Beispiel #1
0
int applypatch(const char* source_filename,
               const char* target_filename,
               const char* target_sha1_str,
               size_t target_size,
               int num_patches,
               char** const patch_sha1_str,
               Value** patch_data) {
    printf("\napplying patch to %s\n", source_filename);

    if (target_filename[0] == '-' &&
        target_filename[1] == '\0') {
        target_filename = source_filename;
    }

    uint8_t target_sha1[SHA_DIGEST_SIZE];
    if (ParseSha1(target_sha1_str, target_sha1) != 0) {
        printf("failed to parse tgt-sha1 \"%s\"\n", target_sha1_str);
        return 1;
    }

    FileContents copy_file;
    FileContents source_file;
    const Value* source_patch_value = NULL;
    const Value* copy_patch_value = NULL;
    int made_copy = 0;

    // We try to load the target file into the source_file object.
    if (LoadFileContents(target_filename, &source_file,
                         RETOUCH_DO_MASK) == 0) {
        if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_SIZE) == 0) {
            // The early-exit case:  the patch was already applied, this file
            // has the desired hash, nothing for us to do.
            printf("\"%s\" is already target; no patch needed\n",
                   target_filename);
            return 0;
        }
    }

    if (source_file.data == NULL ||
        (target_filename != source_filename &&
         strcmp(target_filename, source_filename) != 0)) {
        // Need to load the source file:  either we failed to load the
        // target file, or we did but it's different from the source file.
        free(source_file.data);
        LoadFileContents(source_filename, &source_file,
                         RETOUCH_DO_MASK);
    }

    if (source_file.data != NULL) {
        int to_use = FindMatchingPatch(source_file.sha1,
                                       patch_sha1_str, num_patches);
        if (to_use >= 0) {
            source_patch_value = patch_data[to_use];
        }
    }

    if (source_patch_value == NULL) {
        free(source_file.data);
        printf("source file is bad; trying copy\n");

        if (LoadFileContents(CACHE_TEMP_SOURCE, &copy_file,
                             RETOUCH_DO_MASK) < 0) {
            // fail.
            printf("failed to read copy file\n");
            return 1;
        }

        int to_use = FindMatchingPatch(copy_file.sha1,
                                       patch_sha1_str, num_patches);
        if (to_use >= 0) {
            copy_patch_value = patch_data[to_use];
        }

        if (copy_patch_value == NULL) {
            // fail.
            printf("copy file doesn't match source SHA-1s either\n");
            return 1;
        }
    }

    int retry = 1;
    SHA_CTX ctx;
    int output;
    MemorySinkInfo msi;
    FileContents* source_to_use;
    char* outname;

    // assume that target_filename (eg "/system/app/Foo.apk") is located
    // on the same filesystem as its top-level directory ("/system").
    // We need something that exists for calling statfs().
    char target_fs[strlen(target_filename)+1];
    char* slash = strchr(target_filename+1, '/');
    if (slash != NULL) {
        int count = slash - target_filename;
        strncpy(target_fs, target_filename, count);
        target_fs[count] = '\0';
    } else {
        strcpy(target_fs, target_filename);
    }

    do {
        // Is there enough room in the target filesystem to hold the patched
        // file?

        if (strncmp(target_filename, "EMMC:", 5) == 0) {
            // If the target is a partition, we're actually going to
            // write the output to /tmp and then copy it to the
            // partition.  statfs() always returns 0 blocks free for
            // /tmp, so instead we'll just assume that /tmp has enough
            // space to hold the file.

            // We still write the original source to cache, in case
            // the partition write is interrupted.
            if (MakeFreeSpaceOnCache(source_file.size) < 0) {
                printf("not enough free space on /cache\n");
                return 1;
            }
            if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
                printf("failed to back up source file\n");
                return 1;
            }
            made_copy = 1;
            retry = 0;
        } else {
            int enough_space = 0;
            if (retry > 0) {
                size_t free_space = FreeSpaceForFile(target_fs);
                enough_space =
                    (free_space > (256 << 10)) &&          // 256k (two-block) minimum
                    (free_space > (target_size * 3 / 2));  // 50% margin of error
                printf("target %ld bytes; free space %ld bytes; retry %d; enough %d\n",
                       (long)target_size, (long)free_space, retry, enough_space);
            }

            if (!enough_space) {
                retry = 0;
            }

            if (!enough_space && source_patch_value != NULL) {
                // Using the original source, but not enough free space.  First
                // copy the source file to cache, then delete it from the original
                // location.

                if (strncmp(source_filename, "EMMC:", 5) == 0) {
                    // It's impossible to free space on the target filesystem by
                    // deleting the source if the source is a partition.  If
                    // we're ever in a state where we need to do this, fail.
                    printf("not enough free space for target but source "
                           "is partition\n");
                    return 1;
                }

                if (MakeFreeSpaceOnCache(source_file.size) < 0) {
                    printf("not enough free space on /cache\n");
                    return 1;
                }

                if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
                    printf("failed to back up source file\n");
                    return 1;
                }
                made_copy = 1;
                unlink(source_filename);

                size_t free_space = FreeSpaceForFile(target_fs);
                printf("(now %ld bytes free for target)\n", (long)free_space);
            }
        }

        const Value* patch;
        if (source_patch_value != NULL) {
            source_to_use = &source_file;
            patch = source_patch_value;
        } else {
            source_to_use = &copy_file;
            patch = copy_patch_value;
        }

        if (patch->type != VAL_BLOB) {
            printf("patch is not a blob\n");
            return 1;
        }

        SinkFn sink = NULL;
        void* token = NULL;
        output = -1;
        outname = NULL;
        if (strncmp(target_filename, "EMMC:", 5) == 0) {
            // We store the decoded output in memory.
            msi.buffer = malloc(target_size);
            if (msi.buffer == NULL) {
                printf("failed to alloc %ld bytes for output\n",
                       (long)target_size);
                return 1;
            }
            msi.pos = 0;
            msi.size = target_size;
            sink = MemorySink;
            token = &msi;
        } else {
            // We write the decoded output to "<tgt-file>.patch".
            outname = (char*)malloc(strlen(target_filename) + 10);
            strcpy(outname, target_filename);
            strcat(outname, ".patch");

            output = open(outname, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC,
                S_IRUSR | S_IWUSR);
            if (output < 0) {
                printf("failed to open output file %s: %s\n",
                       outname, strerror(errno));
                return 1;
            }
            sink = FileSink;
            token = &output;
        }

        char* header = patch->data;
        ssize_t header_bytes_read = patch->size;

        SHA_init(&ctx);

        int result;

        if (header_bytes_read >= 8 &&
            memcmp(header, "BSDIFF40", 8) == 0) {
            result = ApplyBSDiffPatch(source_to_use->data, source_to_use->size,
                                      patch, 0, sink, token, &ctx);
        } else if (header_bytes_read >= 8 &&
                   memcmp(header, "IMGDIFF2", 8) == 0) {
            result = ApplyImagePatch(source_to_use->data, source_to_use->size,
                                     patch, sink, token, &ctx);
        } else {
            printf("Unknown patch file format\n");
            return 1;
        }

        if (output >= 0) {
            fsync(output);
            close(output);
        }

        if (result != 0) {
            if (retry == 0) {
                printf("applying patch failed\n");
                return result != 0;
            } else {
                printf("applying patch failed; retrying\n");
            }
            if (outname != NULL) {
                unlink(outname);
            }
        } else {
            // succeeded; no need to retry
            break;
        }
    } while (retry-- > 0);

    const uint8_t* current_target_sha1 = SHA_final(&ctx);
    if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_SIZE) != 0) {
        printf("patch did not produce expected sha1\n");
        return 1;
    }

    if (output < 0) {
        // Copy the temp file to the partition.
        if (WriteToPartition(msi.buffer, msi.pos, target_filename) != 0) {
            printf("write of patched data to %s failed\n", target_filename);
            return 1;
        }
        free(msi.buffer);
    } else {
        // Give the .patch file the same owner, group, and mode of the
        // original source file.
        if (chmod(outname, source_to_use->st.st_mode) != 0) {
            printf("chmod of \"%s\" failed: %s\n", outname, strerror(errno));
            return 1;
        }
        if (chown(outname, source_to_use->st.st_uid,
                  source_to_use->st.st_gid) != 0) {
            printf("chown of \"%s\" failed: %s\n", outname, strerror(errno));
            return 1;
        }

        // Finally, rename the .patch file to replace the target file.
        if (rename(outname, target_filename) != 0) {
            printf("rename of .patch to \"%s\" failed: %s\n",
                   target_filename, strerror(errno));
            return 1;
        }
    }

    // If this run of applypatch created the copy, and we're here, we
    // can delete it.
    if (made_copy) unlink(CACHE_TEMP_SOURCE);

    // Success!
    return 0;
}
Beispiel #2
0
int applypatch(int argc, char** argv) {
  if (argc < 2) {
    return 2;
  }

  if (strncmp(argv[1], "-l", 3) == 0) {
    return ShowLicenses();
  }

  if (strncmp(argv[1], "-c", 3) == 0) {
    return CheckMode(argc, argv);
  }

  if (strncmp(argv[1], "-s", 3) == 0) {
    if (argc != 3) {
      return 2;
    }
    size_t bytes = strtol(argv[2], NULL, 10);
    if (MakeFreeSpaceOnCache(bytes) < 0) {
      printf("unable to make %ld bytes available on /cache\n", (long)bytes);
      return 1;
    } else {
      return 0;
    }
  }

  uint8_t target_sha1[SHA_DIGEST_SIZE];

  const char* source_filename = argv[1];
  const char* target_filename = argv[2];
  if (target_filename[0] == '-' &&
      target_filename[1] == '\0') {
    target_filename = source_filename;
  }

 if (ParseSha1(argv[3], target_sha1) != 0) {
    fprintf(stderr, "failed to parse tgt-sha1 \"%s\"\n", argv[3]);
    return 1;
  }

  unsigned long target_size = strtoul(argv[4], NULL, 0);

  int num_patches;
  Patch* patches;
  if (ParseShaArgs(argc-5, argv+5, &patches, &num_patches) < 0) { return 1; }

  FileContents copy_file;
  FileContents source_file;
  const char* source_patch_filename = NULL;
  const char* copy_patch_filename = NULL;
  int made_copy = 0;

  // We try to load the target file into the source_file object.
  if (LoadFileContents(target_filename, &source_file) == 0) {
    if (memcmp(source_file.sha1, target_sha1, SHA_DIGEST_SIZE) == 0) {
      // The early-exit case:  the patch was already applied, this file
      // has the desired hash, nothing for us to do.
      fprintf(stderr, "\"%s\" is already target; no patch needed\n",
              target_filename);
      return 0;
    }
  }

  if (source_file.data == NULL ||
      (target_filename != source_filename &&
       strcmp(target_filename, source_filename) != 0)) {
    // Need to load the source file:  either we failed to load the
    // target file, or we did but it's different from the source file.
    free(source_file.data);
    LoadFileContents(source_filename, &source_file);
  }

  if (source_file.data != NULL) {
    const Patch* to_use =
        FindMatchingPatch(source_file.sha1, patches, num_patches);
    if (to_use != NULL) {
      source_patch_filename = to_use->patch_filename;
    }
  }

  if (source_patch_filename == NULL) {
    free(source_file.data);
    fprintf(stderr, "source file is bad; trying copy\n");

    if (LoadFileContents(CACHE_TEMP_SOURCE, &copy_file) < 0) {
      // fail.
      fprintf(stderr, "failed to read copy file\n");
      return 1;
    }

    const Patch* to_use =
        FindMatchingPatch(copy_file.sha1, patches, num_patches);
    if (to_use != NULL) {
      copy_patch_filename = to_use->patch_filename;
    }

    if (copy_patch_filename == NULL) {
      // fail.
      fprintf(stderr, "copy file doesn't match source SHA-1s either\n");
      return 1;
    }
  }

  // Is there enough room in the target filesystem to hold the patched
  // file?

  if (strncmp(target_filename, "MTD:", 4) == 0) {
    // If the target is an MTD partition, we're actually going to
    // write the output to /tmp and then copy it to the partition.
    // statfs() always returns 0 blocks free for /tmp, so instead
    // we'll just assume that /tmp has enough space to hold the file.

    // We still write the original source to cache, in case the MTD
    // write is interrupted.
    if (MakeFreeSpaceOnCache(source_file.size) < 0) {
      fprintf(stderr, "not enough free space on /cache\n");
      return 1;
    }
    if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
      fprintf(stderr, "failed to back up source file\n");
      return 1;
    }
    made_copy = 1;
  } else {
    // assume that target_filename (eg "/system/app/Foo.apk") is located
    // on the same filesystem as its top-level directory ("/system").
    // We need something that exists for calling statfs().
    char* target_fs = strdup(target_filename);
    char* slash = strchr(target_fs+1, '/');
    if (slash != NULL) {
      *slash = '\0';
    }

    size_t free_space = FreeSpaceForFile(target_fs);
    int enough_space =
        free_space > (target_size * 3 / 2);  // 50% margin of error
    printf("target %ld bytes; free space %ld bytes; enough %d\n",
           (long)target_size, (long)free_space, enough_space);

    if (!enough_space && source_patch_filename != NULL) {
      // Using the original source, but not enough free space.  First
      // copy the source file to cache, then delete it from the original
      // location.

      if (strncmp(source_filename, "MTD:", 4) == 0) {
        // It's impossible to free space on the target filesystem by
        // deleting the source if the source is an MTD partition.  If
        // we're ever in a state where we need to do this, fail.
        fprintf(stderr, "not enough free space for target but source is MTD\n");
        return 1;
      }

      if (MakeFreeSpaceOnCache(source_file.size) < 0) {
        fprintf(stderr, "not enough free space on /cache\n");
        return 1;
      }

      if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
        fprintf(stderr, "failed to back up source file\n");
        return 1;
      }
      made_copy = 1;
      unlink(source_filename);

      size_t free_space = FreeSpaceForFile(target_fs);
      printf("(now %ld bytes free for target)\n", (long)free_space);
    }
  }

  FileContents* source_to_use;
  const char* patch_filename;
  if (source_patch_filename != NULL) {
    source_to_use = &source_file;
    patch_filename = source_patch_filename;
  } else {
    source_to_use = &copy_file;
    patch_filename = copy_patch_filename;
  }

  char* outname = NULL;
  FILE* output = NULL;
  MemorySinkInfo msi;
  SinkFn sink = NULL;
  void* token = NULL;
  if (strncmp(target_filename, "MTD:", 4) == 0) {
    // We store the decoded output in memory.
    msi.buffer = malloc(target_size);
    if (msi.buffer == NULL) {
      fprintf(stderr, "failed to alloc %ld bytes for output\n",
              (long)target_size);
      return 1;
    }
    msi.pos = 0;
    msi.size = target_size;
    sink = MemorySink;
    token = &msi;
  } else {
    // We write the decoded output to "<tgt-file>.patch".
    outname = (char*)malloc(strlen(target_filename) + 10);
    strcpy(outname, target_filename);
    strcat(outname, ".patch");

    output = fopen(outname, "wb");
    if (output == NULL) {
      fprintf(stderr, "failed to open output file %s: %s\n",
              outname, strerror(errno));
      return 1;
    }
    sink = FileSink;
    token = output;
  }

#define MAX_HEADER_LENGTH 8
  unsigned char header[MAX_HEADER_LENGTH];
  FILE* patchf = fopen(patch_filename, "rb");
  if (patchf == NULL) {
    fprintf(stderr, "failed to open patch file %s: %s\n",
            patch_filename, strerror(errno));
    return 1;
  }
  int header_bytes_read = fread(header, 1, MAX_HEADER_LENGTH, patchf);
  fclose(patchf);

  SHA_CTX ctx;
  SHA_init(&ctx);

  if (header_bytes_read >= 4 &&
      header[0] == 0xd6 && header[1] == 0xc3 &&
      header[2] == 0xc4 && header[3] == 0) {
    // xdelta3 patches begin "VCD" (with the high bits set) followed
    // by a zero byte (the version number).
    fprintf(stderr, "error:  xdelta3 patches no longer supported\n");
    return 1;
  } else if (header_bytes_read >= 8 &&
             memcmp(header, "BSDIFF40", 8) == 0) {
    int result = ApplyBSDiffPatch(source_to_use->data, source_to_use->size,
                                  patch_filename, 0, sink, token, &ctx);
    if (result != 0) {
      fprintf(stderr, "ApplyBSDiffPatch failed\n");
      return result;
    }
  } else if (header_bytes_read >= 8 &&
             memcmp(header, "IMGDIFF", 7) == 0 &&
             (header[7] == '1' || header[7] == '2')) {
    int result = ApplyImagePatch(source_to_use->data, source_to_use->size,
                                 patch_filename, sink, token, &ctx);
    if (result != 0) {
      fprintf(stderr, "ApplyImagePatch failed\n");
      return result;
    }
  } else {
    fprintf(stderr, "Unknown patch file format\n");
    return 1;
  }

  if (output != NULL) {
    fflush(output);
    fsync(fileno(output));
    fclose(output);
  }

  const uint8_t* current_target_sha1 = SHA_final(&ctx);
  if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_SIZE) != 0) {
    fprintf(stderr, "patch did not produce expected sha1\n");
    return 1;
  }

  if (output == NULL) {
    // Copy the temp file to the MTD partition.
    if (WriteToMTDPartition(msi.buffer, msi.pos, target_filename) != 0) {
      fprintf(stderr, "write of patched data to %s failed\n", target_filename);
      return 1;
    }
    free(msi.buffer);
  } else {
    // Give the .patch file the same owner, group, and mode of the
    // original source file.
    if (chmod(outname, source_to_use->st.st_mode) != 0) {
      fprintf(stderr, "chmod of \"%s\" failed: %s\n", outname, strerror(errno));
      return 1;
    }
    if (chown(outname, source_to_use->st.st_uid,
              source_to_use->st.st_gid) != 0) {
      fprintf(stderr, "chown of \"%s\" failed: %s\n", outname, strerror(errno));
      return 1;
    }

    // Finally, rename the .patch file to replace the target file.
    if (rename(outname, target_filename) != 0) {
      fprintf(stderr, "rename of .patch to \"%s\" failed: %s\n",
              target_filename, strerror(errno));
      return 1;
    }
  }

  // If this run of applypatch created the copy, and we're here, we
  // can delete it.
  if (made_copy) unlink(CACHE_TEMP_SOURCE);

  // Success!
  return 0;
}
/*
 * Apply the patch given in 'patch_filename' to the source data given
 * by (old_data, old_size).  Write the patched output to the 'output'
 * file, and update the SHA context with the output data as well.
 * Return 0 on success.
 */
int ApplyImagePatch(const unsigned char* old_data, ssize_t old_size,
                    const char* patch_filename,
                    SinkFn sink, void* token, SHA_CTX* ctx) {
  FILE* f;
  if ((f = fopen(patch_filename, "rb")) == NULL) {
    printf("failed to open patch file\n");
    return -1;
  }

  unsigned char header[12];
  if (fread(header, 1, 12, f) != 12) {
    printf("failed to read patch file header\n");
    return -1;
  }

  // IMGDIFF1 uses CHUNK_NORMAL and CHUNK_GZIP.
  // IMGDIFF2 uses CHUNK_NORMAL, CHUNK_DEFLATE, and CHUNK_RAW.
  if (memcmp(header, "IMGDIFF", 7) != 0 ||
      (header[7] != '1' && header[7] != '2')) {
    printf("corrupt patch file header (magic number)\n");
    return -1;
  }

  int num_chunks = Read4(header+8);

  int i;
  for (i = 0; i < num_chunks; ++i) {
    // each chunk's header record starts with 4 bytes.
    unsigned char chunk[4];
    if (fread(chunk, 1, 4, f) != 4) {
      printf("failed to read chunk %d record\n", i);
      return -1;
    }

    int type = Read4(chunk);

    if (type == CHUNK_NORMAL) {
      unsigned char normal_header[24];
      if (fread(normal_header, 1, 24, f) != 24) {
        printf("failed to read chunk %d normal header data\n", i);
        return -1;
      }

      size_t src_start = Read8(normal_header);
      size_t src_len = Read8(normal_header+8);
      size_t patch_offset = Read8(normal_header+16);

      printf("CHUNK %d:  normal   patch offset %d\n", i, patch_offset);

      ApplyBSDiffPatch(old_data + src_start, src_len,
                       patch_filename, patch_offset,
                       sink, token, ctx);
    } else if (type == CHUNK_GZIP) {
      // This branch is basically a duplicate of the CHUNK_DEFLATE
      // branch, with a bit of extra processing for the gzip header
      // and footer.  I've avoided factoring the common code out since
      // this branch will just be deleted when we drop support for
      // IMGDIFF1.

      // gzip chunks have an additional 64 + gzip_header_len + 8 bytes
      // in their chunk header.
      unsigned char* gzip = malloc(64);
      if (fread(gzip, 1, 64, f) != 64) {
        printf("failed to read chunk %d initial gzip header data\n",
                i);
        return -1;
      }
      size_t gzip_header_len = Read4(gzip+60);
      gzip = realloc(gzip, 64 + gzip_header_len + 8);
      if (fread(gzip+64, 1, gzip_header_len+8, f) != gzip_header_len+8) {
        printf("failed to read chunk %d remaining gzip header data\n",
                i);
        return -1;
      }

      size_t src_start = Read8(gzip);
      size_t src_len = Read8(gzip+8);
      size_t patch_offset = Read8(gzip+16);

      size_t expanded_len = Read8(gzip+24);
      size_t target_len = Read8(gzip+32);
      int gz_level = Read4(gzip+40);
      int gz_method = Read4(gzip+44);
      int gz_windowBits = Read4(gzip+48);
      int gz_memLevel = Read4(gzip+52);
      int gz_strategy = Read4(gzip+56);

      printf("CHUNK %d:  gzip     patch offset %d\n", i, patch_offset);

      // Decompress the source data; the chunk header tells us exactly
      // how big we expect it to be when decompressed.

      unsigned char* expanded_source = malloc(expanded_len);
      if (expanded_source == NULL) {
        printf("failed to allocate %d bytes for expanded_source\n",
                expanded_len);
        return -1;
      }

      z_stream strm;
      strm.zalloc = Z_NULL;
      strm.zfree = Z_NULL;
      strm.opaque = Z_NULL;
      strm.avail_in = src_len - (gzip_header_len + 8);
      strm.next_in = (unsigned char*)(old_data + src_start + gzip_header_len);
      strm.avail_out = expanded_len;
      strm.next_out = expanded_source;

      int ret;
      ret = inflateInit2(&strm, -15);
      if (ret != Z_OK) {
        printf("failed to init source inflation: %d\n", ret);
        return -1;
      }

      // Because we've provided enough room to accommodate the output
      // data, we expect one call to inflate() to suffice.
      ret = inflate(&strm, Z_SYNC_FLUSH);
      if (ret != Z_STREAM_END) {
        printf("source inflation returned %d\n", ret);
        return -1;
      }
      // We should have filled the output buffer exactly.
      if (strm.avail_out != 0) {
        printf("source inflation short by %d bytes\n", strm.avail_out);
        return -1;
      }
      inflateEnd(&strm);

      // Next, apply the bsdiff patch (in memory) to the uncompressed
      // data.
      unsigned char* uncompressed_target_data;
      ssize_t uncompressed_target_size;
      if (ApplyBSDiffPatchMem(expanded_source, expanded_len,
                              patch_filename, patch_offset,
                              &uncompressed_target_data,
                              &uncompressed_target_size) != 0) {
        return -1;
      }

      // Now compress the target data and append it to the output.

      // start with the gzip header.
      sink(gzip+64, gzip_header_len, token);
      SHA_update(ctx, gzip+64, gzip_header_len);

      // we're done with the expanded_source data buffer, so we'll
      // reuse that memory to receive the output of deflate.
      unsigned char* temp_data = expanded_source;
      ssize_t temp_size = expanded_len;
      if (temp_size < 32768) {
        // ... unless the buffer is too small, in which case we'll
        // allocate a fresh one.
        free(temp_data);
        temp_data = malloc(32768);
        temp_size = 32768;
      }

      // now the deflate stream
      strm.zalloc = Z_NULL;
      strm.zfree = Z_NULL;
      strm.opaque = Z_NULL;
      strm.avail_in = uncompressed_target_size;
      strm.next_in = uncompressed_target_data;
      ret = deflateInit2(&strm, gz_level, gz_method, gz_windowBits,
                         gz_memLevel, gz_strategy);
      do {
        strm.avail_out = temp_size;
        strm.next_out = temp_data;
        ret = deflate(&strm, Z_FINISH);
        size_t have = temp_size - strm.avail_out;

        if (sink(temp_data, have, token) != have) {
          printf("failed to write %d compressed bytes to output\n",
                  have);
          return -1;
        }
        SHA_update(ctx, temp_data, have);
      } while (ret != Z_STREAM_END);
      deflateEnd(&strm);

      // lastly, the gzip footer.
      sink(gzip+64+gzip_header_len, 8, token);
      SHA_update(ctx, gzip+64+gzip_header_len, 8);

      free(temp_data);
      free(uncompressed_target_data);
      free(gzip);
    } else if (type == CHUNK_RAW) {
      unsigned char raw_header[4];
      if (fread(raw_header, 1, 4, f) != 4) {
        printf("failed to read chunk %d raw header data\n", i);
        return -1;
      }

      size_t data_len = Read4(raw_header);

      printf("CHUNK %d:  raw      data %d\n", i, data_len);

      unsigned char* temp = malloc(data_len);
      if (fread(temp, 1, data_len, f) != data_len) {
          printf("failed to read chunk %d raw data\n", i);
          return -1;
      }
      SHA_update(ctx, temp, data_len);
      if (sink(temp, data_len, token) != data_len) {
          printf("failed to write chunk %d raw data\n", i);
          return -1;
      }
    } else if (type == CHUNK_DEFLATE) {
      // deflate chunks have an additional 60 bytes in their chunk header.
      unsigned char deflate_header[60];
      if (fread(deflate_header, 1, 60, f) != 60) {
        printf("failed to read chunk %d deflate header data\n", i);
        return -1;
      }

      size_t src_start = Read8(deflate_header);
      size_t src_len = Read8(deflate_header+8);
      size_t patch_offset = Read8(deflate_header+16);
      size_t expanded_len = Read8(deflate_header+24);
      size_t target_len = Read8(deflate_header+32);
      int level = Read4(deflate_header+40);
      int method = Read4(deflate_header+44);
      int windowBits = Read4(deflate_header+48);
      int memLevel = Read4(deflate_header+52);
      int strategy = Read4(deflate_header+56);

      printf("CHUNK %d:  deflate  patch offset %d\n", i, patch_offset);

      // Decompress the source data; the chunk header tells us exactly
      // how big we expect it to be when decompressed.

      unsigned char* expanded_source = malloc(expanded_len);
      if (expanded_source == NULL) {
        printf("failed to allocate %d bytes for expanded_source\n",
                expanded_len);
        return -1;
      }

      z_stream strm;
      strm.zalloc = Z_NULL;
      strm.zfree = Z_NULL;
      strm.opaque = Z_NULL;
      strm.avail_in = src_len;
      strm.next_in = (unsigned char*)(old_data + src_start);
      strm.avail_out = expanded_len;
      strm.next_out = expanded_source;

      int ret;
      ret = inflateInit2(&strm, -15);
      if (ret != Z_OK) {
        printf("failed to init source inflation: %d\n", ret);
        return -1;
      }

      // Because we've provided enough room to accommodate the output
      // data, we expect one call to inflate() to suffice.
      ret = inflate(&strm, Z_SYNC_FLUSH);
      if (ret != Z_STREAM_END) {
        printf("source inflation returned %d\n", ret);
        return -1;
      }
      // We should have filled the output buffer exactly.
      if (strm.avail_out != 0) {
        printf("source inflation short by %d bytes\n", strm.avail_out);
        return -1;
      }
      inflateEnd(&strm);

      // Next, apply the bsdiff patch (in memory) to the uncompressed
      // data.
      unsigned char* uncompressed_target_data;
      ssize_t uncompressed_target_size;
      if (ApplyBSDiffPatchMem(expanded_source, expanded_len,
                              patch_filename, patch_offset,
                              &uncompressed_target_data,
                              &uncompressed_target_size) != 0) {
        return -1;
      }

      // Now compress the target data and append it to the output.

      // we're done with the expanded_source data buffer, so we'll
      // reuse that memory to receive the output of deflate.
      unsigned char* temp_data = expanded_source;
      ssize_t temp_size = expanded_len;
      if (temp_size < 32768) {
        // ... unless the buffer is too small, in which case we'll
        // allocate a fresh one.
        free(temp_data);
        temp_data = malloc(32768);
        temp_size = 32768;
      }

      // now the deflate stream
      strm.zalloc = Z_NULL;
      strm.zfree = Z_NULL;
      strm.opaque = Z_NULL;
      strm.avail_in = uncompressed_target_size;
      strm.next_in = uncompressed_target_data;
      ret = deflateInit2(&strm, level, method, windowBits, memLevel, strategy);
      do {
        strm.avail_out = temp_size;
        strm.next_out = temp_data;
        ret = deflate(&strm, Z_FINISH);
        size_t have = temp_size - strm.avail_out;

        if (sink(temp_data, have, token) != have) {
          printf("failed to write %d compressed bytes to output\n",
                  have);
          return -1;
        }
        SHA_update(ctx, temp_data, have);
      } while (ret != Z_STREAM_END);
      deflateEnd(&strm);

      free(temp_data);
      free(uncompressed_target_data);
    } else {
      printf("patch chunk %d is unknown type %d\n", i, type);
      return -1;
    }
  }

  return 0;
}
/*
 * Apply the patch given in 'patch_filename' to the source data given
 * by (old_data, old_size).  Write the patched output to the 'output'
 * file, and update the SHA context with the output data as well.
 * Return 0 on success.
 */
int ApplyImagePatch(const unsigned char* old_data, ssize_t old_size,
                    const Value* patch,
                    SinkFn sink, void* token, SHA_CTX* ctx,
                    const Value* bonus_data) {
    ssize_t pos = 12;
    char* header = patch->data;
    if (patch->size < 12) {
        printf("patch too short to contain header\n");
        return -1;
    }

    // IMGDIFF2 uses CHUNK_NORMAL, CHUNK_DEFLATE, and CHUNK_RAW.
    // (IMGDIFF1, which is no longer supported, used CHUNK_NORMAL and
    // CHUNK_GZIP.)
    if (memcmp(header, "IMGDIFF2", 8) != 0) {
        printf("corrupt patch file header (magic number)\n");
        return -1;
    }

    int num_chunks = Read4(header+8);

    int i;
    for (i = 0; i < num_chunks; ++i) {
        // each chunk's header record starts with 4 bytes.
        if (pos + 4 > patch->size) {
            printf("failed to read chunk %d record\n", i);
            return -1;
        }
        int type = Read4(patch->data + pos);
        pos += 4;

        if (type == CHUNK_NORMAL) {
            char* normal_header = patch->data + pos;
            pos += 24;
            if (pos > patch->size) {
                printf("failed to read chunk %d normal header data\n", i);
                return -1;
            }

            size_t src_start = Read8(normal_header);
            size_t src_len = Read8(normal_header+8);
            size_t patch_offset = Read8(normal_header+16);

            ApplyBSDiffPatch(old_data + src_start, src_len,
                             patch, patch_offset, sink, token, ctx);
        } else if (type == CHUNK_RAW) {
            char* raw_header = patch->data + pos;
            pos += 4;
            if (pos > patch->size) {
                printf("failed to read chunk %d raw header data\n", i);
                return -1;
            }

            ssize_t data_len = Read4(raw_header);

            if (pos + data_len > patch->size) {
                printf("failed to read chunk %d raw data\n", i);
                return -1;
            }
            SHA_update(ctx, patch->data + pos, data_len);
            if (sink((unsigned char*)patch->data + pos,
                     data_len, token) != data_len) {
                printf("failed to write chunk %d raw data\n", i);
                return -1;
            }
            pos += data_len;
        } else if (type == CHUNK_DEFLATE) {
            // deflate chunks have an additional 60 bytes in their chunk header.
            char* deflate_header = patch->data + pos;
            pos += 60;
            if (pos > patch->size) {
                printf("failed to read chunk %d deflate header data\n", i);
                return -1;
            }

            size_t src_start = Read8(deflate_header);
            size_t src_len = Read8(deflate_header+8);
            size_t patch_offset = Read8(deflate_header+16);
            size_t expanded_len = Read8(deflate_header+24);
            size_t target_len = Read8(deflate_header+32);
            int level = Read4(deflate_header+40);
            int method = Read4(deflate_header+44);
            int windowBits = Read4(deflate_header+48);
            int memLevel = Read4(deflate_header+52);
            int strategy = Read4(deflate_header+56);

            // Decompress the source data; the chunk header tells us exactly
            // how big we expect it to be when decompressed.

            // Note: expanded_len will include the bonus data size if
            // the patch was constructed with bonus data.  The
            // deflation will come up 'bonus_size' bytes short; these
            // must be appended from the bonus_data value.
            size_t bonus_size = (i == 1 && bonus_data != NULL) ? bonus_data->size : 0;

            unsigned char* expanded_source = malloc(expanded_len);
            if (expanded_source == NULL) {
                printf("failed to allocate %d bytes for expanded_source\n",
                       expanded_len);
                return -1;
            }

            z_stream strm;
            strm.zalloc = Z_NULL;
            strm.zfree = Z_NULL;
            strm.opaque = Z_NULL;
            strm.avail_in = src_len;
            strm.next_in = (unsigned char*)(old_data + src_start);
            strm.avail_out = expanded_len;
            strm.next_out = expanded_source;

            int ret;
            ret = inflateInit2(&strm, -15);
            if (ret != Z_OK) {
                printf("failed to init source inflation: %d\n", ret);
                return -1;
            }

            // Because we've provided enough room to accommodate the output
            // data, we expect one call to inflate() to suffice.
            ret = inflate(&strm, Z_SYNC_FLUSH);
            if (ret != Z_STREAM_END) {
                printf("source inflation returned %d\n", ret);
                return -1;
            }
            // We should have filled the output buffer exactly, except
            // for the bonus_size.
            if (strm.avail_out != bonus_size) {
                printf("source inflation short by %zu bytes\n", strm.avail_out-bonus_size);
                return -1;
            }
            inflateEnd(&strm);

            if (bonus_size) {
                memcpy(expanded_source + (expanded_len - bonus_size),
                       bonus_data->data, bonus_size);
            }

            // Next, apply the bsdiff patch (in memory) to the uncompressed
            // data.
            unsigned char* uncompressed_target_data;
            ssize_t uncompressed_target_size;
            if (ApplyBSDiffPatchMem(expanded_source, expanded_len,
                                    patch, patch_offset,
                                    &uncompressed_target_data,
                                    &uncompressed_target_size) != 0) {
                return -1;
            }

            // Now compress the target data and append it to the output.

            // we're done with the expanded_source data buffer, so we'll
            // reuse that memory to receive the output of deflate.
            unsigned char* temp_data = expanded_source;
            ssize_t temp_size = expanded_len;
            if (temp_size < 32768) {
                // ... unless the buffer is too small, in which case we'll
                // allocate a fresh one.
                free(temp_data);
                temp_data = malloc(32768);
                temp_size = 32768;
            }

            // now the deflate stream
            strm.zalloc = Z_NULL;
            strm.zfree = Z_NULL;
            strm.opaque = Z_NULL;
            strm.avail_in = uncompressed_target_size;
            strm.next_in = uncompressed_target_data;
            ret = deflateInit2(&strm, level, method, windowBits, memLevel, strategy);
            do {
                strm.avail_out = temp_size;
                strm.next_out = temp_data;
                ret = deflate(&strm, Z_FINISH);
                ssize_t have = temp_size - strm.avail_out;

                if (sink(temp_data, have, token) != have) {
                    printf("failed to write %ld compressed bytes to output\n",
                           (long)have);
                    return -1;
                }
                SHA_update(ctx, temp_data, have);
            } while (ret != Z_STREAM_END);
            deflateEnd(&strm);

            free(temp_data);
            free(uncompressed_target_data);
        } else {
            printf("patch chunk %d is unknown type %d\n", i, type);
            return -1;
        }
    }

    return 0;
}
Beispiel #5
0
Value* BlockImageUpdateFn(const char* name, State* state, int argc, Expr* argv[]) {
    Value* blockdev_filename;
    Value* transfer_list_value;
    char* transfer_list = NULL;
    Value* new_data_fn;
    Value* patch_data_fn;
    bool success = false;

    if (ReadValueArgs(state, argv, 4, &blockdev_filename, &transfer_list_value,
                      &new_data_fn, &patch_data_fn) < 0) {
        return NULL;
    }

    if (blockdev_filename->type != VAL_STRING) {
        ErrorAbort(state, "blockdev_filename argument to %s must be string", name);
        goto done;
    }
    if (transfer_list_value->type != VAL_BLOB) {
        ErrorAbort(state, "transfer_list argument to %s must be blob", name);
        goto done;
    }
    if (new_data_fn->type != VAL_STRING) {
        ErrorAbort(state, "new_data_fn argument to %s must be string", name);
        goto done;
    }
    if (patch_data_fn->type != VAL_STRING) {
        ErrorAbort(state, "patch_data_fn argument to %s must be string", name);
        goto done;
    }

    UpdaterInfo* ui = (UpdaterInfo*)(state->cookie);
    FILE* cmd_pipe = ui->cmd_pipe;

    ZipArchive* za = ((UpdaterInfo*)(state->cookie))->package_zip;

    const ZipEntry* patch_entry = mzFindZipEntry(za, patch_data_fn->data);
    if (patch_entry == NULL) {
        ErrorAbort(state, "%s(): no file \"%s\" in package", name, patch_data_fn->data);
        goto done;
    }

    uint8_t* patch_start = ((UpdaterInfo*)(state->cookie))->package_zip_addr +
        mzGetZipEntryOffset(patch_entry);

    const ZipEntry* new_entry = mzFindZipEntry(za, new_data_fn->data);
    if (new_entry == NULL) {
        ErrorAbort(state, "%s(): no file \"%s\" in package", name, new_data_fn->data);
        goto done;
    }

    // The transfer list is a text file containing commands to
    // transfer data from one place to another on the target
    // partition.  We parse it and execute the commands in order:
    //
    //    zero [rangeset]
    //      - fill the indicated blocks with zeros
    //
    //    new [rangeset]
    //      - fill the blocks with data read from the new_data file
    //
    //    bsdiff patchstart patchlen [src rangeset] [tgt rangeset]
    //    imgdiff patchstart patchlen [src rangeset] [tgt rangeset]
    //      - read the source blocks, apply a patch, write result to
    //        target blocks.  bsdiff or imgdiff specifies the type of
    //        patch.
    //
    //    move [src rangeset] [tgt rangeset]
    //      - copy data from source blocks to target blocks (no patch
    //        needed; rangesets are the same size)
    //
    //    erase [rangeset]
    //      - mark the given blocks as empty
    //
    // The creator of the transfer list will guarantee that no block
    // is read (ie, used as the source for a patch or move) after it
    // has been written.
    //
    // Within one command the source and target ranges may overlap so
    // in general we need to read the entire source into memory before
    // writing anything to the target blocks.
    //
    // All the patch data is concatenated into one patch_data file in
    // the update package.  It must be stored uncompressed because we
    // memory-map it in directly from the archive.  (Since patches are
    // already compressed, we lose very little by not compressing
    // their concatenation.)

    pthread_t new_data_thread;
    NewThreadInfo nti;
    nti.za = za;
    nti.entry = new_entry;
    nti.rss = NULL;
    pthread_mutex_init(&nti.mu, NULL);
    pthread_cond_init(&nti.cv, NULL);

    pthread_attr_t attr;
    pthread_attr_init(&attr);
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
    pthread_create(&new_data_thread, &attr, unzip_new_data, &nti);

    int i, j;

    char* linesave;
    char* wordsave;

    int fd = open(blockdev_filename->data, O_RDWR);
    if (fd < 0) {
        ErrorAbort(state, "failed to open %s: %s", blockdev_filename->data, strerror(errno));
        goto done;
    }

    char* line;
    char* word;

    // The data in transfer_list_value is not necessarily
    // null-terminated, so we need to copy it to a new buffer and add
    // the null that strtok_r will need.
    transfer_list = malloc(transfer_list_value->size+1);
    if (transfer_list == NULL) {
        fprintf(stderr, "failed to allocate %zd bytes for transfer list\n",
                transfer_list_value->size+1);
        exit(1);
    }
    memcpy(transfer_list, transfer_list_value->data, transfer_list_value->size);
    transfer_list[transfer_list_value->size] = '\0';

    line = strtok_r(transfer_list, "\n", &linesave);

    // first line in transfer list is the version number; currently
    // there's only version 1.
    if (strcmp(line, "1") != 0) {
        ErrorAbort(state, "unexpected transfer list version [%s]\n", line);
        goto done;
    }

    // second line in transfer list is the total number of blocks we
    // expect to write.
    line = strtok_r(NULL, "\n", &linesave);
    int total_blocks = strtol(line, NULL, 0);
    // shouldn't happen, but avoid divide by zero.
    if (total_blocks == 0) ++total_blocks;
    int blocks_so_far = 0;

    uint8_t* buffer = NULL;
    size_t buffer_alloc = 0;

    // third and subsequent lines are all individual transfer commands.
    for (line = strtok_r(NULL, "\n", &linesave); line;
         line = strtok_r(NULL, "\n", &linesave)) {
        char* style;
        style = strtok_r(line, " ", &wordsave);

        if (strcmp("move", style) == 0) {
            word = strtok_r(NULL, " ", &wordsave);
            RangeSet* src = parse_range(word);
            word = strtok_r(NULL, " ", &wordsave);
            RangeSet* tgt = parse_range(word);

            printf("  moving %d blocks\n", src->size);

            allocate(src->size * BLOCKSIZE, &buffer, &buffer_alloc);
            size_t p = 0;
            for (i = 0; i < src->count; ++i) {
                check_lseek(fd, (off64_t)src->pos[i*2] * BLOCKSIZE, SEEK_SET);
                size_t sz = (src->pos[i*2+1] - src->pos[i*2]) * BLOCKSIZE;
                readblock(fd, buffer+p, sz);
                p += sz;
            }

            p = 0;
            for (i = 0; i < tgt->count; ++i) {
                check_lseek(fd, (off64_t)tgt->pos[i*2] * BLOCKSIZE, SEEK_SET);
                size_t sz = (tgt->pos[i*2+1] - tgt->pos[i*2]) * BLOCKSIZE;
                writeblock(fd, buffer+p, sz);
                p += sz;
            }

            blocks_so_far += tgt->size;
            fprintf(cmd_pipe, "set_progress %.4f\n", (double)blocks_so_far / total_blocks);
            fflush(cmd_pipe);

            free(src);
            free(tgt);

        } else if (strcmp("zero", style) == 0 ||
                   (DEBUG_ERASE && strcmp("erase", style) == 0)) {
            word = strtok_r(NULL, " ", &wordsave);
            RangeSet* tgt = parse_range(word);

            printf("  zeroing %d blocks\n", tgt->size);

            allocate(BLOCKSIZE, &buffer, &buffer_alloc);
            memset(buffer, 0, BLOCKSIZE);
            for (i = 0; i < tgt->count; ++i) {
                check_lseek(fd, (off64_t)tgt->pos[i*2] * BLOCKSIZE, SEEK_SET);
                for (j = tgt->pos[i*2]; j < tgt->pos[i*2+1]; ++j) {
                    writeblock(fd, buffer, BLOCKSIZE);
                }
            }

            if (style[0] == 'z') {   // "zero" but not "erase"
                blocks_so_far += tgt->size;
                fprintf(cmd_pipe, "set_progress %.4f\n", (double)blocks_so_far / total_blocks);
                fflush(cmd_pipe);
            }

            free(tgt);
        } else if (strcmp("new", style) == 0) {

            word = strtok_r(NULL, " ", &wordsave);
            RangeSet* tgt = parse_range(word);

            printf("  writing %d blocks of new data\n", tgt->size);

            RangeSinkState rss;
            rss.fd = fd;
            rss.tgt = tgt;
            rss.p_block = 0;
            rss.p_remain = (tgt->pos[1] - tgt->pos[0]) * BLOCKSIZE;
            check_lseek(fd, (off64_t)tgt->pos[0] * BLOCKSIZE, SEEK_SET);

            pthread_mutex_lock(&nti.mu);
            nti.rss = &rss;
            pthread_cond_broadcast(&nti.cv);
            while (nti.rss) {
                pthread_cond_wait(&nti.cv, &nti.mu);
            }
            pthread_mutex_unlock(&nti.mu);

            blocks_so_far += tgt->size;
            fprintf(cmd_pipe, "set_progress %.4f\n", (double)blocks_so_far / total_blocks);
            fflush(cmd_pipe);

            free(tgt);

        } else if (strcmp("bsdiff", style) == 0 ||
                   strcmp("imgdiff", style) == 0) {
            word = strtok_r(NULL, " ", &wordsave);
            size_t patch_offset = strtoul(word, NULL, 0);
            word = strtok_r(NULL, " ", &wordsave);
            size_t patch_len = strtoul(word, NULL, 0);

            word = strtok_r(NULL, " ", &wordsave);
            RangeSet* src = parse_range(word);
            word = strtok_r(NULL, " ", &wordsave);
            RangeSet* tgt = parse_range(word);

            printf("  patching %d blocks to %d\n", src->size, tgt->size);

            // Read the source into memory.
            allocate(src->size * BLOCKSIZE, &buffer, &buffer_alloc);
            size_t p = 0;
            for (i = 0; i < src->count; ++i) {
                check_lseek(fd, (off64_t)src->pos[i*2] * BLOCKSIZE, SEEK_SET);
                size_t sz = (src->pos[i*2+1] - src->pos[i*2]) * BLOCKSIZE;
                readblock(fd, buffer+p, sz);
                p += sz;
            }

            Value patch_value;
            patch_value.type = VAL_BLOB;
            patch_value.size = patch_len;
            patch_value.data = (char*)(patch_start + patch_offset);

            RangeSinkState rss;
            rss.fd = fd;
            rss.tgt = tgt;
            rss.p_block = 0;
            rss.p_remain = (tgt->pos[1] - tgt->pos[0]) * BLOCKSIZE;
            check_lseek(fd, (off64_t)tgt->pos[0] * BLOCKSIZE, SEEK_SET);

            if (style[0] == 'i') {      // imgdiff
                ApplyImagePatch(buffer, src->size * BLOCKSIZE,
                                &patch_value,
                                &RangeSinkWrite, &rss, NULL, NULL);
            } else {
                ApplyBSDiffPatch(buffer, src->size * BLOCKSIZE,
                                 &patch_value, 0,
                                 &RangeSinkWrite, &rss, NULL);
            }

            // We expect the output of the patcher to fill the tgt ranges exactly.
            if (rss.p_block != tgt->count || rss.p_remain != 0) {
                fprintf(stderr, "range sink underrun?\n");
            }

            blocks_so_far += tgt->size;
            fprintf(cmd_pipe, "set_progress %.4f\n", (double)blocks_so_far / total_blocks);
            fflush(cmd_pipe);

            free(src);
            free(tgt);
        } else if (!DEBUG_ERASE && strcmp("erase", style) == 0) {
            struct stat st;
            if (fstat(fd, &st) == 0 && S_ISBLK(st.st_mode)) {
                word = strtok_r(NULL, " ", &wordsave);
                RangeSet* tgt = parse_range(word);

                printf("  erasing %d blocks\n", tgt->size);

                for (i = 0; i < tgt->count; ++i) {
                    uint64_t range[2];
                    // offset in bytes
                    range[0] = tgt->pos[i*2] * (uint64_t)BLOCKSIZE;
                    // len in bytes
                    range[1] = (tgt->pos[i*2+1] - tgt->pos[i*2]) * (uint64_t)BLOCKSIZE;

                    if (ioctl(fd, BLKDISCARD, &range) < 0) {
                        printf("    blkdiscard failed: %s\n", strerror(errno));
                    }
                }

                free(tgt);
            } else {
                printf("  ignoring erase (not block device)\n");
            }
        } else {
            fprintf(stderr, "unknown transfer style \"%s\"\n", style);
            exit(1);
        }
    }

    pthread_join(new_data_thread, NULL);
    success = true;

    free(buffer);
    printf("wrote %d blocks; expected %d\n", blocks_so_far, total_blocks);
    printf("max alloc needed was %zu\n", buffer_alloc);

  done:
    free(transfer_list);
    FreeValue(blockdev_filename);
    FreeValue(transfer_list_value);
    FreeValue(new_data_fn);
    FreeValue(patch_data_fn);
    return StringValue(success ? strdup("t") : strdup(""));
}
static int GenerateTarget(FileContents* source_file,
                          const Value* source_patch_value,
                          FileContents* copy_file,
                          const Value* copy_patch_value,
                          const char* source_filename,
                          const char* target_filename,
                          const uint8_t target_sha1[SHA_DIGEST_SIZE],
                          size_t target_size,
                          const Value* bonus_data) {
    int retry = 1;
    SHA_CTX ctx;
    int output;
    MemorySinkInfo msi;
    FileContents* source_to_use;
    char* outname;
    int made_copy = 0;

    // assume that target_filename (eg "/system/app/Foo.apk") is located
    // on the same filesystem as its top-level directory ("/system").
    // We need something that exists for calling statfs().
    char target_fs[strlen(target_filename)+1];
    char* slash = strchr(target_filename+1, '/');
    if (slash != NULL) {
        int count = slash - target_filename;
        strncpy(target_fs, target_filename, count);
        target_fs[count] = '\0';
    } else {
        strcpy(target_fs, target_filename);
    }

    do {
        // Is there enough room in the target filesystem to hold the patched
        // file?

        if (strncmp(target_filename, "MTD:", 4) == 0 ||
            strncmp(target_filename, "EMMC:", 5) == 0) {
            // If the target is a partition, we're actually going to
            // write the output to /tmp and then copy it to the
            // partition.  statfs() always returns 0 blocks free for
            // /tmp, so instead we'll just assume that /tmp has enough
            // space to hold the file.

            // We still write the original source to cache, in case
            // the partition write is interrupted.
            if (MakeFreeSpaceOnCache(source_file->size) < 0) {
                printf("not enough free space on /cache\n");
                return 1;
            }
            if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
                printf("failed to back up source file\n");
                return 1;
            }
            made_copy = 1;
            retry = 0;
        } else {
            int enough_space = 0;
            if (retry > 0) {
                size_t free_space = FreeSpaceForFile(target_fs);
                enough_space =
                    (free_space > (256 << 10)) &&          // 256k (two-block) minimum
                    (free_space > (target_size * 3 / 2));  // 50% margin of error
                if (!enough_space) {
                    printf("target %zu bytes; free space %zu bytes; retry %d; enough %d\n",
                           target_size, free_space, retry, enough_space);
                }
            }

            if (!enough_space) {
                retry = 0;
            }

            if (!enough_space && source_patch_value != NULL) {
                // Using the original source, but not enough free space.  First
                // copy the source file to cache, then delete it from the original
                // location.

                if (strncmp(source_filename, "MTD:", 4) == 0 ||
                    strncmp(source_filename, "EMMC:", 5) == 0) {
                    // It's impossible to free space on the target filesystem by
                    // deleting the source if the source is a partition.  If
                    // we're ever in a state where we need to do this, fail.
                    printf("not enough free space for target but source is partition\n");
                    return 1;
                }

                if (MakeFreeSpaceOnCache(source_file->size) < 0) {
                    printf("not enough free space on /cache\n");
                    return 1;
                }

                if (SaveFileContents(CACHE_TEMP_SOURCE, source_file) < 0) {
                    printf("failed to back up source file\n");
                    return 1;
                }
                made_copy = 1;
                unlink(source_filename);

                size_t free_space = FreeSpaceForFile(target_fs);
                printf("(now %zu bytes free for target) ", free_space);
            }
        }

        const Value* patch;
        if (source_patch_value != NULL) {
            source_to_use = source_file;
            patch = source_patch_value;
        } else {
            source_to_use = copy_file;
            patch = copy_patch_value;
        }

        if (patch->type != VAL_BLOB) {
            printf("patch is not a blob\n");
            return 1;
        }

        SinkFn sink = NULL;
        void* token = NULL;
        output = -1;
        outname = NULL;
        if (strncmp(target_filename, "MTD:", 4) == 0 ||
            strncmp(target_filename, "EMMC:", 5) == 0) {
            // We store the decoded output in memory.
            msi.buffer = reinterpret_cast<unsigned char*>(malloc(target_size));
            if (msi.buffer == NULL) {
                printf("failed to alloc %zu bytes for output\n", target_size);
                return 1;
            }
            msi.pos = 0;
            msi.size = target_size;
            sink = MemorySink;
            token = &msi;
        } else {
            // We write the decoded output to "<tgt-file>.patch".
            outname = reinterpret_cast<char*>(malloc(strlen(target_filename) + 10));
            strcpy(outname, target_filename);
            strcat(outname, ".patch");

            output = open(outname, O_WRONLY | O_CREAT | O_TRUNC | O_SYNC, S_IRUSR | S_IWUSR);
            if (output < 0) {
                printf("failed to open output file %s: %s\n",
                       outname, strerror(errno));
                return 1;
            }
            sink = FileSink;
            token = &output;
        }

        char* header = patch->data;
        ssize_t header_bytes_read = patch->size;

        SHA_init(&ctx);

        int result;

        if (header_bytes_read >= 8 &&
            memcmp(header, "BSDIFF40", 8) == 0) {
            result = ApplyBSDiffPatch(source_to_use->data, source_to_use->size,
                                      patch, 0, sink, token, &ctx);
        } else if (header_bytes_read >= 8 &&
                   memcmp(header, "IMGDIFF2", 8) == 0) {
            result = ApplyImagePatch(source_to_use->data, source_to_use->size,
                                     patch, sink, token, &ctx, bonus_data);
        } else {
            printf("Unknown patch file format\n");
            return 1;
        }

        if (output >= 0) {
            if (fsync(output) != 0) {
                printf("failed to fsync file \"%s\" (%s)\n", outname, strerror(errno));
                result = 1;
            }
            if (close(output) != 0) {
                printf("failed to close file \"%s\" (%s)\n", outname, strerror(errno));
                result = 1;
            }
        }

        if (result != 0) {
            if (retry == 0) {
                printf("applying patch failed\n");
                return result != 0;
            } else {
                printf("applying patch failed; retrying\n");
            }
            if (outname != NULL) {
                unlink(outname);
            }
        } else {
            // succeeded; no need to retry
            break;
        }
    } while (retry-- > 0);

    const uint8_t* current_target_sha1 = SHA_final(&ctx);
    if (memcmp(current_target_sha1, target_sha1, SHA_DIGEST_SIZE) != 0) {
        printf("patch did not produce expected sha1\n");
        return 1;
    } else {
        printf("now %s\n", short_sha1(target_sha1).c_str());
    }

    if (output < 0) {
        // Copy the temp file to the partition.
        if (WriteToPartition(msi.buffer, msi.pos, target_filename) != 0) {
            printf("write of patched data to %s failed\n", target_filename);
            return 1;
        }
        free(msi.buffer);
    } else {
        // Give the .patch file the same owner, group, and mode of the
        // original source file.
        if (chmod(outname, source_to_use->st.st_mode) != 0) {
            printf("chmod of \"%s\" failed: %s\n", outname, strerror(errno));
            return 1;
        }
        if (chown(outname, source_to_use->st.st_uid, source_to_use->st.st_gid) != 0) {
            printf("chown of \"%s\" failed: %s\n", outname, strerror(errno));
            return 1;
        }

        // Finally, rename the .patch file to replace the target file.
        if (rename(outname, target_filename) != 0) {
            printf("rename of .patch to \"%s\" failed: %s\n", target_filename, strerror(errno));
            return 1;
        }
    }

    // If this run of applypatch created the copy, and we're here, we
    // can delete it.
    if (made_copy) {
        unlink(CACHE_TEMP_SOURCE);
    }

    // Success!
    return 0;
}