PIOS_IAP_Init();
	uint16_t boot_count = PIOS_IAP_ReadBootCount();
	if (boot_count < 3) {
		PIOS_IAP_WriteBootCount(++boot_count);
		AlarmsClear(SYSTEMALARMS_ALARM_BOOTFAULT);
	} else {
		/* Too many failed boot attempts, force hwsettings to defaults */
		HwSettingsSetDefaults(HwSettingsHandle(), 0);
		AlarmsSet(SYSTEMALARMS_ALARM_BOOTFAULT, SYSTEMALARMS_ALARM_CRITICAL);
	}

	/* Initialize the task monitor library */
	TaskMonitorInitialize();

	/* Set up pulse timers */
	PIOS_TIM_InitClock(&tim_1_cfg);
	PIOS_TIM_InitClock(&tim_3_cfg);
	PIOS_TIM_InitClock(&tim_5_cfg);
	PIOS_TIM_InitClock(&tim_4_cfg);
	PIOS_TIM_InitClock(&tim_8_cfg);

	/* Prepare the AHRS Comms upper layer protocol */
	AhrsInitComms();

	/* Set up the SPI interface to the AHRS */
	if (PIOS_SPI_Init(&pios_spi_ahrs_id, &pios_spi_ahrs_cfg)) {
		PIOS_Assert(0);
	}

	/* Bind the AHRS comms layer to the AHRS SPI link */
	AhrsConnect(pios_spi_ahrs_id);

#if defined(PIOS_INCLUDE_USB)
	/* Initialize board specific USB data */
	PIOS_USB_BOARD_DATA_Init();

	/* Flags to determine if various USB interfaces are advertised */
	bool usb_hid_present = false;
	bool usb_cdc_present = false;

	uint8_t hwsettings_usb_devicetype;
	HwSettingsUSB_DeviceTypeGet(&hwsettings_usb_devicetype);

	switch (hwsettings_usb_devicetype) {
	case HWSETTINGS_USB_DEVICETYPE_HIDONLY:
		if (PIOS_USB_DESC_HID_ONLY_Init()) {
			PIOS_Assert(0);
		}
		usb_hid_present = true;
		break;
	case HWSETTINGS_USB_DEVICETYPE_HIDVCP:
		if (PIOS_USB_DESC_HID_CDC_Init()) {
			PIOS_Assert(0);
		}
		usb_hid_present = true;
		usb_cdc_present = true;
		break;
	case HWSETTINGS_USB_DEVICETYPE_VCPONLY:
		break;
	default:
		PIOS_Assert(0);
	}

	uint32_t pios_usb_id;
	PIOS_USB_Init(&pios_usb_id, &pios_usb_main_cfg);

#if defined(PIOS_INCLUDE_USB_CDC)
	/* Configure the USB VCP port */
	uint8_t hwsettings_usb_vcpport;
	HwSettingsUSB_VCPPortGet(&hwsettings_usb_vcpport);

	if (!usb_cdc_present) {
		/* Force VCP port function to disabled if we haven't advertised VCP in our USB descriptor */
		hwsettings_usb_vcpport = HWSETTINGS_USB_VCPPORT_DISABLED;
	}

	switch (hwsettings_usb_vcpport) {
	case HWSETTINGS_USB_VCPPORT_DISABLED:
		break;
	case HWSETTINGS_USB_VCPPORT_USBTELEMETRY:
#if defined(PIOS_INCLUDE_COM)
		{
			uint32_t pios_usb_cdc_id;
			if (PIOS_USB_CDC_Init(&pios_usb_cdc_id, &pios_usb_cdc_cfg, pios_usb_id)) {
				PIOS_Assert(0);
			}
			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_RX_BUF_LEN);
			uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_TX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			PIOS_Assert(tx_buffer);
			if (PIOS_COM_Init(&pios_com_telem_usb_id, &pios_usb_cdc_com_driver, pios_usb_cdc_id,
						rx_buffer, PIOS_COM_TELEM_USB_RX_BUF_LEN,
						tx_buffer, PIOS_COM_TELEM_USB_TX_BUF_LEN)) {
				PIOS_Assert(0);
			}
		}
#endif	/* PIOS_INCLUDE_COM */
		break;
	case HWSETTINGS_USB_VCPPORT_COMBRIDGE:
#if defined(PIOS_INCLUDE_COM)
		{
			uint32_t pios_usb_cdc_id;
			if (PIOS_USB_CDC_Init(&pios_usb_cdc_id, &pios_usb_cdc_cfg, pios_usb_id)) {
				PIOS_Assert(0);
			}
			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_RX_BUF_LEN);
			uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_BRIDGE_TX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			PIOS_Assert(tx_buffer);
			if (PIOS_COM_Init(&pios_com_vcp_id, &pios_usb_cdc_com_driver, pios_usb_cdc_id,
						rx_buffer, PIOS_COM_BRIDGE_RX_BUF_LEN,
						tx_buffer, PIOS_COM_BRIDGE_TX_BUF_LEN)) {
				PIOS_Assert(0);
			}

		}
#endif	/* PIOS_INCLUDE_COM */
		break;
	}
#endif	/* PIOS_INCLUDE_USB_CDC */

#if defined(PIOS_INCLUDE_USB_HID)
	/* Configure the usb HID port */
	uint8_t hwsettings_usb_hidport;
	HwSettingsUSB_HIDPortGet(&hwsettings_usb_hidport);

	if (!usb_hid_present) {
		/* Force HID port function to disabled if we haven't advertised HID in our USB descriptor */
		hwsettings_usb_hidport = HWSETTINGS_USB_HIDPORT_DISABLED;
	}

	switch (hwsettings_usb_hidport) {
	case HWSETTINGS_USB_HIDPORT_DISABLED:
		break;
	case HWSETTINGS_USB_HIDPORT_USBTELEMETRY:
#if defined(PIOS_INCLUDE_COM)
		{
			uint32_t pios_usb_hid_id;
			if (PIOS_USB_HID_Init(&pios_usb_hid_id, &pios_usb_hid_cfg, pios_usb_id)) {
				PIOS_Assert(0);
			}
			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_RX_BUF_LEN);
			uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_USB_TX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			PIOS_Assert(tx_buffer);
			if (PIOS_COM_Init(&pios_com_telem_usb_id, &pios_usb_hid_com_driver, pios_usb_hid_id,
						rx_buffer, PIOS_COM_TELEM_USB_RX_BUF_LEN,
						tx_buffer, PIOS_COM_TELEM_USB_TX_BUF_LEN)) {
				PIOS_Assert(0);
			}
		}
#endif	/* PIOS_INCLUDE_COM */
		break;
	}

#endif	/* PIOS_INCLUDE_USB_HID */

#endif	/* PIOS_INCLUDE_USB */

	/* Configure the main IO port */
	uint8_t hwsettings_op_mainport;
	HwSettingsOP_MainPortGet(&hwsettings_op_mainport);

	switch (hwsettings_op_mainport) {
	case HWSETTINGS_OP_MAINPORT_DISABLED:
		break;
	case HWSETTINGS_OP_MAINPORT_TELEMETRY:
#if defined(PIOS_INCLUDE_TELEMETRY_RF)
		{
			uint32_t pios_usart_telem_rf_id;
			if (PIOS_USART_Init(&pios_usart_telem_rf_id, &pios_usart_telem_cfg)) {
				PIOS_Assert(0);
			}

			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_RX_BUF_LEN);
			uint8_t * tx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_TELEM_RF_TX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			PIOS_Assert(tx_buffer);
			if (PIOS_COM_Init(&pios_com_telem_rf_id, &pios_usart_com_driver, pios_usart_telem_rf_id,
							  rx_buffer, PIOS_COM_TELEM_RF_RX_BUF_LEN,
							  tx_buffer, PIOS_COM_TELEM_RF_TX_BUF_LEN)) {
				PIOS_Assert(0);
			}
		}
#endif /* PIOS_INCLUDE_TELEMETRY_RF */
		break;
	}

	/* Configure the flexi port */
	uint8_t hwsettings_op_flexiport;
	HwSettingsOP_FlexiPortGet(&hwsettings_op_flexiport);

	switch (hwsettings_op_flexiport) {
	case HWSETTINGS_OP_FLEXIPORT_DISABLED:
		break;
	case HWSETTINGS_OP_FLEXIPORT_GPS:
#if defined(PIOS_INCLUDE_GPS)
		{
			uint32_t pios_usart_gps_id;
			if (PIOS_USART_Init(&pios_usart_gps_id, &pios_usart_gps_cfg)) {
				PIOS_Assert(0);
			}
			uint8_t * rx_buffer = (uint8_t *) pvPortMalloc(PIOS_COM_GPS_RX_BUF_LEN);
			PIOS_Assert(rx_buffer);
			if (PIOS_COM_Init(&pios_com_gps_id, &pios_usart_com_driver, pios_usart_gps_id,
						rx_buffer, PIOS_COM_GPS_RX_BUF_LEN,
						NULL, 0)) {
				PIOS_Assert(0);
			}
		}
#endif	/* PIOS_INCLUDE_GPS */
		break;
	}

#ifndef PIOS_DEBUG_ENABLE_DEBUG_PINS
	PIOS_Servo_Init(&pios_servo_cfg);
#endif	/* PIOS_DEBUG_ENABLE_DEBUG_PINS */

	PIOS_ADC_Init();
	PIOS_GPIO_Init();

	/* Configure the rcvr port */
	uint8_t hwsettings_rcvrport;
	HwSettingsOP_RcvrPortGet(&hwsettings_rcvrport);


	switch (hwsettings_rcvrport) {
	case HWSETTINGS_OP_RCVRPORT_DISABLED:
		break;
	case HWSETTINGS_OP_RCVRPORT_DEBUG:
		/* Not supported yet */
		break;
	case HWSETTINGS_OP_RCVRPORT_DSM2:
	case HWSETTINGS_OP_RCVRPORT_DSMX10BIT:
	case HWSETTINGS_OP_RCVRPORT_DSMX11BIT:
#if defined(PIOS_INCLUDE_DSM)
		{
			enum pios_dsm_proto proto;
			switch (hwsettings_rcvrport) {
			case HWSETTINGS_OP_RCVRPORT_DSM2:
				proto = PIOS_DSM_PROTO_DSM2;
				break;
			case HWSETTINGS_OP_RCVRPORT_DSMX10BIT:
				proto = PIOS_DSM_PROTO_DSMX10BIT;
				break;
			case HWSETTINGS_OP_RCVRPORT_DSMX11BIT:
				proto = PIOS_DSM_PROTO_DSMX11BIT;
				break;
			default:
				PIOS_Assert(0);
				break;
			}

			uint32_t pios_usart_dsm_id;
			if (PIOS_USART_Init(&pios_usart_dsm_id, &pios_usart_dsm_cfg)) {
				PIOS_Assert(0);
			}

			uint32_t pios_dsm_id;
			if (PIOS_DSM_Init(&pios_dsm_id,
					  &pios_dsm_cfg,
					  &pios_usart_com_driver,
					  pios_usart_dsm_id,
					  proto, 0)) {
				PIOS_Assert(0);
			}

			uint32_t pios_dsm_rcvr_id;
			if (PIOS_RCVR_Init(&pios_dsm_rcvr_id, &pios_dsm_rcvr_driver, pios_dsm_id)) {
				PIOS_Assert(0);
			}
			pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_DSMMAINPORT] = pios_dsm_rcvr_id;
		}
#endif
		break;
	case HWSETTINGS_OP_RCVRPORT_PWM:
#if defined(PIOS_INCLUDE_PWM)
		{
			uint32_t pios_pwm_id;
			PIOS_PWM_Init(&pios_pwm_id, &pios_pwm_cfg);

			uint32_t pios_pwm_rcvr_id;
			if (PIOS_RCVR_Init(&pios_pwm_rcvr_id, &pios_pwm_rcvr_driver, pios_pwm_id)) {
				PIOS_Assert(0);
			}
			pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_PWM] = pios_pwm_rcvr_id;
		}
#endif	/* PIOS_INCLUDE_PWM */
		break;
	case HWSETTINGS_OP_RCVRPORT_PPM:
#if defined(PIOS_INCLUDE_PPM)
		{
			uint32_t pios_ppm_id;
			PIOS_PPM_Init(&pios_ppm_id, &pios_ppm_cfg);

			uint32_t pios_ppm_rcvr_id;
			if (PIOS_RCVR_Init(&pios_ppm_rcvr_id, &pios_ppm_rcvr_driver, pios_ppm_id)) {
				PIOS_Assert(0);
			}
			pios_rcvr_group_map[MANUALCONTROLSETTINGS_CHANNELGROUPS_PPM] = pios_ppm_rcvr_id;
		}
#endif	/* PIOS_INCLUDE_PPM */
		break;
	}

#if defined(PIOS_INCLUDE_I2C)
	if (PIOS_I2C_Init(&pios_i2c_main_adapter_id, &pios_i2c_main_adapter_cfg)) {
		PIOS_Assert(0);
	}
#endif	/* PIOS_INCLUDE_I2C */

	/* Make sure we have at least one telemetry link configured or else fail initialization */
	PIOS_Assert(pios_com_telem_rf_id || pios_com_telem_usb_id);
}
Beispiel #6
0
int main()
{
	float gyro[3], accel[3], mag[3];
	float vel[3] = { 0, 0, 0 };
	/* Normaly we get/set UAVObjects but this one only needs to be set.
	We will never expect to get this from another module*/
	AttitudeActualData attitude_actual;
	AHRSSettingsData ahrs_settings;

	/* Brings up System using CMSIS functions, enables the LEDs. */
	PIOS_SYS_Init();

	/* Delay system */
	PIOS_DELAY_Init();

	/* Communication system */
	PIOS_COM_Init();

	/* ADC system */
	AHRS_ADC_Config( adc_oversampling );

	/* Setup the Accelerometer FS (Full-Scale) GPIO */
	PIOS_GPIO_Enable( 0 );
	SET_ACCEL_2G;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
	/* Magnetic sensor system */
	PIOS_I2C_Init();
	PIOS_HMC5843_Init();

	// Get 3 ID bytes
	strcpy(( char * )mag_data.id, "ZZZ" );
	PIOS_HMC5843_ReadID( mag_data.id );
#endif

	/* SPI link to master */
//	PIOS_SPI_Init();
	AhrsInitComms();
	AHRSCalibrationConnectCallback( calibration_callback );
	GPSPositionConnectCallback( gps_callback );

	ahrs_state = AHRS_IDLE;

	while( !AhrsLinkReady() ) {
		AhrsPoll();
		while( ahrs_state != AHRS_DATA_READY ) ;
		ahrs_state = AHRS_PROCESSING;
		downsample_data();
		ahrs_state = AHRS_IDLE;
		if(( total_conversion_blocks % 50 ) == 0 )
			PIOS_LED_Toggle( LED1 );
	}


	AHRSSettingsGet(&ahrs_settings);


	/* Use simple averaging filter for now */
	for( int i = 0; i < adc_oversampling; i++ )
		fir_coeffs[i] = 1;
	fir_coeffs[adc_oversampling] = adc_oversampling;

	if( ahrs_settings.Algorithm ==  AHRSSETTINGS_ALGORITHM_INSGPS) {
		// compute a data point and initialize INS
		downsample_data();
		converge_insgps();
	}


#ifdef DUMP_RAW
	int previous_conversion;
	while( 1 ) {
		AhrsPoll();
		int result;
		uint8_t framing[16] = {
			0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
			15
		};
		while( ahrs_state != AHRS_DATA_READY ) ;
		ahrs_state = AHRS_PROCESSING;

		if( total_conversion_blocks != previous_conversion + 1 )
			PIOS_LED_On( LED1 );	// not keeping up
		else
			PIOS_LED_Off( LED1 );
		previous_conversion = total_conversion_blocks;

		downsample_data();
		ahrs_state = AHRS_IDLE;;

		// Dump raw buffer
		result = PIOS_COM_SendBuffer( PIOS_COM_AUX, &framing[0], 16 );	// framing header
		result += PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & total_conversion_blocks, sizeof( total_conversion_blocks ) );	// dump block number
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & valid_data_buffer[0],
								 ADC_OVERSAMPLE *
								 ADC_CONTINUOUS_CHANNELS *
								 sizeof( valid_data_buffer[0] ) );
		if( result == 0 )
			PIOS_LED_Off( LED1 );
		else {
			PIOS_LED_On( LED1 );
		}
	}
#endif

	timer_start();

	/******************* Main EKF loop ****************************/
	while( 1 ) {
		AhrsPoll();
		AHRSCalibrationData calibration;
		AHRSCalibrationGet( &calibration );
		BaroAltitudeData baro_altitude;
		BaroAltitudeGet( &baro_altitude );
		GPSPositionData gps_position;
		GPSPositionGet( &gps_position );
		AHRSSettingsGet(&ahrs_settings);

		// Alive signal
		if(( total_conversion_blocks % 100 ) == 0 )
			PIOS_LED_Toggle( LED1 );

#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
		// Get magnetic readings
		if( PIOS_HMC5843_NewDataAvailable() ) {
			PIOS_HMC5843_ReadMag( mag_data.raw.axis );
			mag_data.updated = 1;
		}
		attitude_raw.magnetometers[0] = mag_data.raw.axis[0];
		attitude_raw.magnetometers[2] = mag_data.raw.axis[1];
		attitude_raw.magnetometers[2] = mag_data.raw.axis[2];

#endif
		// Delay for valid data

		counter_val = timer_count();
		running_counts = counter_val - last_counter_idle_end;
		last_counter_idle_start = counter_val;

		while( ahrs_state != AHRS_DATA_READY ) ;

		counter_val = timer_count();
		idle_counts = counter_val - last_counter_idle_start;
		last_counter_idle_end = counter_val;

		ahrs_state = AHRS_PROCESSING;

		downsample_data();

		/***************** SEND BACK SOME RAW DATA ************************/
		// Hacky - grab one sample from buffer to populate this.  Need to send back
		// all raw data if it's happening
		accel_data.raw.x = valid_data_buffer[0];
		accel_data.raw.y = valid_data_buffer[2];
		accel_data.raw.z = valid_data_buffer[4];

		gyro_data.raw.x = valid_data_buffer[1];
		gyro_data.raw.y = valid_data_buffer[3];
		gyro_data.raw.z = valid_data_buffer[5];

		gyro_data.temp.xy = valid_data_buffer[6];
		gyro_data.temp.z = valid_data_buffer[7];

		if( ahrs_settings.Algorithm ==  AHRSSETTINGS_ALGORITHM_INSGPS) {
			/******************** INS ALGORITHM **************************/

			// format data for INS algo
			gyro[0] = gyro_data.filtered.x;
			gyro[1] = gyro_data.filtered.y;
			gyro[2] = gyro_data.filtered.z;
			accel[0] = accel_data.filtered.x,
					   accel[1] = accel_data.filtered.y,
								  accel[2] = accel_data.filtered.z,
											 // Note: The magnetometer driver returns registers X,Y,Z from the chip which are
											 // (left, backward, up).  Remapping to (forward, right, down).
											 mag[0] = -( mag_data.raw.axis[1] - calibration.mag_bias[1] );
			mag[1] = -( mag_data.raw.axis[0] - calibration.mag_bias[0] );
			mag[2] = -( mag_data.raw.axis[2] - calibration.mag_bias[2] );

			INSStatePrediction( gyro, accel,
								1 / ( float )EKF_RATE );
			INSCovariancePrediction( 1 / ( float )EKF_RATE );

			if( gps_updated && gps_position.Status == GPSPOSITION_STATUS_FIX3D ) {
				// Compute velocity from Heading and groundspeed
				vel[0] =
					gps_position.Groundspeed *
					cos( gps_position.Heading * M_PI / 180 );
				vel[1] =
					gps_position.Groundspeed *
					sin( gps_position.Heading * M_PI / 180 );

				// Completely unprincipled way to make the position variance
				// increase as data quality decreases but keep it bounded
				// Variance becomes 40 m^2 and 40 (m/s)^2 when no gps
				INSSetPosVelVar( 0.004 );

				HomeLocationData home;
				HomeLocationGet( &home );
				float ned[3];
				double lla[3] = {( double ) gps_position.Latitude / 1e7, ( double ) gps_position.Longitude / 1e7, ( double )( gps_position.GeoidSeparation + gps_position.Altitude )};
				// convert from cm back to meters
				double ecef[3] = {( double )( home.ECEF[0] / 100 ), ( double )( home.ECEF[1] / 100 ), ( double )( home.ECEF[2] / 100 )};
				LLA2Base( lla, ecef, ( float( * )[3] ) home.RNE, ned );

				if( gps_updated ) { //FIXME: Is this correct?
					//TOOD: add check for altitude updates
					FullCorrection( mag, ned,
									vel,
									baro_altitude.Altitude );
					gps_updated = false;
				} else {
					GpsBaroCorrection( ned,
									   vel,
									   baro_altitude.Altitude );
				}

				gps_updated = false;
				mag_data.updated = 0;
			} else if( gps_position.Status == GPSPOSITION_STATUS_FIX3D
					   && mag_data.updated == 1 ) {
				MagCorrection( mag );	// only trust mags if outdoors
				mag_data.updated = 0;
			} else {
				// Indoors, update with zero position and velocity and high covariance
				INSSetPosVelVar( 0.1 );
				vel[0] = 0;
				vel[1] = 0;
				vel[2] = 0;

				VelBaroCorrection( vel,
								   baro_altitude.Altitude );
//                MagVelBaroCorrection(mag,vel,altitude_data.altitude);  // only trust mags if outdoors
			}

			attitude_actual.q1 = Nav.q[0];
			attitude_actual.q2 = Nav.q[1];
			attitude_actual.q3 = Nav.q[2];
			attitude_actual.q4 = Nav.q[3];
		} else if( ahrs_settings.Algorithm ==  AHRSSETTINGS_ALGORITHM_SIMPLE ) {
			float q[4];
			float rpy[3];
			/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
			/* Very simple computation of the heading and attitude from accel. */
			rpy[2] =
				atan2(( mag_data.raw.axis[0] ),
					  ( -1 * mag_data.raw.axis[1] ) ) * 180 /
				M_PI;
			rpy[1] =
				atan2( accel_data.filtered.x,
					   accel_data.filtered.z ) * 180 / M_PI;
			rpy[0] =
				atan2( accel_data.filtered.y,
					   accel_data.filtered.z ) * 180 / M_PI;

			RPY2Quaternion( rpy, q );
			attitude_actual.q1 = q[0];
			attitude_actual.q2 = q[1];
			attitude_actual.q3 = q[2];
			attitude_actual.q4 = q[3];
		}

		ahrs_state = AHRS_IDLE;

#ifdef DUMP_FRIENDLY
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "b: %d\r\n",
				total_conversion_blocks );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "a: %d %d %d\r\n",
				( int16_t )( accel_data.filtered.x * 1000 ),
				( int16_t )( accel_data.filtered.y * 1000 ),
				( int16_t )( accel_data.filtered.z * 1000 ) );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "g: %d %d %d\r\n",
				( int16_t )( gyro_data.filtered.x * 1000 ),
				( int16_t )( gyro_data.filtered.y * 1000 ),
				( int16_t )( gyro_data.filtered.z * 1000 ) );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX, "m: %d %d %d\r\n",
				mag_data.raw.axis[0],
				mag_data.raw.axis[1],
				mag_data.raw.axis[2] );
		PIOS_COM_SendFormattedStringNonBlocking( PIOS_COM_AUX,
				"q: %d %d %d %d\r\n",
				( int16_t )( Nav.q[0] * 1000 ),
				( int16_t )( Nav.q[1] * 1000 ),
				( int16_t )( Nav.q[2] * 1000 ),
				( int16_t )( Nav.q[3] * 1000 ) );
#endif
#ifdef DUMP_EKF
		uint8_t framing[16] = {
			15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
			0
		};
		extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX];	// linearized system matrices
		extern float P[NUMX][NUMX], X[NUMX];	// covariance matrix and state vector
		extern float Q[NUMW], R[NUMV];	// input noise and measurement noise variances
		extern float K[NUMX][NUMV];	// feedback gain matrix

		// Dump raw buffer
		int8_t result;
		result = PIOS_COM_SendBuffer( PIOS_COM_AUX, &framing[0], 16 );	// framing header
		result += PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & total_conversion_blocks, sizeof( total_conversion_blocks ) );	// dump block number
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & mag_data,
								 sizeof( mag_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & gps_data,
								 sizeof( gps_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & accel_data,
								 sizeof( accel_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX,
								 ( uint8_t * ) & gyro_data,
								 sizeof( gyro_data ) );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & Q,
								 sizeof( float ) * NUMX * NUMX );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & K,
								 sizeof( float ) * NUMX * NUMV );
		result +=
			PIOS_COM_SendBuffer( PIOS_COM_AUX, ( uint8_t * ) & X,
								 sizeof( float ) * NUMX * NUMX );

		if( result == 0 )
			PIOS_LED_Off( LED1 );
		else {
			PIOS_LED_On( LED1 );
		}
#endif
		AttitudeActualSet( &attitude_actual );

		/*FIXME: This is dangerous. There is no locking for UAVObjects
		so it could stomp all over the airspeed/climb rate etc.
		This used to be done in the OP module which was bad.
		Having ~4ms latency for the round trip makes it worse here.
		*/
		PositionActualData pos;
		PositionActualGet( &pos );
		for( int ct = 0; ct < 3; ct++ ) {
			pos.NED[ct] = Nav.Pos[ct];
			pos.Vel[ct] = Nav.Vel[ct];
		}
		PositionActualSet( &pos );

		static bool was_calibration = false;
		AhrsStatusData status;
		AhrsStatusGet( &status );
		if( was_calibration != status.CalibrationSet ) {
			was_calibration = status.CalibrationSet;
			if( status.CalibrationSet ) {
				calibrate_sensors();
				AhrsStatusGet( &status );
				status.CalibrationSet = true;
			}
		}
		status.CPULoad = (( float )running_counts /
						  ( float )( idle_counts + running_counts ) ) * 100;

		status.IdleTimePerCyle = idle_counts / ( TIMER_RATE / 10000 );
		status.RunningTimePerCyle = running_counts / ( TIMER_RATE / 10000 );
		status.DroppedUpdates = ekf_too_slow;
		AhrsStatusSet( &status );

	}

	return 0;
}