Beispiel #1
0
/**Function*************************************************************

  Synopsis    [Performs computation of AIGs with choices.]

  Description [Takes several AIGs and performs choicing.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Dch_ComputeChoices( Aig_Man_t * pAig, Dch_Pars_t * pPars )
{
    Dch_Man_t * p;
    Aig_Man_t * pResult;
    abctime clk, clkTotal = Abc_Clock();
    // reset random numbers
    Aig_ManRandom(1);
    // start the choicing manager
    p = Dch_ManCreate( pAig, pPars );
    // compute candidate equivalence classes
clk = Abc_Clock(); 
    p->ppClasses = Dch_CreateCandEquivClasses( pAig, pPars->nWords, pPars->fVerbose );
p->timeSimInit = Abc_Clock() - clk;
//    Dch_ClassesPrint( p->ppClasses, 0 );
    p->nLits = Dch_ClassesLitNum( p->ppClasses );
    // perform SAT sweeping
    Dch_ManSweep( p );
    // free memory ahead of time
p->timeTotal = Abc_Clock() - clkTotal;
    Dch_ManStop( p );
    // create choices
    ABC_FREE( pAig->pTable );
    pResult = Dch_DeriveChoiceAig( pAig, pPars->fSkipRedSupp );
    // count the number of representatives
    if ( pPars->fVerbose ) 
        Abc_Print( 1, "STATS:  Ands:%8d  ->%8d.  Reprs:%7d  ->%7d.  Choices =%7d.\n", 
               Aig_ManNodeNum(pAig), 
               Aig_ManNodeNum(pResult), 
               Dch_DeriveChoiceCountReprs( pAig ),
               Dch_DeriveChoiceCountEquivs( pResult ),
               Aig_ManChoiceNum( pResult ) );
    return pResult;
}
/**Function*************************************************************

  Synopsis    [Resizes the table.]

  Description [Typically this procedure should not be called.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Aig_TableResize( Aig_Man_t * p )
{
    Aig_Obj_t * pEntry, * pNext;
    Aig_Obj_t ** pTableOld, ** ppPlace;
    int nTableSizeOld, Counter, nEntries, i, clk;
clk = clock();
    // save the old table
    pTableOld = p->pTable;
    nTableSizeOld = p->nTableSize;
    // get the new table
    p->nTableSize = Aig_PrimeCudd( 2 * Aig_ManNodeNum(p) ); 
    p->pTable = ALLOC( Aig_Obj_t *, p->nTableSize );
    memset( p->pTable, 0, sizeof(Aig_Obj_t *) * p->nTableSize );
    // rehash the entries from the old table
    Counter = 0;
    for ( i = 0; i < nTableSizeOld; i++ )
    for ( pEntry = pTableOld[i], pNext = pEntry? pEntry->pNext : NULL; 
          pEntry; pEntry = pNext, pNext = pEntry? pEntry->pNext : NULL )
    {
        // get the place where this entry goes in the table 
        ppPlace = Aig_TableFind( p, pEntry );
        assert( *ppPlace == NULL ); // should not be there
        // add the entry to the list
        *ppPlace = pEntry;
        pEntry->pNext = NULL;
        Counter++;
    }
    nEntries = Aig_ManNodeNum(p);
    assert( Counter == nEntries );
    printf( "Increasing the structural table size from %6d to %6d. ", nTableSizeOld, p->nTableSize );
    PRT( "Time", clock() - clk );
    // replace the table and the parameters
    free( pTableOld );
}
/**Function*************************************************************

  Synopsis    [Prints out the statistics of the manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dar_ManRefPrintStats( Ref_Man_t * p )
{
    int Gain = p->nNodesInit - Aig_ManNodeNum(p->pAig);
    printf( "NodesBeg = %8d. NodesEnd = %8d. Gain = %6d. (%6.2f %%).\n", 
        p->nNodesInit, Aig_ManNodeNum(p->pAig), Gain, 100.0*Gain/p->nNodesInit );
    printf( "Tried = %6d. Below = %5d. Extended = %5d.  Used = %5d.  Levels = %4d.\n", 
        p->nNodesTried, p->nNodesBelow, p->nNodesExten, p->nCutsUsed, Aig_ManLevels(p->pAig) );
    PRT( "Cuts  ", p->timeCuts );
    PRT( "Eval  ", p->timeEval );
    PRT( "Other ", p->timeOther );
    PRT( "TOTAL ", p->timeTotal );
}
Beispiel #4
0
/**Function*************************************************************

  Synopsis    [Duplicates while ORing the POs of sequential circuit.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManCreateEquivMiter( Aig_Man_t * pAig, Vec_Int_t * vPairs )
{
    Aig_Man_t * pAigNew;
    Aig_Obj_t * pObj, * pObj2, * pMiter;
    int i;
    if ( pAig->nConstrs > 0 )
    {
        printf( "The AIG manager should have no constraints.\n" );
        return NULL;
    }
    // start the new manager
    pAigNew = Aig_ManStart( Aig_ManNodeNum(pAig) );
    pAigNew->pName = Aig_UtilStrsav( pAig->pName );
    pAigNew->nConstrs = pAig->nConstrs;
    // map the constant node
    Aig_ManConst1(pAig)->pData = Aig_ManConst1( pAigNew );
    // create variables for PIs
    Aig_ManForEachPi( pAig, pObj, i )
        pObj->pData = Aig_ObjCreatePi( pAigNew );
    // add internal nodes of this frame
    Aig_ManForEachNode( pAig, pObj, i )
        pObj->pData = Aig_And( pAigNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
    // create POs
    assert( Vec_IntSize(vPairs) % 2 == 0 );
    Aig_ManForEachNodeVec( pAig, vPairs, pObj, i )
    {
        pObj2  = Aig_ManObj( pAig, Vec_IntEntry(vPairs, ++i) );
        pMiter = Aig_Exor( pAigNew, (Aig_Obj_t *)pObj->pData, (Aig_Obj_t *)pObj2->pData );
        pMiter = Aig_NotCond( pMiter, pObj->fPhase ^ pObj2->fPhase );
        Aig_ObjCreatePo( pAigNew, pMiter );
    }
Beispiel #5
0
/**Function*************************************************************

  Synopsis    [Returns the probability of POs being 1 under rand seq sim.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Ssw_ManProfileConstraints( Aig_Man_t * p, int nWords, int nFrames, int fVerbose )
{
    Vec_Ptr_t * vInfo;
    Vec_Int_t * vProbs, * vProbs2;
    Aig_Obj_t * pObj, * pObjLi;
    unsigned * pInfo, * pInfo0, * pInfo1, * pInfoMask, * pInfoMask2;
    int i, w, f, RetValue = 1, clk = clock();
    if ( fVerbose )
        printf( "Simulating %d nodes and %d flops for %d frames with %d words... ", 
            Aig_ManNodeNum(p), Aig_ManRegNum(p), nFrames, nWords );
    Aig_ManRandom( 1 );
    vInfo = Vec_PtrAllocSimInfo( Aig_ManObjNumMax(p)+2, nWords );
    Vec_PtrCleanSimInfo( vInfo, 0, nWords );
    vProbs  = Vec_IntStart( Saig_ManPoNum(p) );
    vProbs2 = Vec_IntStart( Saig_ManPoNum(p) );
    // start the constant
    pInfo = (unsigned *)Vec_PtrEntry( vInfo, Aig_ObjId(Aig_ManConst1(p)) );
    for ( w = 0; w < nWords; w++ )
        pInfo[w] = ~0;
    // start the flop inputs
    Saig_ManForEachLi( p, pObj, i )
    {
        pInfo = (unsigned *)Vec_PtrEntry( vInfo, Aig_ObjId(pObj) );
        for ( w = 0; w < nWords; w++ )
            pInfo[w] = 0;
    }
Beispiel #6
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Unroll the circuit the given number of timeframes.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Inter_ManFramesBmc( Aig_Man_t * pAig, int nFrames )
{
    Aig_Man_t * pFrames;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    int i, f;
    assert( Saig_ManRegNum(pAig) > 0 );
    assert( Saig_ManPoNum(pAig) == 1 );
    pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
    // map the constant node
    Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
    // create variables for register outputs
    Saig_ManForEachLo( pAig, pObj, i )
        pObj->pData = Aig_ManConst0( pFrames );
    // add timeframes
    for ( f = 0; f < nFrames; f++ )
    {
        // create PI nodes for this frame
        Saig_ManForEachPi( pAig, pObj, i )
            pObj->pData = Aig_ObjCreateCi( pFrames );
        // add internal nodes of this frame
        Aig_ManForEachNode( pAig, pObj, i )
            pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
        if ( f == nFrames - 1 )
            break;
        // transfer to register outputs
        Saig_ManForEachLiLo(  pAig, pObjLi, pObjLo, i )
            pObjLi->pData = Aig_ObjChild0Copy(pObjLi);
        // transfer to register outputs
        Saig_ManForEachLiLo(  pAig, pObjLi, pObjLo, i )
            pObjLo->pData = pObjLi->pData;
    }
    // create POs for the output of the last frame
    pObj = Aig_ManCo( pAig, 0 );
    Aig_ObjCreateCo( pFrames, Aig_ObjChild0Copy(pObj) );
    Aig_ManCleanup( pFrames );
    return pFrames;
}
Beispiel #7
0
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManTemporDecompose( Aig_Man_t * pAig, int nFrames )
{
    Aig_Man_t * pAigNew, * pFrames;
    Aig_Obj_t * pObj, * pReset;
    int i;
    if ( pAig->nConstrs > 0 )
    {
        printf( "The AIG manager should have no constraints.\n" );
        return NULL;
    }
    // create initialized timeframes
    pFrames = Saig_ManTemporFrames( pAig, nFrames );
    assert( Aig_ManPoNum(pFrames) == Aig_ManRegNum(pAig) );

    // start the new manager
    Aig_ManCleanData( pAig );
    pAigNew = Aig_ManStart( Aig_ManNodeNum(pAig) );
    pAigNew->pName = Aig_UtilStrsav( pAig->pName );
    // map the constant node and primary inputs
    Aig_ManConst1(pAig)->pData = Aig_ManConst1( pAigNew );
    Saig_ManForEachPi( pAig, pObj, i )
        pObj->pData = Aig_ObjCreatePi( pAigNew );

    // insert initialization logic
    Aig_ManConst1(pFrames)->pData = Aig_ManConst1( pAigNew );
    Aig_ManForEachPi( pFrames, pObj, i )
        pObj->pData = Aig_ObjCreatePi( pAigNew );
    Aig_ManForEachNode( pFrames, pObj, i )
        pObj->pData = Aig_And( pAigNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
    Aig_ManForEachPo( pFrames, pObj, i )
        pObj->pData = Aig_ObjChild0Copy(pObj);

    // create reset latch (the first one among the latches)
    pReset = Aig_ObjCreatePi( pAigNew );

    // create flop output values
    Saig_ManForEachLo( pAig, pObj, i )
        pObj->pData = Aig_Mux( pAigNew, pReset, Aig_ObjCreatePi(pAigNew), (Aig_Obj_t *)Aig_ManPo(pFrames, i)->pData );
    Aig_ManStop( pFrames );

    // add internal nodes of this frame
    Aig_ManForEachNode( pAig, pObj, i )
        pObj->pData = Aig_And( pAigNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
    // create primary outputs
    Saig_ManForEachPo( pAig, pObj, i )
        Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );

    // create reset latch (the first one among the latches)
    Aig_ObjCreatePo( pAigNew, Aig_ManConst1(pAigNew) );
    // create latch inputs
    Saig_ManForEachLi( pAig, pObj, i )
        Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );

    // finalize
    Aig_ManCleanup( pAigNew );
    Aig_ManSetRegNum( pAigNew, Aig_ManRegNum(pAig)+1 ); // + reset latch (011111...)
    return pAigNew;
}
Beispiel #8
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Duplicates while ORing the POs of sequential circuit.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManDupOrpos( Aig_Man_t * pAig )
{
    Aig_Man_t * pAigNew;
    Aig_Obj_t * pObj, * pMiter;
    int i;
    if ( pAig->nConstrs > 0 )
    {
        printf( "The AIG manager should have no constraints.\n" );
        return NULL;
    }
    // start the new manager
    pAigNew = Aig_ManStart( Aig_ManNodeNum(pAig) );
    pAigNew->pName = Aig_UtilStrsav( pAig->pName );
    pAigNew->nConstrs = pAig->nConstrs;
    // map the constant node
    Aig_ManConst1(pAig)->pData = Aig_ManConst1( pAigNew );
    // create variables for PIs
    Aig_ManForEachPi( pAig, pObj, i )
        pObj->pData = Aig_ObjCreatePi( pAigNew );
    // add internal nodes of this frame
    Aig_ManForEachNode( pAig, pObj, i )
        pObj->pData = Aig_And( pAigNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
    // create PO of the circuit
    pMiter = Aig_ManConst0( pAigNew );
    Saig_ManForEachPo( pAig, pObj, i )
        pMiter = Aig_Or( pAigNew, pMiter, Aig_ObjChild0Copy(pObj) );
    Aig_ObjCreatePo( pAigNew, pMiter );
    // transfer to register outputs
    Saig_ManForEachLi( pAig, pObj, i )
        Aig_ObjCreatePo( pAigNew, Aig_ObjChild0Copy(pObj) );
    Aig_ManCleanup( pAigNew );
    Aig_ManSetRegNum( pAigNew, Aig_ManRegNum(pAig) );
    return pAigNew;
}
/**Function*************************************************************

  Synopsis    [Adds the new node to the hash table.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Aig_TableInsert( Aig_Man_t * p, Aig_Obj_t * pObj )
{
    Aig_Obj_t ** ppPlace;
    assert( !Aig_IsComplement(pObj) );
    assert( Aig_TableLookup(p, pObj) == NULL );
    if ( (pObj->Id & 0xFF) == 0 && 2 * p->nTableSize < Aig_ManNodeNum(p) )
        Aig_TableResize( p );
    ppPlace = Aig_TableFind( p, pObj );
    assert( *ppPlace == NULL );
    *ppPlace = pObj;
}
Beispiel #10
0
/**Function********************************************************************

  Synopsis    [Profiles the hash table.]

  Description []

  SideEffects []

  SeeAlso     []

******************************************************************************/
void Aig_TableProfile( Aig_Man_t * p )
{
    Aig_Obj_t * pEntry;
    int i, Counter;
    printf( "Table size = %d. Entries = %d.\n", p->nTableSize, Aig_ManNodeNum(p) );
    for ( i = 0; i < p->nTableSize; i++ )
    {
        Counter = 0;
        for ( pEntry = p->pTable[i]; pEntry; pEntry = pEntry->pNext )
            Counter++;
        if ( Counter ) 
            printf( "%d ", Counter );
    }
}
Beispiel #11
0
/**Function*************************************************************

  Synopsis    [Transforms sequential AIG into dual-rail miter.]

  Description [Transforms sequential AIG into a miter encoding ternary
  problem formulated as follows "none of the POs has a ternary value".
  Interprets the first nDualPis as having ternary value.  Sets flops
  to have ternary intial value when fDualFfs is set to 1.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Saig_ManDupDual( Aig_Man_t * pAig, Vec_Int_t * vDcFlops, int nDualPis, int fDualFfs, int fMiterFfs, int fComplPo, int fCheckZero, int fCheckOne )
{
    Vec_Ptr_t * vCopies;
    Aig_Man_t * pAigNew;
    Aig_Obj_t * pObj, * pTemp0, * pTemp1, * pTemp2, * pTemp3, * pCare, * pMiter;
    int i;
    assert( Saig_ManPoNum(pAig) > 0 );
    assert( nDualPis >= 0 && nDualPis <= Saig_ManPiNum(pAig) );
    assert( vDcFlops == NULL || Vec_IntSize(vDcFlops) == Aig_ManRegNum(pAig) );
    vCopies = Vec_PtrStart( 2*Aig_ManObjNum(pAig) );
    // start the new manager
    pAigNew = Aig_ManStart( Aig_ManNodeNum(pAig) );
    pAigNew->pName = Abc_UtilStrsav( pAig->pName );
    // map the constant node
    Saig_ObjSetDual( vCopies, 0, 0, Aig_ManConst0(pAigNew) );
    Saig_ObjSetDual( vCopies, 0, 1, Aig_ManConst1(pAigNew) );
    // create variables for PIs
    Aig_ManForEachCi( pAig, pObj, i )
    {
        if ( i < nDualPis )
        {
            pTemp0 = Aig_ObjCreateCi( pAigNew );
            pTemp1 = Aig_ObjCreateCi( pAigNew );
        }
        else if ( i < Saig_ManPiNum(pAig) )
        {
            pTemp1 = Aig_ObjCreateCi( pAigNew );
            pTemp0 = Aig_Not( pTemp1 );
        }
        else
        {
            pTemp0 = Aig_ObjCreateCi( pAigNew );
            pTemp1 = Aig_ObjCreateCi( pAigNew );
            if ( vDcFlops )
                pTemp0 = Aig_NotCond( pTemp0, !Vec_IntEntry(vDcFlops, i-Saig_ManPiNum(pAig)) );
            else
                pTemp0 = Aig_NotCond( pTemp0, !fDualFfs );
        }
        Saig_ObjSetDual( vCopies, Aig_ObjId(pObj), 0, Aig_And(pAigNew, pTemp0, Aig_Not(pTemp1)) );
        Saig_ObjSetDual( vCopies, Aig_ObjId(pObj), 1, Aig_And(pAigNew, pTemp1, Aig_Not(pTemp0)) );
    }
    // create internal nodes
    Aig_ManForEachNode( pAig, pObj, i )
    {
        Saig_ObjDualFanin( pAigNew, vCopies, pObj, 0, &pTemp0, &pTemp1 );
        Saig_ObjDualFanin( pAigNew, vCopies, pObj, 1, &pTemp2, &pTemp3 );
        Saig_ObjSetDual( vCopies, Aig_ObjId(pObj), 0, Aig_Or (pAigNew, pTemp0, pTemp2) );
        Saig_ObjSetDual( vCopies, Aig_ObjId(pObj), 1, Aig_And(pAigNew, pTemp1, pTemp3) );
    }
Beispiel #12
0
/**Function*************************************************************

  Synopsis    [Stops the AIG manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Dar_ManPrintStats( Dar_Man_t * p )
{
    unsigned pCanons[222];
    int Gain, i;
    extern void Kit_DsdPrintFromTruth( unsigned * pTruth, int nVars );

    Gain = p->nNodesInit - Aig_ManNodeNum(p->pAig);
    printf( "Tried = %8d. Beg = %8d. End = %8d. Gain = %6d. (%6.2f %%).  Cut mem = %d Mb\n", 
        p->nNodesTried, p->nNodesInit, Aig_ManNodeNum(p->pAig), Gain, 100.0*Gain/p->nNodesInit, p->nCutMemUsed );
    printf( "Cuts = %8d. Tried = %8d. Used = %8d. Bad = %5d. Skipped = %5d. Ave = %.2f.\n", 
        p->nCutsAll, p->nCutsTried, p->nCutsUsed, p->nCutsBad, p->nCutsSkipped,
        (float)p->nCutsUsed/Aig_ManNodeNum(p->pAig) );

    printf( "Bufs = %5d. BufMax = %5d. BufReplace = %6d. BufFix = %6d.  Levels = %4d.\n", 
        Aig_ManBufNum(p->pAig), p->pAig->nBufMax, p->pAig->nBufReplaces, p->pAig->nBufFixes, Aig_ManLevels(p->pAig) );
    PRT( "Cuts  ", p->timeCuts );
    PRT( "Eval  ", p->timeEval );
    PRT( "Other ", p->timeOther );
    PRT( "TOTAL ", p->timeTotal );

    if ( !p->pPars->fVeryVerbose )
        return;
    Dar_LibReturnCanonicals( pCanons );
    for ( i = 0; i < 222; i++ )
    {
        if ( p->ClassGains[i] == 0 && p->ClassTimes[i] == 0 )
            continue;
        printf( "%3d : ", i );
        printf( "G = %6d (%5.2f %%)  ", p->ClassGains[i], Gain? 100.0*p->ClassGains[i]/Gain : 0.0 );
        printf( "S = %8d (%5.2f %%)  ", p->ClassSubgs[i], p->nTotalSubgs? 100.0*p->ClassSubgs[i]/p->nTotalSubgs : 0.0 );
        printf( "R = %7d   ", p->ClassGains[i]? p->ClassSubgs[i]/p->ClassGains[i] : 9999999 );
//        Kit_DsdPrintFromTruth( pCanons + i, 4 );
//        PRTP( "T", p->ClassTimes[i], p->timeEval );
        printf( "\n" );
    }
}
Beispiel #13
0
/**Function*************************************************************

  Synopsis    [Collects internal nodes in the DFS order.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Aig_ManDfsChoices( Aig_Man_t * p )
{
    Vec_Ptr_t * vNodes;
    Aig_Obj_t * pObj;
    int i;
    assert( p->pEquivs != NULL );
    Aig_ManIncrementTravId( p );
    // mark constant and PIs
    Aig_ObjSetTravIdCurrent( p, Aig_ManConst1(p) );
    Aig_ManForEachPi( p, pObj, i )
        Aig_ObjSetTravIdCurrent( p, pObj );
    // go through the nodes
    vNodes = Vec_PtrAlloc( Aig_ManNodeNum(p) );
    Aig_ManForEachPo( p, pObj, i )
        Aig_ManDfsChoices_rec( p, Aig_ObjFanin0(pObj), vNodes );
    return vNodes;
}
Beispiel #14
0
/**Function*************************************************************

  Synopsis    [Collects internal nodes in the DFS order.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Aig_ManDfsNodes( Aig_Man_t * p, Aig_Obj_t ** ppNodes, int nNodes )
{
    Vec_Ptr_t * vNodes;
    Aig_Obj_t * pObj;
    int i;
    assert( Aig_ManLatchNum(p) == 0 );
    Aig_ManIncrementTravId( p );
    // mark constant and PIs
    Aig_ObjSetTravIdCurrent( p, Aig_ManConst1(p) );
    Aig_ManForEachPi( p, pObj, i )
        Aig_ObjSetTravIdCurrent( p, pObj );
    // go through the nodes
    vNodes = Vec_PtrAlloc( Aig_ManNodeNum(p) );
    for ( i = 0; i < nNodes; i++ )
        Aig_ManDfs_rec( p, ppNodes[i], vNodes );
    return vNodes;
}
Beispiel #15
0
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Saig_ManDumpBlif( Aig_Man_t * p, char * pFileName )
{
    FILE * pFile;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    int i;
    if ( Aig_ManPoNum(p) == 0 )
    {
        printf( "Aig_ManDumpBlif(): AIG manager does not have POs.\n" );
        return;
    }
    Aig_ManSetPioNumbers( p );
    // write input file
    pFile = fopen( pFileName, "w" );
    if ( pFile == NULL )
    {
        printf( "Saig_ManDumpBlif(): Cannot open file for writing.\n" );
        return;
    }
    fprintf( pFile, "# BLIF file written by procedure Saig_ManDumpBlif()\n" );
    fprintf( pFile, "# If unedited, this file can be read by Saig_ManReadBlif()\n" );
    fprintf( pFile, "# AIG stats: pi=%d po=%d reg=%d and=%d obj=%d maxid=%d\n", 
        Saig_ManPiNum(p), Saig_ManPoNum(p), Saig_ManRegNum(p), 
        Aig_ManNodeNum(p), Aig_ManObjNum(p), Aig_ManObjNumMax(p) );
    fprintf( pFile, ".model %s\n", p->pName );
    // write primary inputs
    fprintf( pFile, ".inputs" );
    Aig_ManForEachPiSeq( p, pObj, i )
        fprintf( pFile, " %s", Saig_ObjName(p, pObj) );
    fprintf( pFile, "\n" );
    // write primary outputs
    fprintf( pFile, ".outputs" );
    Aig_ManForEachPoSeq( p, pObj, i )
        fprintf( pFile, " %s", Saig_ObjName(p, pObj) );
    fprintf( pFile, "\n" );
    // write registers
    if ( Aig_ManRegNum(p) )
    {
        Aig_ManForEachLiLoSeq( p, pObjLi, pObjLo, i )
        {
            fprintf( pFile, ".latch" );
            fprintf( pFile, " %s", Saig_ObjName(p, pObjLi) );
            fprintf( pFile, " %s", Saig_ObjName(p, pObjLo) );
            fprintf( pFile, " 0\n" );
        }
    } 
/**Function*************************************************************

  Synopsis    []

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
Nwk_Man_t * Nwk_ManFromIf( If_Man_t * pIfMan, Aig_Man_t * p, Vec_Ptr_t * vAigToIf )
{
    Vec_Ptr_t * vIfToAig;
    Nwk_Man_t * pNtk;
    Nwk_Obj_t * pObjNew;
    Aig_Obj_t * pObj, * pObjRepr;
    If_Obj_t * pIfObj;
    If_Cut_t * pCutBest;
    int i, k, nLeaves, * ppLeaves;
    assert( Aig_ManCiNum(p) == If_ManCiNum(pIfMan) );
    assert( Aig_ManCoNum(p) == If_ManCoNum(pIfMan) );
    assert( Aig_ManNodeNum(p) == If_ManAndNum(pIfMan) );
    Aig_ManCleanData( p );
    If_ManCleanCutData( pIfMan );
    // create mapping of IF to AIG
    vIfToAig = Vec_PtrStart( If_ManObjNum(pIfMan) );
    Aig_ManForEachObj( p, pObj, i )
    {
        pIfObj = (If_Obj_t *)Vec_PtrEntry( vAigToIf, i );
        Vec_PtrWriteEntry( vIfToAig, pIfObj->Id, pObj );
    }
Beispiel #17
0
/**Function*************************************************************

  Synopsis    [Collects internal nodes in the reverse DFS order.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Aig_ManDfsReverse( Aig_Man_t * p )
{
    Vec_Ptr_t * vNodes;
    Aig_Obj_t * pObj;
    int i;
    Aig_ManIncrementTravId( p );
    // mark POs
    Aig_ManForEachPo( p, pObj, i )
        Aig_ObjSetTravIdCurrent( p, pObj );
    // if there are latches, mark them
    if ( Aig_ManLatchNum(p) > 0 )
        Aig_ManForEachObj( p, pObj, i )
            if ( Aig_ObjIsLatch(pObj) )
                Aig_ObjSetTravIdCurrent( p, pObj );
    // go through the nodes
    vNodes = Vec_PtrAlloc( Aig_ManNodeNum(p) );
    Aig_ManForEachObj( p, pObj, i )
        if ( Aig_ObjIsNode(pObj) || Aig_ObjIsBuf(pObj) )
            Aig_ManDfsReverse_rec( p, pObj, vNodes );
    return vNodes;
}
Beispiel #18
0
/**Function*************************************************************

  Synopsis    [Writes the graph structure of AIG for DOT.]

  Description [Useful for graph visualization using tools such as GraphViz: 
  http://www.graphviz.org/]
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Aig_WriteDotAig( Aig_Man_t * pMan, char * pFileName, int fHaig, Vec_Ptr_t * vBold )
{
    FILE * pFile;
    Aig_Obj_t * pNode;//, * pTemp, * pPrev;
    int LevelMax, Level, i;

    if ( Aig_ManNodeNum(pMan) > 200 )
    {
        fprintf( stdout, "Cannot visualize AIG with more than 200 nodes.\n" );
        return;
    }
    if ( (pFile = fopen( pFileName, "w" )) == NULL )
    {
        fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", pFileName );
        return;
    }

    // mark the nodes
    if ( vBold )
        Vec_PtrForEachEntry( vBold, pNode, i )
            pNode->fMarkB = 1;

    // compute levels
//    LevelMax = 1 + Aig_ManSetLevels( pMan, fHaig );
    LevelMax = 1 + Aig_ManLevels( pMan );
    Aig_ManForEachPo( pMan, pNode, i )
        pNode->Level = LevelMax;

    // write the DOT header
    fprintf( pFile, "# %s\n",  "AIG structure generated by IVY package" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "digraph AIG {\n" );
    fprintf( pFile, "size = \"7.5,10\";\n" );
//  fprintf( pFile, "ranksep = 0.5;\n" );
//  fprintf( pFile, "nodesep = 0.5;\n" );
    fprintf( pFile, "center = true;\n" );
//  fprintf( pFile, "orientation = landscape;\n" );
//  fprintf( pFile, "edge [fontsize = 10];\n" );
//  fprintf( pFile, "edge [dir = none];\n" );
    fprintf( pFile, "edge [dir = back];\n" );
    fprintf( pFile, "\n" );

    // labels on the left of the picture
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  node [shape = plaintext];\n" );
    fprintf( pFile, "  edge [style = invis];\n" );
    fprintf( pFile, "  LevelTitle1 [label=\"\"];\n" );
    fprintf( pFile, "  LevelTitle2 [label=\"\"];\n" );
    // generate node names with labels
    for ( Level = LevelMax; Level >= 0; Level-- )
    {
        // the visible node name
        fprintf( pFile, "  Level%d", Level );
        fprintf( pFile, " [label = " );
        // label name
        fprintf( pFile, "\"" );
        fprintf( pFile, "\"" );
        fprintf( pFile, "];\n" );
    }

    // genetate the sequence of visible/invisible nodes to mark levels
    fprintf( pFile, "  LevelTitle1 ->  LevelTitle2 ->" );
    for ( Level = LevelMax; Level >= 0; Level-- )
    {
        // the visible node name
        fprintf( pFile, "  Level%d",  Level );
        // the connector
        if ( Level != 0 )
            fprintf( pFile, " ->" );
        else
            fprintf( pFile, ";" );
    }
    fprintf( pFile, "\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate title box on top
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    fprintf( pFile, "  LevelTitle1;\n" );
    fprintf( pFile, "  title1 [shape=plaintext,\n" );
    fprintf( pFile, "          fontsize=20,\n" );
    fprintf( pFile, "          fontname = \"Times-Roman\",\n" );
    fprintf( pFile, "          label=\"" );
    fprintf( pFile, "%s", "AIG structure visualized by ABC" );
    fprintf( pFile, "\\n" );
    fprintf( pFile, "Benchmark \\\"%s\\\". ", "aig" );
//    fprintf( pFile, "Time was %s. ",  Extra_TimeStamp() );
    fprintf( pFile, "\"\n" );
    fprintf( pFile, "         ];\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate statistics box
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    fprintf( pFile, "  LevelTitle2;\n" );
    fprintf( pFile, "  title2 [shape=plaintext,\n" );
    fprintf( pFile, "          fontsize=18,\n" );
    fprintf( pFile, "          fontname = \"Times-Roman\",\n" );
    fprintf( pFile, "          label=\"" );
    fprintf( pFile, "The set contains %d logic nodes and spans %d levels.", Aig_ManNodeNum(pMan), LevelMax );
    fprintf( pFile, "\\n" );
    fprintf( pFile, "\"\n" );
    fprintf( pFile, "         ];\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate the COs
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    // the labeling node of this level
    fprintf( pFile, "  Level%d;\n",  LevelMax );
    // generate the CO nodes
    Aig_ManForEachPo( pMan, pNode, i )
    {
/*
        if ( fHaig || pNode->pEquiv == NULL )
            fprintf( pFile, "  Node%d%s [label = \"%d%s\"", pNode->Id, 
                (Aig_ObjIsLatch(pNode)? "_in":""), pNode->Id, (Aig_ObjIsLatch(pNode)? "_in":"") );
        else
            fprintf( pFile, "  Node%d%s [label = \"%d%s(%d%s)\"", pNode->Id, 
                (Aig_ObjIsLatch(pNode)? "_in":""), pNode->Id, (Aig_ObjIsLatch(pNode)? "_in":""), 
                    Aig_Regular(pNode->pEquiv)->Id, Aig_IsComplement(pNode->pEquiv)? "\'":"" );
*/
        fprintf( pFile, "  Node%d [label = \"%d\"", pNode->Id, pNode->Id ); 

        fprintf( pFile, ", shape = %s", (Aig_ObjIsLatch(pNode)? "box":"invtriangle") );
        fprintf( pFile, ", color = coral, fillcolor = coral" );
        fprintf( pFile, "];\n" );
    }
/**Function*************************************************************

  Synopsis    [Interplates while the number of conflicts is not exceeded.]

  Description [Returns 1 if proven. 0 if failed. -1 if undecided.]
               
  SideEffects [Does not check the property in 0-th frame.]

  SeeAlso     []

***********************************************************************/
int Inter_ManPerformInterpolation( Aig_Man_t * pAig, Inter_ManParams_t * pPars, int * piFrame )
{
    extern int Inter_ManCheckInductiveContainment( Aig_Man_t * pTrans, Aig_Man_t * pInter, int nSteps, int fBackward );
    Inter_Man_t * p;
    Inter_Check_t * pCheck = NULL;
    Aig_Man_t * pAigTemp;
    int s, i, RetValue, Status;
    abctime clk, clk2, clkTotal = Abc_Clock(), timeTemp = 0;
    abctime nTimeNewOut = pPars->nSecLimit ? pPars->nSecLimit * CLOCKS_PER_SEC + Abc_Clock() : 0;

    // enable ORing of the interpolants, if containment check is performed inductively with K > 1
    if ( pPars->nFramesK > 1 )
        pPars->fTransLoop = 1;

    // sanity checks
    assert( Saig_ManRegNum(pAig) > 0 );
    assert( Saig_ManPiNum(pAig) > 0 );
    assert( Saig_ManPoNum(pAig)-Saig_ManConstrNum(pAig) == 1 );
    if ( pPars->fVerbose && Saig_ManConstrNum(pAig) )
        printf( "Performing interpolation with %d constraints...\n", Saig_ManConstrNum(pAig) );

    if ( Inter_ManCheckInitialState(pAig) )
    {
        *piFrame = -1;
        printf( "Property trivially fails in the initial state.\n" );
        return 0;
    }
/*
    if ( Inter_ManCheckAllStates(pAig) )
    {
        printf( "Property trivially holds in all states.\n" );
        return 1;
    }
*/
    // create interpolation manager
    // can perform SAT sweeping and/or rewriting of this AIG...
    p = Inter_ManCreate( pAig, pPars );
    if ( pPars->fTransLoop )
        p->pAigTrans = Inter_ManStartOneOutput( pAig, 0 );
    else
        p->pAigTrans = Inter_ManStartDuplicated( pAig );
    // derive CNF for the transformed AIG
clk = Abc_Clock();
    p->pCnfAig = Cnf_Derive( p->pAigTrans, Aig_ManRegNum(p->pAigTrans) ); 
p->timeCnf += Abc_Clock() - clk;    
    if ( pPars->fVerbose )
    { 
        printf( "AIG: PI/PO/Reg = %d/%d/%d. And = %d. Lev = %d.  CNF: Var/Cla = %d/%d.\n",
            Saig_ManPiNum(pAig), Saig_ManPoNum(pAig), Saig_ManRegNum(pAig), 
            Aig_ManAndNum(pAig), Aig_ManLevelNum(pAig),
            p->pCnfAig->nVars, p->pCnfAig->nClauses );
    }
 
    // derive interpolant
    *piFrame = -1;
    p->nFrames = 1;
    for ( s = 0; ; s++ )
    {
        Cnf_Dat_t * pCnfInter2;

clk2 = Abc_Clock();
        // initial state
        if ( pPars->fUseBackward )
            p->pInter = Inter_ManStartOneOutput( pAig, 1 );
        else
            p->pInter = Inter_ManStartInitState( Aig_ManRegNum(pAig) );
        assert( Aig_ManCoNum(p->pInter) == 1 );
clk = Abc_Clock();
        p->pCnfInter = Cnf_Derive( p->pInter, 0 );  
p->timeCnf += Abc_Clock() - clk;    
        // timeframes
        p->pFrames = Inter_ManFramesInter( pAig, p->nFrames, pPars->fUseBackward, pPars->fUseTwoFrames );
clk = Abc_Clock();
        if ( pPars->fRewrite )
        {
            p->pFrames = Dar_ManRwsat( pAigTemp = p->pFrames, 1, 0 );
            Aig_ManStop( pAigTemp );
//        p->pFrames = Fra_FraigEquivence( pAigTemp = p->pFrames, 100, 0 );
//        Aig_ManStop( pAigTemp );
        }
p->timeRwr += Abc_Clock() - clk;
        // can also do SAT sweeping on the timeframes...
clk = Abc_Clock();
        if ( pPars->fUseBackward )
            p->pCnfFrames = Cnf_Derive( p->pFrames, Aig_ManCoNum(p->pFrames) );  
        else
//            p->pCnfFrames = Cnf_Derive( p->pFrames, 0 );  
            p->pCnfFrames = Cnf_DeriveSimple( p->pFrames, 0 );  
p->timeCnf += Abc_Clock() - clk;    
        // report statistics
        if ( pPars->fVerbose )
        {
            printf( "Step = %2d. Frames = 1 + %d. And = %5d. Lev = %5d.  ", 
                s+1, p->nFrames, Aig_ManNodeNum(p->pFrames), Aig_ManLevelNum(p->pFrames) );
            ABC_PRT( "Time", Abc_Clock() - clk2 );
        }


        //////////////////////////////////////////
        // start containment checking
        if ( !(pPars->fTransLoop || pPars->fUseBackward || pPars->nFramesK > 1) )
        {
            pCheck = Inter_CheckStart( p->pAigTrans, pPars->nFramesK );
            // try new containment check for the initial state
clk = Abc_Clock();
            pCnfInter2 = Cnf_Derive( p->pInter, 1 );  
p->timeCnf += Abc_Clock() - clk;    
clk = Abc_Clock();
            RetValue = Inter_CheckPerform( pCheck, pCnfInter2, nTimeNewOut );
p->timeEqu += Abc_Clock() - clk;
//            assert( RetValue == 0 );
            Cnf_DataFree( pCnfInter2 );
            if ( p->vInters )
                Vec_PtrPush( p->vInters, Aig_ManDupSimple(p->pInter) );
        }
        //////////////////////////////////////////

        // iterate the interpolation procedure
        for ( i = 0; ; i++ )
        {
            if ( pPars->nFramesMax && p->nFrames + i >= pPars->nFramesMax )
            { 
                if ( pPars->fVerbose )
                    printf( "Reached limit (%d) on the number of timeframes.\n", pPars->nFramesMax );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 0 );
                Inter_CheckStop( pCheck );
                return -1;
            }

            // perform interpolation
            clk = Abc_Clock();
#ifdef ABC_USE_LIBRARIES
            if ( pPars->fUseMiniSat )
            {
                assert( !pPars->fUseBackward );
                RetValue = Inter_ManPerformOneStepM114p( p, pPars->fUsePudlak, pPars->fUseOther );
            }
            else 
#endif
                RetValue = Inter_ManPerformOneStep( p, pPars->fUseBias, pPars->fUseBackward, nTimeNewOut );

            if ( pPars->fVerbose )
            {
                printf( "   I = %2d. Bmc =%3d. IntAnd =%6d. IntLev =%5d. Conf =%6d.  ", 
                    i+1, i + 1 + p->nFrames, Aig_ManNodeNum(p->pInter), Aig_ManLevelNum(p->pInter), p->nConfCur );
                ABC_PRT( "Time", Abc_Clock() - clk );
            }
            // remember the number of timeframes completed
            pPars->iFrameMax = i - 1 + p->nFrames;
            if ( RetValue == 0 ) // found a (spurious?) counter-example
            {
                if ( i == 0 ) // real counterexample
                {
                    if ( pPars->fVerbose )
                        printf( "Found a real counterexample in frame %d.\n", p->nFrames );
                    p->timeTotal = Abc_Clock() - clkTotal;
                    *piFrame = p->nFrames;
//                    pAig->pSeqModel = (Abc_Cex_t *)Inter_ManGetCounterExample( pAig, p->nFrames+1, pPars->fVerbose );
                    {
                        int RetValue;
                        Saig_ParBmc_t ParsBmc, * pParsBmc = &ParsBmc;
                        Saig_ParBmcSetDefaultParams( pParsBmc );
                        pParsBmc->nConfLimit = 100000000;
                        pParsBmc->nStart     = p->nFrames;
                        pParsBmc->fVerbose   = pPars->fVerbose;
                        RetValue = Saig_ManBmcScalable( pAig, pParsBmc );
                        if ( RetValue == 1 )
                            printf( "Error: The problem should be SAT but it is UNSAT.\n" );
                        else if ( RetValue == -1 )
                            printf( "Error: The problem timed out.\n" );
                    }
                    Inter_ManStop( p, 0 );
                    Inter_CheckStop( pCheck );
                    return 0;
                }
                // likely spurious counter-example
                p->nFrames += i;
                Inter_ManClean( p ); 
                break;
            }
            else if ( RetValue == -1 ) 
            {
                if ( pPars->nSecLimit && Abc_Clock() > nTimeNewOut ) // timed out
                {
                    if ( pPars->fVerbose )
                        printf( "Reached timeout (%d seconds).\n",  pPars->nSecLimit );
                }
                else
                {
                    assert( p->nConfCur >= p->nConfLimit );
                    if ( pPars->fVerbose )
                        printf( "Reached limit (%d) on the number of conflicts.\n", p->nConfLimit );
                }
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 0 );
                Inter_CheckStop( pCheck );
                return -1;
            }
            assert( RetValue == 1 ); // found new interpolant
            // compress the interpolant
clk = Abc_Clock();
            if ( p->pInterNew )
            {
                // save the timeout value
                p->pInterNew->Time2Quit = nTimeNewOut;
//                Ioa_WriteAiger( p->pInterNew, "interpol.aig", 0, 0 );
                p->pInterNew = Dar_ManRwsat( pAigTemp = p->pInterNew, 1, 0 );
//                p->pInterNew = Dar_ManRwsat( pAigTemp = p->pInterNew, 0, 0 );
                Aig_ManStop( pAigTemp );
                if ( p->pInterNew == NULL )
                {
                    printf( "Reached timeout (%d seconds) during rewriting.\n",  pPars->nSecLimit );
                    p->timeTotal = Abc_Clock() - clkTotal;
                    Inter_ManStop( p, 1 );
                    Inter_CheckStop( pCheck );
                    return -1;
                }
            }
p->timeRwr += Abc_Clock() - clk;

            // check if interpolant is trivial
            if ( p->pInterNew == NULL || Aig_ObjChild0(Aig_ManCo(p->pInterNew,0)) == Aig_ManConst0(p->pInterNew) )
            { 
//                printf( "interpolant is constant 0\n" );
                if ( pPars->fVerbose )
                    printf( "The problem is trivially true for all states.\n" );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 1 );
                Inter_CheckStop( pCheck );
                return 1;
            }

            // check containment of interpolants
clk = Abc_Clock();
            if ( pPars->fCheckKstep ) // k-step unique-state induction
            {
                if ( Aig_ManCiNum(p->pInterNew) == Aig_ManCiNum(p->pInter) )
                {
                    if ( pPars->fTransLoop || pPars->fUseBackward || pPars->nFramesK > 1 )
                    {
clk2 = Abc_Clock();
                        Status = Inter_ManCheckInductiveContainment( p->pAigTrans, p->pInterNew, Abc_MinInt(i + 1, pPars->nFramesK), pPars->fUseBackward );
timeTemp = Abc_Clock() - clk2;
                    }
                    else
                    {   // new containment check
clk2 = Abc_Clock();
                        pCnfInter2 = Cnf_Derive( p->pInterNew, 1 );  
p->timeCnf += Abc_Clock() - clk2;
timeTemp = Abc_Clock() - clk2;
            
                        Status = Inter_CheckPerform( pCheck, pCnfInter2, nTimeNewOut );
                        Cnf_DataFree( pCnfInter2 );
                        if ( p->vInters )
                            Vec_PtrPush( p->vInters, Aig_ManDupSimple(p->pInterNew) );
                    }
                }
                else
                    Status = 0;
            }
            else // combinational containment
            {
                if ( Aig_ManCiNum(p->pInterNew) == Aig_ManCiNum(p->pInter) )
                    Status = Inter_ManCheckContainment( p->pInterNew, p->pInter );
                else
                    Status = 0;
            }
p->timeEqu += Abc_Clock() - clk - timeTemp;
            if ( Status ) // contained
            {
                if ( pPars->fVerbose )
                    printf( "Proved containment of interpolants.\n" );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 1 );
                Inter_CheckStop( pCheck );
                return 1;
            }
            if ( pPars->nSecLimit && Abc_Clock() > nTimeNewOut )
            {
                printf( "Reached timeout (%d seconds).\n",  pPars->nSecLimit );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 1 );
                Inter_CheckStop( pCheck );
                return -1;
            }
            // save interpolant and convert it into CNF
            if ( pPars->fTransLoop )
            {
                Aig_ManStop( p->pInter );
                p->pInter = p->pInterNew; 
            }
            else
            {
                if ( pPars->fUseBackward )
                {
                    p->pInter = Aig_ManCreateMiter( pAigTemp = p->pInter, p->pInterNew, 2 );
                    Aig_ManStop( pAigTemp );
                    Aig_ManStop( p->pInterNew );
                    // compress the interpolant
clk = Abc_Clock();
                    p->pInter = Dar_ManRwsat( pAigTemp = p->pInter, 1, 0 );
                    Aig_ManStop( pAigTemp );
p->timeRwr += Abc_Clock() - clk;
                }
                else // forward with the new containment checking (using only the frontier)
                {
                    Aig_ManStop( p->pInter );
                    p->pInter = p->pInterNew; 
                }
            }
            p->pInterNew = NULL;
            Cnf_DataFree( p->pCnfInter );
clk = Abc_Clock();
            p->pCnfInter = Cnf_Derive( p->pInter, 0 );  
p->timeCnf += Abc_Clock() - clk;
        }

        // start containment checking
        Inter_CheckStop( pCheck );
    }
    assert( 0 );
    return RetValue;
}
Beispiel #20
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Create timeframes of the manager for interpolation.]

  Description [The resulting manager is combinational. The primary inputs
  corresponding to register outputs are ordered first. The only POs of the 
  manager is the property output of the last timeframe.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Inter_ManFramesInter( Aig_Man_t * pAig, int nFrames, int fAddRegOuts )
{
    Aig_Man_t * pFrames;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    int i, f;
    assert( Saig_ManRegNum(pAig) > 0 );
    assert( Saig_ManPoNum(pAig)-Saig_ManConstrNum(pAig) == 1 );
    pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
    // map the constant node
    Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
    // create variables for register outputs
    if ( fAddRegOuts )
    {
        Saig_ManForEachLo( pAig, pObj, i )
            pObj->pData = Aig_ManConst0( pFrames );
    }
    else
    {
        Saig_ManForEachLo( pAig, pObj, i )
            pObj->pData = Aig_ObjCreatePi( pFrames );
    }
    // add timeframes
    for ( f = 0; f < nFrames; f++ )
    {
        // create PI nodes for this frame
        Saig_ManForEachPi( pAig, pObj, i )
            pObj->pData = Aig_ObjCreatePi( pFrames );
        // add internal nodes of this frame
        Aig_ManForEachNode( pAig, pObj, i )
            pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
        // add outputs for constraints
        Saig_ManForEachPo( pAig, pObj, i )
        {
            if ( i < Saig_ManPoNum(pAig)-Saig_ManConstrNum(pAig) )
                continue;
            Aig_ObjCreatePo( pFrames, Aig_Not( Aig_ObjChild0Copy(pObj) ) );
        }
        if ( f == nFrames - 1 )
            break;
        // save register inputs
        Saig_ManForEachLi( pAig, pObj, i )
            pObj->pData = Aig_ObjChild0Copy(pObj);
        // transfer to register outputs
        Saig_ManForEachLiLo(  pAig, pObjLi, pObjLo, i )
            pObjLo->pData = pObjLi->pData;
    }
    // create POs for each register output
    if ( fAddRegOuts )
    {
        Saig_ManForEachLi( pAig, pObj, i )
            Aig_ObjCreatePo( pFrames, Aig_ObjChild0Copy(pObj) );
    }
    // create the only PO of the manager
    else
    {
        pObj = Aig_ManPo( pAig, 0 );
        Aig_ObjCreatePo( pFrames, Aig_ObjChild0Copy(pObj) );
    }
    Aig_ManCleanup( pFrames );
    return pFrames;
}
Beispiel #21
0
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Fra_FraigSec( Aig_Man_t * p, Fra_Sec_t * pParSec, Aig_Man_t ** ppResult )
{
    Ssw_Pars_t Pars2, * pPars2 = &Pars2;
    Fra_Ssw_t Pars, * pPars = &Pars;
    Fra_Sml_t * pSml;
    Aig_Man_t * pNew, * pTemp;
    int nFrames, RetValue, nIter;
    abctime clk, clkTotal = Abc_Clock();
    int TimeOut = 0;
    int fLatchCorr = 0;
    float TimeLeft = 0.0;
    pParSec->nSMnumber = -1;

    // try the miter before solving
    pNew = Aig_ManDupSimple( p );
    RetValue = Fra_FraigMiterStatus( pNew );
    if ( RetValue >= 0 )
        goto finish;

    // prepare parameters
    memset( pPars, 0, sizeof(Fra_Ssw_t) );
    pPars->fLatchCorr  = fLatchCorr;
    pPars->fVerbose = pParSec->fVeryVerbose;
    if ( pParSec->fVerbose )
    {
        printf( "Original miter:       Latches = %5d. Nodes = %6d.\n", 
            Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
    }
//Aig_ManDumpBlif( pNew, "after.blif", NULL, NULL );

    // perform sequential cleanup
clk = Abc_Clock();
    if ( pNew->nRegs )
    pNew = Aig_ManReduceLaches( pNew, 0 );
    if ( pNew->nRegs )
    pNew = Aig_ManConstReduce( pNew, 0, -1, -1, 0, 0 );
    if ( pParSec->fVerbose )
    {
        printf( "Sequential cleanup:   Latches = %5d. Nodes = %6d. ", 
            Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }
    RetValue = Fra_FraigMiterStatus( pNew );
    if ( RetValue >= 0 )
        goto finish;

    // perform phase abstraction
clk = Abc_Clock();
    if ( pParSec->fPhaseAbstract )
    {
        extern Aig_Man_t * Saig_ManPhaseAbstractAuto( Aig_Man_t * p, int fVerbose );
        pNew->nTruePis = Aig_ManCiNum(pNew) - Aig_ManRegNum(pNew); 
        pNew->nTruePos = Aig_ManCoNum(pNew) - Aig_ManRegNum(pNew); 
        pNew = Saig_ManPhaseAbstractAuto( pTemp = pNew, 0 );
        Aig_ManStop( pTemp );
        if ( pParSec->fVerbose )
        {
            printf( "Phase abstraction:    Latches = %5d. Nodes = %6d. ", 
                Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
        }
    }

    // perform forward retiming
    if ( pParSec->fRetimeFirst && pNew->nRegs )
    {
clk = Abc_Clock();
//    pNew = Rtm_ManRetime( pTemp = pNew, 1, 1000, 0 );
    pNew = Saig_ManRetimeForward( pTemp = pNew, 100, 0 );
    Aig_ManStop( pTemp );
    if ( pParSec->fVerbose )
    {
        printf( "Forward retiming:     Latches = %5d. Nodes = %6d. ", 
            Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }
    }
     
    // run latch correspondence
clk = Abc_Clock();
    if ( pNew->nRegs )
    {
    pNew = Aig_ManDupOrdered( pTemp = pNew );
//    pNew = Aig_ManDupDfs( pTemp = pNew );
    Aig_ManStop( pTemp );
/*
    if ( RetValue == -1 && pParSec->TimeLimit )
    {
        TimeLeft = (float)pParSec->TimeLimit - ((float)(Abc_Clock()-clkTotal)/(float)(CLOCKS_PER_SEC));
        TimeLeft = Abc_MaxInt( TimeLeft, 0.0 );
        if ( TimeLeft == 0.0 )
        {
            if ( !pParSec->fSilent )
                printf( "Runtime limit exceeded.\n" );
            RetValue = -1;
            TimeOut = 1;
            goto finish;
        }
    }
*/

//    pNew = Fra_FraigLatchCorrespondence( pTemp = pNew, 0, 1000, 1, pParSec->fVeryVerbose, &nIter, TimeLeft );
//Aig_ManDumpBlif( pNew, "ex.blif", NULL, NULL );
    Ssw_ManSetDefaultParamsLcorr( pPars2 );
    pNew = Ssw_LatchCorrespondence( pTemp = pNew, pPars2 );
    nIter = pPars2->nIters;

    // prepare parameters for scorr
    Ssw_ManSetDefaultParams( pPars2 );

    if ( pTemp->pSeqModel )
    {
        if ( !Saig_ManVerifyCex( pTemp, pTemp->pSeqModel ) )
            printf( "Fra_FraigSec(): Counter-example verification has FAILED.\n" );
        if ( Saig_ManPiNum(p) != Saig_ManPiNum(pTemp) )
            printf( "The counter-example is invalid because of phase abstraction.\n" );
        else
        {
        ABC_FREE( p->pSeqModel );
        p->pSeqModel = Abc_CexDup( pTemp->pSeqModel, Aig_ManRegNum(p) );
        ABC_FREE( pTemp->pSeqModel );
        }
    }
    if ( pNew == NULL )
    {
        if ( p->pSeqModel )
        {
            RetValue = 0;
            if ( !pParSec->fSilent )
            {
                printf( "Networks are NOT EQUIVALENT after simulation.   " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
            }
            if ( pParSec->fReportSolution && !pParSec->fRecursive )
            {
            printf( "SOLUTION: FAIL       " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
            }
            Aig_ManStop( pTemp );
            return RetValue;
        }
        pNew = pTemp;
        RetValue = -1;
        TimeOut = 1;
        goto finish;
    }
    Aig_ManStop( pTemp );

    if ( pParSec->fVerbose )
    {
        printf( "Latch-corr (I=%3d):   Latches = %5d. Nodes = %6d. ", 
            nIter, Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }
    }
/*
    if ( RetValue == -1 && pParSec->TimeLimit )
    {
        TimeLeft = (float)pParSec->TimeLimit - ((float)(Abc_Clock()-clkTotal)/(float)(CLOCKS_PER_SEC));
        TimeLeft = Abc_MaxInt( TimeLeft, 0.0 );
        if ( TimeLeft == 0.0 )
        {
            if ( !pParSec->fSilent )
                printf( "Runtime limit exceeded.\n" );
            RetValue = -1;
            TimeOut = 1;
            goto finish;
        }
    }
*/
    // perform fraiging
    if ( pParSec->fFraiging )
    {
clk = Abc_Clock();
    pNew = Fra_FraigEquivence( pTemp = pNew, 100, 0 );
    Aig_ManStop( pTemp );
    if ( pParSec->fVerbose )
    {
        printf( "Fraiging:             Latches = %5d. Nodes = %6d. ", 
            Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }
    }

    if ( pNew->nRegs == 0 )
        RetValue = Fra_FraigCec( &pNew, 100000, 0 );

    RetValue = Fra_FraigMiterStatus( pNew );
    if ( RetValue >= 0 )
        goto finish;
/*
    if ( RetValue == -1 && pParSec->TimeLimit )
    {
        TimeLeft = (float)pParSec->TimeLimit - ((float)(Abc_Clock()-clkTotal)/(float)(CLOCKS_PER_SEC));
        TimeLeft = Abc_MaxInt( TimeLeft, 0.0 );
        if ( TimeLeft == 0.0 )
        {
            if ( !pParSec->fSilent )
                printf( "Runtime limit exceeded.\n" );
            RetValue = -1;
            TimeOut = 1;
            goto finish;
        }
    }
*/
    // perform min-area retiming
    if ( pParSec->fRetimeRegs && pNew->nRegs )
    {
//    extern Aig_Man_t * Saig_ManRetimeMinArea( Aig_Man_t * p, int nMaxIters, int fForwardOnly, int fBackwardOnly, int fInitial, int fVerbose );
clk = Abc_Clock();
    pNew->nTruePis = Aig_ManCiNum(pNew) - Aig_ManRegNum(pNew); 
    pNew->nTruePos = Aig_ManCoNum(pNew) - Aig_ManRegNum(pNew); 
//        pNew = Rtm_ManRetime( pTemp = pNew, 1, 1000, 0 );
    pNew = Saig_ManRetimeMinArea( pTemp = pNew, 1000, 0, 0, 1, 0 );
    Aig_ManStop( pTemp );
    pNew = Aig_ManDupOrdered( pTemp = pNew );
    Aig_ManStop( pTemp );
    if ( pParSec->fVerbose )
    {
    printf( "Min-reg retiming:     Latches = %5d. Nodes = %6d. ", 
        Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
    }
    }

    // perform seq sweeping while increasing the number of frames
    RetValue = Fra_FraigMiterStatus( pNew );
    if ( RetValue == -1 && pParSec->fInduction )
    for ( nFrames = 1; nFrames <= pParSec->nFramesMax; nFrames *= 2 )
    {
/*
        if ( RetValue == -1 && pParSec->TimeLimit )
        {
            TimeLeft = (float)pParSec->TimeLimit - ((float)(Abc_Clock()-clkTotal)/(float)(CLOCKS_PER_SEC));
            TimeLeft = Abc_MaxInt( TimeLeft, 0.0 );
            if ( TimeLeft == 0.0 )
            {
                if ( !pParSec->fSilent )
                    printf( "Runtime limit exceeded.\n" );
                RetValue = -1;
                TimeOut = 1;
                goto finish;
            }
        }
*/ 

clk = Abc_Clock();
        pPars->nFramesK = nFrames;
        pPars->TimeLimit = TimeLeft;
        pPars->fSilent = pParSec->fSilent;
//        pNew = Fra_FraigInduction( pTemp = pNew, pPars );

        pPars2->nFramesK = nFrames;
        pPars2->nBTLimit = pParSec->nBTLimit;
        pPars2->nBTLimitGlobal = pParSec->nBTLimitGlobal;
//        pPars2->nBTLimit = 1000 * nFrames;

        if ( RetValue == -1 && pPars2->nConflicts > pPars2->nBTLimitGlobal )
        {
            if ( !pParSec->fSilent )
                printf( "Global conflict limit (%d) exceeded.\n", pPars2->nBTLimitGlobal );
            RetValue = -1;
            TimeOut = 1;
            goto finish;
        }

        Aig_ManSetRegNum( pNew, pNew->nRegs );
//        pNew = Ssw_SignalCorrespondence( pTemp = pNew, pPars2 );
        if ( Aig_ManRegNum(pNew) > 0 )
            pNew = Ssw_SignalCorrespondence( pTemp = pNew, pPars2 );
        else
            pNew = Aig_ManDupSimpleDfs( pTemp = pNew );

        if ( pNew == NULL )
        {
            pNew = pTemp;
            RetValue = -1;
            TimeOut = 1;
            goto finish;
        }

//        printf( "Total conflicts = %d.\n", pPars2->nConflicts );

        Aig_ManStop( pTemp );
        RetValue = Fra_FraigMiterStatus( pNew );
        if ( pParSec->fVerbose )
        { 
            printf( "K-step (K=%2d,I=%3d):  Latches = %5d. Nodes = %6d. ", 
                nFrames, pPars2->nIters, Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
        }
        if ( RetValue != -1 )
            break;

        // perform retiming
//        if ( pParSec->fRetimeFirst && pNew->nRegs )
        if ( pNew->nRegs )
        {
//        extern Aig_Man_t * Saig_ManRetimeMinArea( Aig_Man_t * p, int nMaxIters, int fForwardOnly, int fBackwardOnly, int fInitial, int fVerbose );
clk = Abc_Clock();
        pNew->nTruePis = Aig_ManCiNum(pNew) - Aig_ManRegNum(pNew); 
        pNew->nTruePos = Aig_ManCoNum(pNew) - Aig_ManRegNum(pNew); 
//        pNew = Rtm_ManRetime( pTemp = pNew, 1, 1000, 0 );
        pNew = Saig_ManRetimeMinArea( pTemp = pNew, 1000, 0, 0, 1, 0 );
        Aig_ManStop( pTemp );
        pNew = Aig_ManDupOrdered( pTemp = pNew );
        Aig_ManStop( pTemp );
        if ( pParSec->fVerbose )
        {
            printf( "Min-reg retiming:     Latches = %5d. Nodes = %6d. ", 
                Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
        }
        }  

        if ( pNew->nRegs )
            pNew = Aig_ManConstReduce( pNew, 0, -1, -1, 0, 0 );

        // perform rewriting
clk = Abc_Clock();
        pNew = Aig_ManDupOrdered( pTemp = pNew );
        Aig_ManStop( pTemp );
//        pNew = Dar_ManRewriteDefault( pTemp = pNew );
        pNew = Dar_ManCompress2( pTemp = pNew, 1, 0, 1, 0, 0 ); 
        Aig_ManStop( pTemp );
        if ( pParSec->fVerbose )
        {
            printf( "Rewriting:            Latches = %5d. Nodes = %6d. ", 
                Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
        } 

        // perform sequential simulation
        if ( pNew->nRegs )
        {
clk = Abc_Clock();
        pSml = Fra_SmlSimulateSeq( pNew, 0, 128 * nFrames, 1 + 16/(1+Aig_ManNodeNum(pNew)/1000), 1  ); 
        if ( pParSec->fVerbose )
        {
            printf( "Seq simulation  :     Latches = %5d. Nodes = %6d. ", 
                Aig_ManRegNum(pNew), Aig_ManNodeNum(pNew) );
ABC_PRT( "Time", Abc_Clock() - clk );
        }
        if ( pSml->fNonConstOut )
        {
            pNew->pSeqModel = Fra_SmlGetCounterExample( pSml );
            // transfer to the original manager
            if ( Saig_ManPiNum(p) != Saig_ManPiNum(pNew) )
                printf( "The counter-example is invalid because of phase abstraction.\n" );
            else
            {
            ABC_FREE( p->pSeqModel );
            p->pSeqModel = Abc_CexDup( pNew->pSeqModel, Aig_ManRegNum(p) );
            ABC_FREE( pNew->pSeqModel );
            }

            Fra_SmlStop( pSml );
            Aig_ManStop( pNew );
            RetValue = 0;
            if ( !pParSec->fSilent )
            {
                printf( "Networks are NOT EQUIVALENT after simulation.   " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
            }
            if ( pParSec->fReportSolution && !pParSec->fRecursive )
            {
            printf( "SOLUTION: FAIL       " );
ABC_PRT( "Time", Abc_Clock() - clkTotal );
            }
            return RetValue;
        }
        Fra_SmlStop( pSml );
        }
    }

    // get the miter status
    RetValue = Fra_FraigMiterStatus( pNew );

    // try interplation
clk = Abc_Clock();
    Aig_ManSetRegNum( pNew, Aig_ManRegNum(pNew) );
    if ( pParSec->fInterpolation && RetValue == -1 && Aig_ManRegNum(pNew) > 0 )
    {
        Inter_ManParams_t Pars, * pPars = &Pars;
        int Depth;
        ABC_FREE( pNew->pSeqModel );
        Inter_ManSetDefaultParams( pPars );
//        pPars->nBTLimit = 100;
        pPars->nBTLimit = pParSec->nBTLimitInter;
        pPars->fVerbose = pParSec->fVeryVerbose;
        if ( Saig_ManPoNum(pNew) == 1 )
        {
            RetValue = Inter_ManPerformInterpolation( pNew, pPars, &Depth );
        }
        else if ( pParSec->fInterSeparate )
        {
            Abc_Cex_t * pCex = NULL;
            Aig_Man_t * pTemp, * pAux;
            Aig_Obj_t * pObjPo;
            int i, Counter = 0;
            Saig_ManForEachPo( pNew, pObjPo, i )
            { 
                if ( Aig_ObjFanin0(pObjPo) == Aig_ManConst1(pNew) )
                    continue;
                if ( pPars->fVerbose )
                    printf( "Solving output %2d (out of %2d):\n", i, Saig_ManPoNum(pNew) );
                pTemp = Aig_ManDupOneOutput( pNew, i, 1 );
                pTemp = Aig_ManScl( pAux = pTemp, 1, 1, 0, -1, -1, 0, 0 );
                Aig_ManStop( pAux );
                if ( Saig_ManRegNum(pTemp) > 0 )
                {
                    RetValue = Inter_ManPerformInterpolation( pTemp, pPars, &Depth );
                    if ( pTemp->pSeqModel )
                    {
                        pCex = p->pSeqModel = Abc_CexDup( pTemp->pSeqModel, Aig_ManRegNum(p) );
                        pCex->iPo = i;
                        Aig_ManStop( pTemp );
                        break;
                    }
                    // if solved, remove the output
                    if ( RetValue == 1 )
                    {
                        Aig_ObjPatchFanin0( pNew, pObjPo, Aig_ManConst0(pNew) );
    //                    printf( "Output %3d : Solved ", i );
                    }
                    else
                    {
                        Counter++;
    //                    printf( "Output %3d : Undec  ", i );
                    }
                }
                else
                    Counter++;
//                Aig_ManPrintStats( pTemp );
                Aig_ManStop( pTemp );
                printf( "Solving output %3d (out of %3d) using interpolation.\r", i, Saig_ManPoNum(pNew) );
            }
            Aig_ManCleanup( pNew );
            if ( pCex == NULL )
            {
                printf( "Interpolation left %d (out of %d) outputs unsolved              \n", Counter, Saig_ManPoNum(pNew) );
                if ( Counter )
                    RetValue = -1;
            }
            pNew = Aig_ManDupUnsolvedOutputs( pTemp = pNew, 1 );
            Aig_ManStop( pTemp );
            pNew = Aig_ManScl( pTemp = pNew, 1, 1, 0, -1, -1, 0, 0 );
            Aig_ManStop( pTemp );
        }
Beispiel #22
0
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dar_ManRewrite( Aig_Man_t * pAig, Dar_RwrPar_t * pPars )
{
    extern Vec_Int_t * Saig_ManComputeSwitchProbs( Aig_Man_t * p, int nFrames, int nPref, int fProbOne );
    Dar_Man_t * p;
//    Bar_Progress_t * pProgress;
    Dar_Cut_t * pCut;
    Aig_Obj_t * pObj, * pObjNew;
    int i, k, nNodesOld, nNodeBefore, nNodeAfter, Required;
    abctime clk = 0, clkStart;
    int Counter = 0;
    int nMffcSize;//, nMffcGains[MAX_VAL+1][MAX_VAL+1] = {{0}};
    // prepare the library
    Dar_LibPrepare( pPars->nSubgMax ); 
    // create rewriting manager
    p = Dar_ManStart( pAig, pPars );
    if ( pPars->fPower )
        pAig->vProbs = Saig_ManComputeSwitchProbs( pAig, 48, 16, 1 );
    // remove dangling nodes
    Aig_ManCleanup( pAig );
    // if updating levels is requested, start fanout and timing
    if ( p->pPars->fFanout )
        Aig_ManFanoutStart( pAig );
    if ( p->pPars->fUpdateLevel )
        Aig_ManStartReverseLevels( pAig, 0 );
    // set elementary cuts for the PIs
//    Dar_ManCutsStart( p );
    // resynthesize each node once
    clkStart = Abc_Clock();
    p->nNodesInit = Aig_ManNodeNum(pAig);
    nNodesOld = Vec_PtrSize( pAig->vObjs );

//    pProgress = Bar_ProgressStart( stdout, nNodesOld );
    Aig_ManForEachObj( pAig, pObj, i )
//    pProgress = Bar_ProgressStart( stdout, 100 );
//    Aig_ManOrderStart( pAig );
//    Aig_ManForEachNodeInOrder( pAig, pObj )
    {
        if ( pAig->Time2Quit && !(i & 256) && Abc_Clock() > pAig->Time2Quit )
            break;
//        Bar_ProgressUpdate( pProgress, 100*pAig->nAndPrev/pAig->nAndTotal, NULL );
//        Bar_ProgressUpdate( pProgress, i, NULL );
        if ( !Aig_ObjIsNode(pObj) )
            continue;
        if ( i > nNodesOld )
//        if ( p->pPars->fUseZeros && i > nNodesOld )
            break;
        if ( pPars->fRecycle && ++Counter % 50000 == 0 && Aig_DagSize(pObj) < Vec_PtrSize(p->vCutNodes)/100 )
        {
//            printf( "Counter = %7d.  Node = %7d.  Dag = %5d. Vec = %5d.\n", 
//                Counter, i, Aig_DagSize(pObj), Vec_PtrSize(p->vCutNodes) );
//            fflush( stdout );
            Dar_ManCutsRestart( p, pObj );
        }

        // consider freeing the cuts
//        if ( (i & 0xFFF) == 0 && Aig_MmFixedReadMemUsage(p->pMemCuts)/(1<<20) > 100 )
//            Dar_ManCutsStart( p );

        // compute cuts for the node
        p->nNodesTried++;
clk = Abc_Clock();
        Dar_ObjSetCuts( pObj, NULL );
        Dar_ObjComputeCuts_rec( p, pObj );
p->timeCuts += Abc_Clock() - clk;

        // check if there is a trivial cut
        Dar_ObjForEachCut( pObj, pCut, k )
            if ( pCut->nLeaves == 0 || (pCut->nLeaves == 1 && pCut->pLeaves[0] != pObj->Id && Aig_ManObj(p->pAig, pCut->pLeaves[0])) )
                break;
        if ( k < (int)pObj->nCuts )
        {
            assert( pCut->nLeaves < 2 );
            if ( pCut->nLeaves == 0 ) // replace by constant
            {
                assert( pCut->uTruth == 0 || pCut->uTruth == 0xFFFF );
                pObjNew = Aig_NotCond( Aig_ManConst1(p->pAig), pCut->uTruth==0 );
            }
            else
            {
                assert( pCut->uTruth == 0xAAAA || pCut->uTruth == 0x5555 );
                pObjNew = Aig_NotCond( Aig_ManObj(p->pAig, pCut->pLeaves[0]), pCut->uTruth==0x5555 );
            }
            // remove the old cuts
            Dar_ObjSetCuts( pObj, NULL );
            // replace the node
            Aig_ObjReplace( pAig, pObj, pObjNew, p->pPars->fUpdateLevel );
            continue;
        }

        // evaluate the cuts
        p->GainBest = -1;
        nMffcSize   = -1;
        Required    = pAig->vLevelR? Aig_ObjRequiredLevel(pAig, pObj) : ABC_INFINITY;
        Dar_ObjForEachCut( pObj, pCut, k )
        {
            int nLeavesOld = pCut->nLeaves;
            if ( pCut->nLeaves == 3 )
                pCut->pLeaves[pCut->nLeaves++] = 0;
            Dar_LibEval( p, pObj, pCut, Required, &nMffcSize );
            pCut->nLeaves = nLeavesOld; 
        }
        // check the best gain
        if ( !(p->GainBest > 0 || (p->GainBest == 0 && p->pPars->fUseZeros)) )
        {
//            Aig_ObjOrderAdvance( pAig );
            continue;
        }
//        nMffcGains[p->GainBest < MAX_VAL ? p->GainBest : MAX_VAL][nMffcSize < MAX_VAL ? nMffcSize : MAX_VAL]++;
        // remove the old cuts
        Dar_ObjSetCuts( pObj, NULL );
        // if we end up here, a rewriting step is accepted
        nNodeBefore = Aig_ManNodeNum( pAig );
        pObjNew = Dar_LibBuildBest( p ); // pObjNew can be complemented!
        pObjNew = Aig_NotCond( pObjNew, Aig_ObjPhaseReal(pObjNew) ^ pObj->fPhase );
        assert( (int)Aig_Regular(pObjNew)->Level <= Required );
        // replace the node
        Aig_ObjReplace( pAig, pObj, pObjNew, p->pPars->fUpdateLevel );
        // compare the gains
        nNodeAfter = Aig_ManNodeNum( pAig );
        assert( p->GainBest <= nNodeBefore - nNodeAfter );
        // count gains of this class
        p->ClassGains[p->ClassBest] += nNodeBefore - nNodeAfter;
    }
/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Dar_ManRewrite( Aig_Man_t * pAig, Dar_RwrPar_t * pPars )
{
    Dar_Man_t * p;
    ProgressBar * pProgress;
    Dar_Cut_t * pCut;
    Aig_Obj_t * pObj, * pObjNew;
    int i, k, nNodesOld, nNodeBefore, nNodeAfter, Required;
    int clk = 0, clkStart;
    // prepare the library
    Dar_LibPrepare( pPars->nSubgMax ); 
    // create rewriting manager
    p = Dar_ManStart( pAig, pPars );
    // remove dangling nodes
    Aig_ManCleanup( pAig );
    // if updating levels is requested, start fanout and timing
    if ( p->pPars->fFanout )
        Aig_ManFanoutStart( pAig );
    if ( p->pPars->fUpdateLevel )
        Aig_ManStartReverseLevels( pAig, 0 );
    // set elementary cuts for the PIs
    Dar_ManCutsStart( p );
    // resynthesize each node once
    clkStart = clock();
    p->nNodesInit = Aig_ManNodeNum(pAig);
    nNodesOld = Vec_PtrSize( pAig->vObjs );

    pProgress = Extra_ProgressBarStart( stdout, nNodesOld );
    Aig_ManForEachObj( pAig, pObj, i )
//    pProgress = Extra_ProgressBarStart( stdout, 100 );
//    Aig_ManOrderStart( pAig );
//    Aig_ManForEachNodeInOrder( pAig, pObj )
    {
//        Extra_ProgressBarUpdate( pProgress, 100*pAig->nAndPrev/pAig->nAndTotal, NULL );

        Extra_ProgressBarUpdate( pProgress, i, NULL );
        if ( !Aig_ObjIsNode(pObj) )
            continue;
        if ( i > nNodesOld )
            break;

        // consider freeing the cuts
//        if ( (i & 0xFFF) == 0 && Aig_MmFixedReadMemUsage(p->pMemCuts)/(1<<20) > 100 )
//            Dar_ManCutsStart( p );

        // compute cuts for the node
        p->nNodesTried++;
clk = clock();
        Dar_ObjComputeCuts_rec( p, pObj );
p->timeCuts += clock() - clk;

        // check if there is a trivial cut
        Dar_ObjForEachCut( pObj, pCut, k )
            if ( pCut->nLeaves == 0 || (pCut->nLeaves == 1 && pCut->pLeaves[0] != pObj->Id && Aig_ManObj(p->pAig, pCut->pLeaves[0])) )
                break;
        if ( k < (int)pObj->nCuts )
        {
            assert( pCut->nLeaves < 2 );
            if ( pCut->nLeaves == 0 ) // replace by constant
            {
                assert( pCut->uTruth == 0 || pCut->uTruth == 0xFFFF );
                pObjNew = Aig_NotCond( Aig_ManConst1(p->pAig), pCut->uTruth==0 );
            }
            else
            {
                assert( pCut->uTruth == 0xAAAA || pCut->uTruth == 0x5555 );
                pObjNew = Aig_NotCond( Aig_ManObj(p->pAig, pCut->pLeaves[0]), pCut->uTruth==0x5555 );
            }
            // remove the old cuts
            Dar_ObjSetCuts( pObj, NULL );
            // replace the node
            Aig_ObjReplace( pAig, pObj, pObjNew, 1, p->pPars->fUpdateLevel );
            continue;
        }

        // evaluate the cuts
        p->GainBest = -1;
        Required = pAig->vLevelR? Aig_ObjRequiredLevel(pAig, pObj) : AIG_INFINITY;
        Dar_ObjForEachCut( pObj, pCut, k )
            Dar_LibEval( p, pObj, pCut, Required );
        // check the best gain
        if ( !(p->GainBest > 0 || (p->GainBest == 0 && p->pPars->fUseZeros)) )
        {
//            Aig_ObjOrderAdvance( pAig );
            continue;
        }
        // remove the old cuts
        Dar_ObjSetCuts( pObj, NULL );
        // if we end up here, a rewriting step is accepted
        nNodeBefore = Aig_ManNodeNum( pAig );
        pObjNew = Dar_LibBuildBest( p ); // pObjNew can be complemented!
        pObjNew = Aig_NotCond( pObjNew, Aig_ObjPhaseReal(pObjNew) ^ pObj->fPhase );
        assert( (int)Aig_Regular(pObjNew)->Level <= Required );
        // replace the node
        Aig_ObjReplace( pAig, pObj, pObjNew, 1, p->pPars->fUpdateLevel );
        // compare the gains
        nNodeAfter = Aig_ManNodeNum( pAig );
        assert( p->GainBest <= nNodeBefore - nNodeAfter );
        // count gains of this class
        p->ClassGains[p->ClassBest] += nNodeBefore - nNodeAfter;
    }