void ObjMesh::Init()
{
	ReadFromFile(filePath.c_str(), scale_factor);
	ComputeNormal();
	ApplyTransformation();
	ComputeAABB();
}
Beispiel #2
0
void ProgressBar::Draw(Renderer & renderer)
{
    ApplyTransformation(renderer);    

    renderer.SetColor(m_frameColor);
    renderer.DrawShape(m_frameShape);
    
    renderer.SetColor(m_innerColor);    
    renderer.DrawShape(m_innerShape);
}
Beispiel #3
0
double ComputeRMSD(int nCoords, const Vector * const *masterCoords,
    const Vector * const *dependentCoords, const Matrix *transformDependentToMaster)
{
    Vector x;
    double rmsd = 0.0;
    int n = 0;
    for (int c=0; c<nCoords; ++c) {
        if (!dependentCoords[c] || !masterCoords[c]) continue;
        x = *(dependentCoords[c]);
        if (transformDependentToMaster)
            ApplyTransformation(&x, *transformDependentToMaster);
        rmsd += (*(masterCoords[c]) - x).lengthSquared();
        ++n;
    }
    if (n == 0) {
        WARNINGMSG("ComputeRMSD() - received no non-NULL coordinates");
        return 0.0;
    }
    rmsd = sqrt(rmsd / n);
    return rmsd;
}
AtNode * ProcessPointsBase(
        IPoints & prim, ProcArgs & args,
        SampleTimeSet & sampleTimes,
        std::vector<AtPoint> & vidxs,
		std::vector<float> & radius,
		MatrixSampleMap * xformSamples )
{
    if ( !prim.valid() )
    {
        return NULL;
    }
    
    Alembic::AbcGeom::IPointsSchema  &ps = prim.getSchema();
    TimeSamplingPtr ts = ps.getTimeSampling();
    
	sampleTimes.insert( ts->getFloorIndex(args.frame / args.fps, ps.getNumSamples()).second );
    
    std::string name = args.nameprefix + prim.getFullName();
    
    AtNode * instanceNode = NULL;
    
    std::string cacheId;
    
    SampleTimeSet singleSampleTimes;
    singleSampleTimes.insert( ts->getFloorIndex(args.frame / args.fps, ps.getNumSamples()).second );

	ICompoundProperty arbGeomParams = ps.getArbGeomParams();
	ISampleSelector frameSelector( *singleSampleTimes.begin() );
	std::vector<std::string> tags;

	//get tags
	if ( arbGeomParams != NULL && arbGeomParams.valid() )
	{
		if (arbGeomParams.getPropertyHeader("mtoa_constant_tags") != NULL)
		{
			const PropertyHeader * tagsHeader = arbGeomParams.getPropertyHeader("mtoa_constant_tags");
			if (IStringGeomParam::matches( *tagsHeader ))
			{
				IStringGeomParam param( arbGeomParams,  "mtoa_constant_tags" );
				if ( param.valid() )
				{
					IStringGeomParam::prop_type::sample_ptr_type valueSample =
									param.getExpandedValue( frameSelector ).getVals();

					if ( param.getScope() == kConstantScope || param.getScope() == kUnknownScope)
					{
						Json::Value jtags;
						Json::Reader reader;
						if(reader.parse(valueSample->get()[0], jtags))
							for( Json::ValueIterator itr = jtags.begin() ; itr != jtags.end() ; itr++ )
							{
								tags.push_back(jtags[itr.key().asUInt()].asString());
							}
					}
				}
			}
		}
	}

    if ( args.makeInstance )
    {
        std::ostringstream buffer;
        AbcA::ArraySampleKey sampleKey;
        
        
        for ( SampleTimeSet::iterator I = sampleTimes.begin();
                I != sampleTimes.end(); ++I )
        {
            ISampleSelector sampleSelector( *I );
            ps.getPositionsProperty().getKey(sampleKey, sampleSelector);
            
            buffer << GetRelativeSampleTime( args, (*I) ) << ":";
            sampleKey.digest.print(buffer);
            buffer << ":";
        }
        
        cacheId = buffer.str();
        
        instanceNode = AiNode( "ginstance" );
        AiNodeSetStr( instanceNode, "name", name.c_str() );
		args.createdNodes.push_back(instanceNode);

        if ( args.proceduralNode )
        {
            AiNodeSetByte( instanceNode, "visibility",
                    AiNodeGetByte( args.proceduralNode, "visibility" ) );
        
        }
        else
        {
            AiNodeSetByte( instanceNode, "visibility", AI_RAY_ALL );
        }

		ApplyTransformation( instanceNode, xformSamples, args );

		NodeCache::iterator I = g_meshCache.find(cacheId);

		// parameters overrides
		if(args.linkOverride)
			ApplyOverrides(name, instanceNode, tags, args);

		// shader assignation
		if (nodeHasParameter( instanceNode, "shader" ) )
		{
			if(args.linkShader)
			{
				ApplyShaders(name, instanceNode, tags, args);
			}
			else
			{
				AtArray* shaders = AiNodeGetArray(args.proceduralNode, "shader");
				if (shaders->nelements != 0)
				   AiNodeSetArray(instanceNode, "shader", AiArrayCopy(shaders));
			}
		}

        if ( I != g_meshCache.end() )
        {
            AiNodeSetPtr(instanceNode, "node", (*I).second );	
			return NULL;
        }
    }
    

    bool isFirstSample = true;

	float radiusPoint = 0.1f;
	if (AiNodeLookUpUserParameter(args.proceduralNode, "radiusPoint") !=NULL )
		radiusPoint = AiNodeGetFlt(args.proceduralNode, "radiusPoint");
	
	

	bool useVelocities = false;
	if ((sampleTimes.size() == 1) && (args.shutterOpen != args.shutterClose))
	{
		// no sample, and motion blur needed, let's try to get velocities.
		if(ps.getVelocitiesProperty().valid())
			useVelocities = true;
	}

	for ( SampleTimeSet::iterator I = sampleTimes.begin();
          I != sampleTimes.end(); ++I, isFirstSample = false)
    {
        ISampleSelector sampleSelector( *I );
        Alembic::AbcGeom::IPointsSchema::Sample sample = ps.getValue( sampleSelector );

		Alembic::Abc::P3fArraySamplePtr v3ptr = sample.getPositions();
		size_t pSize = sample.getPositions()->size(); 

		if(useVelocities && isFirstSample)
		{
			float scaleVelocity = 1.0f;
			if (AiNodeLookUpUserParameter(args.proceduralNode, "scaleVelocity") !=NULL )
				scaleVelocity = AiNodeGetFlt(args.proceduralNode, "scaleVelocity");

			vidxs.resize(pSize*2);
			Alembic::Abc::V3fArraySamplePtr velptr = sample.getVelocities();

			float timeoffset = ((args.frame / args.fps) - ts->getFloorIndex((*I), ps.getNumSamples()).second) * args.fps;

			for ( size_t pId = 0; pId < pSize; ++pId ) 
			{
				Alembic::Abc::V3f posAtOpen = ((*v3ptr)[pId] + (*velptr)[pId] * scaleVelocity *-timeoffset);			
				AtPoint pos1;
				pos1.x = posAtOpen.x;
				pos1.y = posAtOpen.y;
				pos1.z = posAtOpen.z;
				vidxs[pId]= pos1;

				Alembic::Abc::V3f posAtEnd = ((*v3ptr)[pId] + (*velptr)[pId]* scaleVelocity *(1.0f-timeoffset));
				AtPoint pos2;
				pos2.x = posAtEnd.x;
				pos2.y = posAtEnd.y;
				pos2.z = posAtEnd.z;
				vidxs[pId+pSize]= pos2;
				
				radius.push_back(radiusPoint);	
			}
		}
		else
			// not motion blur or correctly sampled particles
		{
			for ( size_t pId = 0; pId < pSize; ++pId ) 
			{
				AtPoint pos;
				pos.x = (*v3ptr)[pId].x;
				pos.y = (*v3ptr)[pId].y;
				pos.z = (*v3ptr)[pId].z;
				vidxs.push_back(pos);
				radius.push_back(radiusPoint);
			}
		}
	}
    
    AtNode* pointsNode = AiNode( "points" );
    
    if (!pointsNode)
    {
        AiMsgError("Failed to make points node for %s",
                prim.getFullName().c_str());
        return NULL;
    }
    

    args.createdNodes.push_back(pointsNode);
    if ( instanceNode != NULL)
    {
        AiNodeSetStr( pointsNode, "name", (name + ":src").c_str() );
    }
    else
    {
        AiNodeSetStr( pointsNode, "name", name.c_str() );
    }
    
    if(!useVelocities)
	{
		AiNodeSetArray(pointsNode, "points",
				AiArrayConvert( vidxs.size() / sampleTimes.size(), 
						sampleTimes.size(), AI_TYPE_POINT, (void*)(&(vidxs[0]))
								));
		AiNodeSetArray(pointsNode, "radius",
				AiArrayConvert( vidxs.size() / sampleTimes.size(), 
						sampleTimes.size(), AI_TYPE_FLOAT, (void*)(&(radius[0]))
								));

		if ( sampleTimes.size() > 1 )
		{
			std::vector<float> relativeSampleTimes;
			relativeSampleTimes.reserve( sampleTimes.size() );
        
			for (SampleTimeSet::const_iterator I = sampleTimes.begin();
					I != sampleTimes.end(); ++I )
			{
			   chrono_t sampleTime = GetRelativeSampleTime( args, (*I) );

				relativeSampleTimes.push_back(sampleTime);
                    
			}
        
			AiNodeSetArray( pointsNode, "deform_time_samples",
					AiArrayConvert(relativeSampleTimes.size(), 1,
							AI_TYPE_FLOAT, &relativeSampleTimes[0]));
		}
	}
	else
	{
		AiNodeSetArray(pointsNode, "points",
				AiArrayConvert( vidxs.size() / 2, 
						2, AI_TYPE_POINT, (void*)(&(vidxs[0]))
								));
		AiNodeSetArray(pointsNode, "radius",
				AiArrayConvert( vidxs.size() /2 / sampleTimes.size(), 
						sampleTimes.size(), AI_TYPE_FLOAT, (void*)(&(radius[0]))
								));		
		
		AiNodeSetArray( pointsNode, "deform_time_samples",
					AiArray(2, 1, AI_TYPE_FLOAT, 0.f, 1.f));

	}

   AddArbitraryGeomParams( arbGeomParams, frameSelector, pointsNode );
    
    if ( instanceNode == NULL )
	{
        if ( xformSamples )
        {
            ApplyTransformation( pointsNode, xformSamples, args );
        }
        
        return pointsNode;
	}
    else
    {
        AiNodeSetByte( pointsNode, "visibility", 0 );

		  AiNodeSetInt( pointsNode, "mode", 1 );
        
        AiNodeSetPtr(instanceNode, "node", pointsNode );
        g_meshCache[cacheId] = pointsNode;
        return pointsNode;
    }
    
}
Beispiel #5
0
AtNode * ProcessPolyMeshBase(
        primT & prim, ProcArgs & args,
        SampleTimeSet & sampleTimes,
        std::vector<AtUInt32> & vidxs,
        int subdiv_iterations,
        MatrixSampleMap * xformSamples, 
        const std::string & facesetName = "" )
{
    if ( !prim.valid() )
    {
        return NULL;
    }
    
    typename primT::schema_type  &ps = prim.getSchema();
    TimeSamplingPtr ts = ps.getTimeSampling();
    
    if ( ps.getTopologyVariance() != kHeterogenousTopology )
    {
        GetRelevantSampleTimes( args, ts, ps.getNumSamples(), sampleTimes );
    }
    else
    {
        sampleTimes.insert( args.frame / args.fps );
    }
    
    std::string name = args.nameprefix + prim.getFullName();
    
    AtNode * instanceNode = NULL;
    
    std::string cacheId;
    
    if ( args.makeInstance )
    {
        std::ostringstream buffer;
        AbcA::ArraySampleKey sampleKey;
        
        
        for ( SampleTimeSet::iterator I = sampleTimes.begin();
                I != sampleTimes.end(); ++I )
        {
            ISampleSelector sampleSelector( *I );
            ps.getPositionsProperty().getKey(sampleKey, sampleSelector);
            
            buffer << GetRelativeSampleTime( args, (*I) ) << ":";
            sampleKey.digest.print(buffer);
            buffer << ":";
        }
        
        buffer << "@" << subdiv_iterations;
        buffer << "@" << facesetName;
        
        cacheId = buffer.str();
        
        instanceNode = AiNode( "ginstance" );
        AiNodeSetStr( instanceNode, "name", name.c_str() );
        args.createdNodes.push_back(instanceNode);
        
        if ( args.proceduralNode )
        {
            AiNodeSetInt( instanceNode, "visibility",
                    AiNodeGetInt( args.proceduralNode, "visibility" ) );
        
        }
        else
        {
            AiNodeSetInt( instanceNode, "visibility", AI_RAY_ALL );
        }
        
        ApplyTransformation( instanceNode, xformSamples, args );
        
        
        NodeCache::iterator I = g_meshCache.find(cacheId);
        if ( I != g_meshCache.end() )
        {
            AiNodeSetPtr(instanceNode, "node", (*I).second );
            return NULL;
        }
        
    }
    
    
    
    SampleTimeSet singleSampleTimes;
    singleSampleTimes.insert( args.frame / args.fps );
    
    
    std::vector<AtByte> nsides;
    std::vector<float> vlist;
    
    std::vector<float> uvlist;
    std::vector<AtUInt32> uvidxs;
    
    
    // POTENTIAL OPTIMIZATIONS LEFT TO THE READER
    // 1) vlist needn't be copied if it's a single sample
    
    bool isFirstSample = true;
    for ( SampleTimeSet::iterator I = sampleTimes.begin();
          I != sampleTimes.end(); ++I, isFirstSample = false)
    {
        ISampleSelector sampleSelector( *I );
        typename primT::schema_type::Sample sample = ps.getValue( sampleSelector );
        
        if ( isFirstSample )
        {
            size_t numPolys = sample.getFaceCounts()->size();
            nsides.reserve( sample.getFaceCounts()->size() );
            for ( size_t i = 0; i < numPolys; ++i ) 
            {
                int32_t n = sample.getFaceCounts()->get()[i];
                
                if ( n > 255 )
                {
                    // TODO, warning about unsupported face
                    return NULL;
                }
                
                nsides.push_back( (AtByte) n );
            }
            
            size_t vidxSize = sample.getFaceIndices()->size();
            vidxs.reserve( vidxSize );
            vidxs.insert( vidxs.end(), sample.getFaceIndices()->get(),
                    sample.getFaceIndices()->get() + vidxSize );
        }
        
        
        vlist.reserve( vlist.size() + sample.getPositions()->size() * 3);
        vlist.insert( vlist.end(),
                (const float32_t*) sample.getPositions()->get(),
                ((const float32_t*) sample.getPositions()->get()) +
                        sample.getPositions()->size() * 3 );
    }
    
    ProcessIndexedBuiltinParam(
            ps.getUVsParam(),
            singleSampleTimes,
            uvlist,
            uvidxs,
            2);
    
    
    AtNode* meshNode = AiNode( "polymesh" );
    
    if (!meshNode)
    {
        AiMsgError("Failed to make polymesh node for %s",
                prim.getFullName().c_str());
        return NULL;
    }
    
    args.createdNodes.push_back(meshNode);
    
    if ( instanceNode != NULL)
    {
        AiNodeSetStr( meshNode, "name", (name + ":src").c_str() );
    }
    else
    {
        AiNodeSetStr( meshNode, "name", name.c_str() );
    }
    
    
    
    
    AiNodeSetArray(meshNode, "vidxs", 
            ArrayConvert(vidxs.size(), 1, AI_TYPE_UINT,
                    (void*)&vidxs[0]));
    
    AiNodeSetArray(meshNode, "nsides",
            ArrayConvert(nsides.size(), 1, AI_TYPE_BYTE,
                    &(nsides[0])));
    
    AiNodeSetArray(meshNode, "vlist",
            ArrayConvert( vlist.size() / sampleTimes.size(), 
                    sampleTimes.size(), AI_TYPE_FLOAT, (void*)(&(vlist[0]))));
    
    if ( !uvlist.empty() )
    {
        //TODO, option to disable v flipping
        for (size_t i = 1, e = uvlist.size(); i < e; i += 2)
        {
            uvlist[i] = 1.0 - uvlist[i];
        }
        
        AiNodeSetArray(meshNode, "uvlist",
            ArrayConvert( uvlist.size(), 1, AI_TYPE_FLOAT,
                (void*)(&(uvlist[0]))));
        
        if ( !uvidxs.empty() )
        {
            AiNodeSetArray(meshNode, "uvidxs",
                    ArrayConvert(uvidxs.size(), 1, AI_TYPE_UINT,
                            &(uvidxs[0])));
        }
        else
        {
            AiNodeSetArray(meshNode, "uvidxs",
                    ArrayConvert(vidxs.size(), 1, AI_TYPE_UINT,
                            &(vidxs[0])));
        }
    }
    
    if ( sampleTimes.size() > 1 )
    {
        std::vector<float> relativeSampleTimes;
        relativeSampleTimes.reserve( sampleTimes.size() );
        
        for (SampleTimeSet::const_iterator I = sampleTimes.begin();
                I != sampleTimes.end(); ++I )
        {
            relativeSampleTimes.push_back(
                    GetRelativeSampleTime( args, (*I) ) );
                    
        }
        
        AiNodeSetArray( meshNode, "deform_time_samples",
                ArrayConvert(relativeSampleTimes.size(), 1,
                        AI_TYPE_FLOAT, &relativeSampleTimes[0]));
    }
    
    // faceset visibility array
    if ( !facesetName.empty() )
    {
        if ( ps.hasFaceSet( facesetName ) )
        {
            ISampleSelector frameSelector( *singleSampleTimes.begin() );
            
            
            IFaceSet faceSet = ps.getFaceSet( facesetName );
            IFaceSetSchema::Sample faceSetSample = 
                    faceSet.getSchema().getValue( frameSelector );
            
            std::set<int> facesToKeep;
            
            
            facesToKeep.insert( faceSetSample.getFaces()->get(),
                    faceSetSample.getFaces()->get() +
                            faceSetSample.getFaces()->size() );
            
            bool *faceVisArray = new bool(nsides.size());
            
            for ( int i = 0; i < (int) nsides.size(); ++i )
            {
                faceVisArray[i] = facesToKeep.find( i ) != facesToKeep.end();
            }
            
            if ( AiNodeDeclare( meshNode, "face_visibility", "uniform BOOL" ) )
            {
                AiNodeSetArray( meshNode, "face_visibility",
                        ArrayConvert( nsides.size(), 1, AI_TYPE_BOOLEAN,
                                faceVisArray ) );
            }
            
            delete[] faceVisArray;
        }
    }
    
    {
        ICompoundProperty arbGeomParams = ps.getArbGeomParams();
        ISampleSelector frameSelector( *singleSampleTimes.begin() );
        
        AddArbitraryGeomParams( arbGeomParams, frameSelector, meshNode );
    }
    
    
    if ( instanceNode == NULL )
    {
        if ( xformSamples )
        {
            ApplyTransformation( meshNode, xformSamples, args );
        }
        
        return meshNode;
    }
    else
    {
        AiNodeSetInt( meshNode, "visibility", 0 );
        
        AiNodeSetPtr(instanceNode, "node", meshNode );
        g_meshCache[cacheId] = meshNode;
        return meshNode;
        
    }
    
}
void AbstractNode::RenderReflection(glm::mat4 model, const glm::mat4& view, const glm::mat4& projection, Environment* environnement, const glm::vec4& clipPlane, glm::mat4 shadowModel)
{
    ApplyTransformation(model);
    ApplyTransformation(shadowModel);
    model_->RenderReflection(model, view, projection, environnement, clipPlane,shadowModel);
}
void AbstractNode::RenderShadowMap(glm::mat4 model, const glm::mat4& view, const glm::mat4& projection)
{
    ApplyTransformation(model);
    model_->RenderShadowMap(model, view, projection);
}
void AbstractNode::RenderFirstPass(glm::mat4 model, const glm::mat4& view, const glm::mat4& projection, glm::vec4& clipPlane)
{
    ApplyTransformation(model);
    model_->RenderFirstPass(model, view, projection, clipPlane);
}