Beispiel #1
0
int
CFCType_equals(CFCType *self, CFCType *other) {
    if ((CFCType_const(self)           ^ CFCType_const(other))
        || (CFCType_nullable(self)     ^ CFCType_nullable(other))
        || (CFCType_is_void(self)      ^ CFCType_is_void(other))
        || (CFCType_is_object(self)    ^ CFCType_is_object(other))
        || (CFCType_is_primitive(self) ^ CFCType_is_primitive(other))
        || (CFCType_is_integer(self)   ^ CFCType_is_integer(other))
        || (CFCType_is_floating(self)  ^ CFCType_is_floating(other))
        || (CFCType_is_va_list(self)   ^ CFCType_is_va_list(other))
        || (CFCType_is_arbitrary(self) ^ CFCType_is_arbitrary(other))
        || (CFCType_is_composite(self) ^ CFCType_is_composite(other))
        || (CFCType_incremented(self)  ^ CFCType_incremented(other))
        || (CFCType_decremented(self)  ^ CFCType_decremented(other))
        || !!self->child ^ !!other->child
        || !!self->array ^ !!other->array
       ) {
        return false;
    }
    if (self->indirection != other->indirection) { return false; }
    if (strcmp(self->specifier, other->specifier) != 0) { return false; }
    if (self->child) {
        if (!CFCType_equals(self->child, other->child)) { return false; }
    }
    if (self->array) {
        if (strcmp(self->array, other->array) != 0) { return false; }
    }
    return true;
}
Beispiel #2
0
int
CFCType_similar(CFCType *self, CFCType *other) {
    if (!CFCType_is_object(self)) {
        CFCUtil_die("Attempt to call 'similar' on a non-object type");
    }
    if ((CFCType_const(self)           ^ CFCType_const(other))
        || (CFCType_nullable(self)     ^ CFCType_nullable(other))
        || (CFCType_incremented(self)  ^ CFCType_incremented(other))
        || (CFCType_decremented(self)  ^ CFCType_decremented(other))
        || (CFCType_is_object(self)    ^ CFCType_is_object(other))
       ) {
        return false;
    }
    return true;
}
Beispiel #3
0
char*
CFCBindMeth_callback_def(CFCMethod *method) {
    CFCType *return_type = CFCMethod_get_return_type(method);
    char *params = S_callback_params(method);
    char *callback_def = NULL;
    char *refcount_mods = S_callback_refcount_mods(method);

    if (!params) {
        // Can't map vars, because there's at least one type in the argument
        // list we don't yet support.  Return a callback wrapper that throws
        // an error error.
        callback_def = S_invalid_callback_def(method);
    }
    else if (CFCType_is_void(return_type)) {
        callback_def = S_void_callback_def(method, params, refcount_mods);
    }
    else if (CFCType_is_object(return_type)) {
        callback_def = S_obj_callback_def(method, params, refcount_mods);
    }
    else {
        callback_def = S_primitive_callback_def(method, params, refcount_mods);
    }

    FREEMEM(params);
    FREEMEM(refcount_mods);
    return callback_def;
}
Beispiel #4
0
static char*
S_callback_refcount_mods(CFCParamList *param_list) {
    char *refcount_mods = CFCUtil_strdup("");
    CFCVariable **arg_vars = CFCParamList_get_variables(param_list);

    // Adjust refcounts of arguments per method signature, so that Perl code
    // does not have to.
    for (int i = 0; arg_vars[i] != NULL; i++) {
        CFCVariable *var  = arg_vars[i];
        CFCType     *type = CFCVariable_get_type(var);
        const char  *name = CFCVariable_get_name(var);
        if (!CFCType_is_object(type)) {
            continue;
        }
        else if (CFCType_incremented(type)) {
            refcount_mods = CFCUtil_cat(refcount_mods, "    CFISH_INCREF(",
                                        name, ");\n", NULL);
        }
        else if (CFCType_decremented(type)) {
            refcount_mods = CFCUtil_cat(refcount_mods, "    CFISH_DECREF(",
                                        name, ");\n", NULL);
        }
    }

    return refcount_mods;
}
Beispiel #5
0
char*
CFCPerlMethod_callback_def(CFCMethod *method) {
    CFCType *return_type = CFCMethod_get_return_type(method);
    char *start = S_callback_start(method);
    char *callback_def = NULL;
    char *refcount_mods = S_callback_refcount_mods(method);

    if (!start) {
        // Can't map vars, because there's at least one type in the argument
        // list we don't yet support.  Return a callback wrapper that throws
        // an error error.
        callback_def = S_invalid_callback_def(method);
    }
    else if (CFCType_is_void(return_type)) {
        callback_def = S_void_callback_def(method, start, refcount_mods);
    }
    else if (CFCType_is_object(return_type)) {
        callback_def = S_obj_callback_def(method, start, refcount_mods);
    }
    else if (CFCType_is_integer(return_type)
             || CFCType_is_floating(return_type)
        ) {
        callback_def = S_primitive_callback_def(method, start, refcount_mods);
    }
    else {
        // Can't map return type.
        callback_def = S_invalid_callback_def(method);
    }

    FREEMEM(start);
    FREEMEM(refcount_mods);
    return callback_def;
}
Beispiel #6
0
char*
CFCPerlConstructor_xsub_def(CFCPerlConstructor *self) {
    const char *c_name = self->sub.c_name;
    CFCParamList *param_list = self->sub.param_list;
    const char   *name_list  = CFCParamList_name_list(param_list);
    CFCVariable **arg_vars   = CFCParamList_get_variables(param_list);
    const char   *func_sym   = CFCFunction_full_func_sym(self->init_func);
    char *allot_params = CFCPerlSub_build_allot_params((CFCPerlSub*)self);
    CFCVariable *self_var       = arg_vars[0];
    CFCType     *self_type      = CFCVariable_get_type(self_var);
    const char  *self_type_str  = CFCType_to_c(self_type);

    // Compensate for swallowed refcounts.
    char *refcount_mods = CFCUtil_strdup("");
    for (size_t i = 0; arg_vars[i] != NULL; i++) {
        CFCVariable *var = arg_vars[i];
        CFCType *type = CFCVariable_get_type(var);
        if (CFCType_is_object(type) && CFCType_decremented(type)) {
            const char *name = CFCVariable_micro_sym(var);
            refcount_mods = CFCUtil_cat(refcount_mods, "\n    CFISH_INCREF(",
                                        name, ");", NULL);
        }
    }

    const char pattern[] =
        "XS(%s);\n"
        "XS(%s) {\n"
        "    dXSARGS;\n"
        "    CFISH_UNUSED_VAR(cv);\n"
        "    if (items < 1) { CFISH_THROW(CFISH_ERR, \"Usage: %%s(class_name, ...)\",  GvNAME(CvGV(cv))); }\n"
        "    SP -= items;\n"
        "\n"
        "    %s\n"
        // Create "self" last, so that earlier exceptions while fetching
        // params don't trigger a bad invocation of DESTROY.
        "    %s self = (%s)XSBind_new_blank_obj(ST(0));%s\n"
        "\n"
        "    %s retval = %s(%s);\n"
        "    if (retval) {\n"
        "        ST(0) = (SV*)CFISH_Obj_To_Host((cfish_Obj*)retval);\n"
        "        CFISH_Obj_Dec_RefCount((cfish_Obj*)retval);\n"
        "    }\n"
        "    else {\n"
        "        ST(0) = newSV(0);\n"
        "    }\n"
        "    sv_2mortal(ST(0));\n"
        "    XSRETURN(1);\n"
        "}\n\n";
    char *xsub_def
        = CFCUtil_sprintf(pattern, c_name, c_name, allot_params, self_type_str,
                          self_type_str, refcount_mods, self_type_str,
                          func_sym, name_list);

    FREEMEM(refcount_mods);
    FREEMEM(allot_params);

    return xsub_def;
}
Beispiel #7
0
static void
S_process_dump_member(CFCClass *klass, CFCVariable *member, char *buf,
                      size_t buf_size) {
    CFCUTIL_NULL_CHECK(member);
    CFCType *type = CFCVariable_get_type(member);
    const char *name = CFCVariable_micro_sym(member);
    unsigned name_len = (unsigned)strlen(name);
    const char *specifier = CFCType_get_specifier(type);

    // Skip the VTable.
    if (strcmp(specifier, "cfish_VTable") == 0) {
        return;
    }

    if (CFCType_is_integer(type) || CFCType_is_floating(type)) {
        char int_pattern[] =
            "    Cfish_Hash_Store_Str(dump, \"%s\", %u, (cfish_Obj*)cfish_CB_newf(\"%%i64\", (int64_t)ivars->%s));\n";
        char float_pattern[] =
            "    Cfish_Hash_Store_Str(dump, \"%s\", %u, (cfish_Obj*)cfish_CB_newf(\"%%f64\", (double)ivars->%s));\n";
        char bool_pattern[] =
            "    Cfish_Hash_Store_Str(dump, \"%s\", %u, (cfish_Obj*)cfish_Bool_singleton(ivars->%s));\n";
        const char *pattern;
        if (strcmp(specifier, "bool") == 0) {
            pattern = bool_pattern;
        }
        else if (CFCType_is_integer(type)) {
            pattern = int_pattern;
        }
        else {
            pattern = float_pattern;
        }
        size_t needed = strlen(pattern) + name_len * 2 + 20;
        if (buf_size < needed) {
            CFCUtil_die("Buffer not big enough (%lu < %lu)",
                        (unsigned long)buf_size, (unsigned long)needed);
        }
        sprintf(buf, pattern, name, name_len, name);
    }
    else if (CFCType_is_object(type)) {
        char pattern[] =
            "    if (ivars->%s) {\n"
            "        Cfish_Hash_Store_Str(dump, \"%s\", %u, Cfish_Obj_Dump((cfish_Obj*)ivars->%s));\n"
            "    }\n";

        size_t needed = strlen(pattern) + name_len * 3 + 20;
        if (buf_size < needed) {
            CFCUtil_die("Buffer not big enough (%lu < %lu)",
                        (unsigned long)buf_size, (unsigned long)needed);
        }
        sprintf(buf, pattern, name, name, name_len, name);
    }
    else {
        CFCUtil_die("Don't know how to dump a %s",
                    CFCType_get_specifier(type));
    }

    CFCClass_append_autocode(klass, buf);
}
Beispiel #8
0
int
CFCMethod_compatible(CFCMethod *self, CFCMethod *other) {
    if (!other) { return false; }
    if (strcmp(self->macro_sym, other->macro_sym)) { return false; }
    int my_public = CFCMethod_public(self);
    int other_public = CFCMethod_public(other);
    if (!!my_public != !!other_public) { return false; }

    // Check arguments and initial values.
    CFCParamList *my_param_list    = self->function.param_list;
    CFCParamList *other_param_list = other->function.param_list;
    CFCVariable **my_args    = CFCParamList_get_variables(my_param_list);
    CFCVariable **other_args = CFCParamList_get_variables(other_param_list);
    const char  **my_vals    = CFCParamList_get_initial_values(my_param_list);
    const char  **other_vals = CFCParamList_get_initial_values(other_param_list);
    for (size_t i = 1; ; i++) {  // start at 1, skipping self
        if (!!my_args[i] != !!other_args[i]) { return false; }
        if (!!my_vals[i] != !!other_vals[i]) { return false; }
        if (my_vals[i]) {
            if (strcmp(my_vals[i], other_vals[i])) { return false; }
        }
        if (my_args[i]) {
            if (!CFCVariable_equals(my_args[i], other_args[i])) {
                return false;
            }
        }
        else {
            break;
        }
    }

    // Check return types.
    CFCType *type       = CFCMethod_get_return_type(self);
    CFCType *other_type = CFCMethod_get_return_type(other);
    if (CFCType_is_object(type)) {
        // Weak validation to allow covariant object return types.
        if (!CFCType_is_object(other_type)) { return false; }
        if (!CFCType_similar(type, other_type)) { return false; }
    }
    else {
        if (!CFCType_equals(type, other_type)) { return false; }
    }

    return true;
}
Beispiel #9
0
static void
S_process_load_member(CFCClass *klass, CFCVariable *member, char *buf,
                      size_t buf_size) {
    CFCUTIL_NULL_CHECK(member);
    CFCType *type = CFCVariable_get_type(member);
    const char *type_str = CFCType_to_c(type);
    const char *name = CFCVariable_micro_sym(member);
    unsigned name_len = (unsigned)strlen(name);
    char extraction[200];
    const char *specifier = CFCType_get_specifier(type);

    // Skip the VTable.
    if (strcmp(specifier, "cfish_VTable") == 0) {
        return;
    }

    if (2 * strlen(type_str) + 100 > sizeof(extraction)) { // play it safe
        CFCUtil_die("type_str too long: '%s'", type_str);
    }
    if (CFCType_is_integer(type)) {
        if (strcmp(specifier, "bool") == 0) {
            sprintf(extraction, "Cfish_Obj_To_Bool(var)");
        }
        else {
            sprintf(extraction, "(%s)Cfish_Obj_To_I64(var)", type_str);
        }
    }
    else if (CFCType_is_floating(type)) {
        sprintf(extraction, "(%s)Cfish_Obj_To_F64(var)", type_str);
    }
    else if (CFCType_is_object(type)) {
        const char *vtable_var = CFCType_get_vtable_var(type);
        sprintf(extraction,
                "(%s*)CFISH_CERTIFY(Cfish_Obj_Load(var, var), %s)",
                specifier, vtable_var);
    }
    else {
        CFCUtil_die("Don't know how to load %s", specifier);
    }

    const char *pattern =
        "    {\n"
        "        cfish_Obj *var = Cfish_Hash_Fetch_Str(source, \"%s\", %u);\n"
        "        if (var) { ivars->%s = %s; }\n"
        "    }\n";
    size_t needed = sizeof(pattern)
                    + (name_len * 2)
                    + strlen(extraction)
                    + 20;
    if (buf_size < needed) {
        CFCUtil_die("Buffer not big enough (%lu < %lu)",
                    (unsigned long)buf_size, (unsigned long)needed);
    }
    sprintf(buf, pattern, name, name_len, name, extraction);

    CFCClass_append_autocode(klass, buf);
}
Beispiel #10
0
void
CFCType_resolve(CFCType *self, CFCClass **classes) {
    if (CFCType_is_composite(self)) {
        CFCType_resolve(self->child, classes);
        return;
    }
    if (!CFCType_is_object(self)) {
        return;
    }

    CFCClass *klass     = NULL;
    char     *specifier = self->specifier;

    if (isupper(self->specifier[0])) {
        // Try to find class from class list.
        for (size_t i = 0; classes[i]; ++i) {
            CFCClass   *maybe_class = classes[i];
            const char *struct_sym  = CFCClass_get_struct_sym(maybe_class);

            if (strcmp(specifier, struct_sym) == 0) {
                if (klass) {
                    CFCUtil_die("Type '%s' is ambigious", specifier);
                }
                klass = maybe_class;
            }
        }

        if (!klass) {
            CFCUtil_die("No class found for type '%s'", specifier);
        }

        // Create actual specifier with prefix.
        const char *prefix = CFCClass_get_prefix(klass);
        self->specifier = CFCUtil_sprintf("%s%s", prefix, specifier);
        FREEMEM(specifier);
    }
    else {
        // Try to find class from class list.
        for (size_t i = 0; classes[i]; ++i) {
            CFCClass *maybe_class = classes[i];
            const char *full_struct_sym
                = CFCClass_full_struct_sym(maybe_class);

            if (strcmp(specifier, full_struct_sym) == 0) {
                klass = maybe_class;
                break;
            }
        }
    }

    // Add parcel dependency.
    if (klass) {
        CFCParcel *class_parcel = CFCClass_get_parcel(klass);
        CFCParcel_add_dependent_parcel(self->parcel, class_parcel);
    }
}
Beispiel #11
0
int
CFCCallable_can_be_bound(CFCCallable *self) {
    // Test whether parameters can be mapped automatically.
    CFCVariable **arg_vars = CFCParamList_get_variables(self->param_list);
    for (size_t i = 0; arg_vars[i] != NULL; i++) {
        CFCType *type = CFCVariable_get_type(arg_vars[i]);
        if (!CFCType_is_object(type) && !CFCType_is_primitive(type)) {
            return false;
        }
    }

    // Test whether return type can be mapped automatically.
    if (!CFCType_is_void(self->return_type)
        && !CFCType_is_object(self->return_type)
        && !CFCType_is_primitive(self->return_type)
    ) {
        return false;
    }

    return true;
}
Beispiel #12
0
// Create an assignment statement for extracting $self from the Perl stack.
static char*
S_self_assign_statement(CFCPerlMethod *self, CFCType *type,
                        const char *method_name) {
    (void)self; // unused
    const char *type_c = CFCType_to_c(type);
    if (!CFCType_is_object(type)) {
        CFCUtil_die("Not an object type: %s", type_c);
    }
    const char *vtable_var = CFCType_get_vtable_var(type);
    char pattern[] = "%s self = (%s)XSBind_sv_to_cfish_obj(ST(0), %s, NULL);";
    char *statement = CFCUtil_sprintf(pattern, type_c, type_c, vtable_var);

    return statement;
}
Beispiel #13
0
/* Some of the ParseTuple conversion routines provided by the Python-flavored
 * CFBind module accept a CFBindArg instead of just a pointer to the value
 * itself.  This routine generates the declarations for those CFBindArg
 * variables, as well as handling some default values.
 */
static char*
S_gen_declaration(CFCVariable *var, const char *val) {
    CFCType *type = CFCVariable_get_type(var);
    const char *var_name = CFCVariable_get_name(var);
    const char *type_str = CFCType_to_c(type);
    char *result = NULL;

    if (CFCType_is_object(type)) {
        const char *specifier = CFCType_get_specifier(type);
        if (strcmp(specifier, "cfish_String") == 0) {
            if (val && strcmp(val, "NULL") != 0) {
                const char pattern[] =
                    "    const char arg_%s_DEFAULT[] = %s;\n"
                    "    %s_ARG = CFISH_SSTR_WRAP_UTF8(\n"
                    "        arg_%s_DEFAULT, sizeof(arg_%s_DEFAULT) - 1);\n"
                    ;
                result = CFCUtil_sprintf(pattern, var_name, val, var_name,
                                         var_name, var_name);
            }
        }
        else {
            if (val && strcmp(val, "NULL") != 0) {
                CFCUtil_die("Can't assign a default of '%s' to a %s",
                            val, type_str);
            }
            if (strcmp(specifier, "cfish_Hash") != 0
                && strcmp(specifier, "cfish_Vector") != 0
                ) {
                const char *class_var = CFCType_get_class_var(type);
                char pattern[] =
                    "    CFBindArg wrap_arg_%s = {%s, &%s_ARG};\n"
                    ;
                result = CFCUtil_sprintf(pattern, var_name, class_var,
                                         var_name);
            }
        }
    }
    else if (CFCType_is_primitive(type)) {
        if (val) {
            char pattern[] = "    %s_ARG = %s;\n";
            result = CFCUtil_sprintf(pattern, var_name, val);
        }
    }
    else {
        CFCUtil_die("Unexpected type, can't gen declaration: %s", type_str);
    }

    return result;
}
Beispiel #14
0
static char*
S_callback_refcount_mods(CFCMethod *method) {
    char *refcount_mods = CFCUtil_strdup("");
    CFCType *return_type = CFCMethod_get_return_type(method);
    CFCParamList *param_list = CFCMethod_get_param_list(method);
    CFCVariable **arg_vars = CFCParamList_get_variables(param_list);

    // Host_callback_obj returns an incremented object.  If this method does
    // not return an incremented object, we must cancel out that refcount.
    // (No function can return a decremented object.)
    if (CFCType_is_object(return_type) && !CFCType_incremented(return_type)) {
        refcount_mods = CFCUtil_cat(refcount_mods,
                                    "\n    CFISH_DECREF(retval);", NULL);
    }

    // The Host_callback_xxx functions have no effect on the refcounts of
    // arguments, so we need to adjust them after the fact.
    for (int i = 0; arg_vars[i] != NULL; i++) {
        CFCVariable *var  = arg_vars[i];
        CFCType     *type = CFCVariable_get_type(var);
        const char  *name = CFCVariable_micro_sym(var);
        if (!CFCType_is_object(type)) {
            continue;
        }
        else if (CFCType_incremented(type)) {
            refcount_mods = CFCUtil_cat(refcount_mods, "\n    CFISH_INCREF(",
                                        name, ");", NULL);
        }
        else if (CFCType_decremented(type)) {
            refcount_mods = CFCUtil_cat(refcount_mods, "\n    CFISH_DECREF(",
                                        name, ");", NULL);
        }
    }
    
    return refcount_mods;
}
Beispiel #15
0
static char*
S_callback_refcount_mods(CFCMethod *method) {
    char *refcount_mods = CFCUtil_strdup("");
    CFCType *return_type = CFCMethod_get_return_type(method);
    CFCParamList *param_list = CFCMethod_get_param_list(method);
    CFCVariable **arg_vars = CFCParamList_get_variables(param_list);

    // `XSBind_perl_to_cfish()` returns an incremented object.  If this method
    // does not return an incremented object, we must cancel out that
    // refcount.  (No function can return a decremented object.)
    if (CFCType_is_object(return_type) && !CFCType_incremented(return_type)) {
        refcount_mods = CFCUtil_cat(refcount_mods,
                                    "\n    CFISH_DECREF(retval);", NULL);
    }

    // Adjust refcounts of arguments per method signature, so that Perl code
    // does not have to.
    for (int i = 0; arg_vars[i] != NULL; i++) {
        CFCVariable *var  = arg_vars[i];
        CFCType     *type = CFCVariable_get_type(var);
        const char  *name = CFCVariable_micro_sym(var);
        if (!CFCType_is_object(type)) {
            continue;
        }
        else if (CFCType_incremented(type)) {
            refcount_mods = CFCUtil_cat(refcount_mods, "\n    CFISH_INCREF(",
                                        name, ");", NULL);
        }
        else if (CFCType_decremented(type)) {
            refcount_mods = CFCUtil_cat(refcount_mods, "\n    CFISH_DECREF(",
                                        name, ");", NULL);
        }
    }

    return refcount_mods;
}
Beispiel #16
0
char*
CFCPerlSub_build_allot_params(CFCPerlSub *self) {
    CFCParamList *param_list = self->param_list;
    CFCVariable **arg_vars   = CFCParamList_get_variables(param_list);
    const char  **arg_inits  = CFCParamList_get_initial_values(param_list);
    size_t        num_vars   = CFCParamList_num_vars(param_list);
    char *allot_params = CFCUtil_strdup("");

    // Declare variables and assign default values.
    for (size_t i = 1; i < num_vars; i++) {
        CFCVariable *arg_var  = arg_vars[i];
        const char  *val      = arg_inits[i];
        const char  *var_name = CFCVariable_micro_sym(arg_var);
        if (val == NULL) {
            CFCType *arg_type = CFCVariable_get_type(arg_var);
            val = CFCType_is_object(arg_type)
                  ? "NULL"
                  : "0";
        }
        allot_params = CFCUtil_cat(allot_params, "arg_", var_name, " = ", val,
                                   ";\n    ", NULL);
    }

    // Iterate over args in param list.
    allot_params
        = CFCUtil_cat(allot_params,
                      "args_ok = XSBind_allot_params(\n"
                      "        &(ST(0)), 1, items,\n", NULL);
    for (size_t i = 1; i < num_vars; i++) {
        CFCVariable *var = arg_vars[i];
        const char  *val = arg_inits[i];
        int required = val ? 0 : 1;
        const char *name = CFCVariable_micro_sym(var);
        CFCType *type = CFCVariable_get_type(var);
        char *arg = S_allot_params_arg(type, name, required);
        allot_params
            = CFCUtil_cat(allot_params, "        ", arg, ",\n", NULL);
        FREEMEM(arg);
    }
    allot_params
        = CFCUtil_cat(allot_params, "        NULL);\n",
                      "    if (!args_ok) {\n"
                      "        CFISH_RETHROW(CFISH_INCREF(cfish_Err_get_error()));\n"
                      "    }", NULL);

    return allot_params;
}
Beispiel #17
0
static char*
S_gen_target(CFCVariable *var, const char *value) {
    CFCType *type = CFCVariable_get_type(var);
    const char *specifier = CFCType_get_specifier(type);
    const char *micro_sym = CFCVariable_get_name(var);
    const char *maybe_maybe = "";
    const char *dest_name;
    char *var_name = NULL;
    if (CFCType_is_primitive(type)) {
        dest_name = CFCType_get_specifier(type);
        if (value != NULL) {
            maybe_maybe = "maybe_";
        }
        var_name = CFCUtil_sprintf("%s_ARG", CFCVariable_get_name(var));
    }
    else if (CFCType_is_object(type)) {
        if (CFCType_nullable(type) ||
            (value && strcmp(value, "NULL") == 0)
           ) {
            maybe_maybe = "maybe_";
        }
        if (strcmp(specifier, "cfish_String") == 0) {
            dest_name = "string";
            var_name = CFCUtil_sprintf("%s_ARG", CFCVariable_get_name(var));
        }
        else if (strcmp(specifier, "cfish_Hash") == 0) {
            dest_name = "hash";
            var_name = CFCUtil_sprintf("%s_ARG", CFCVariable_get_name(var));
        }
        else if (strcmp(specifier, "cfish_Vector") == 0) {
            dest_name = "vec";
            var_name = CFCUtil_sprintf("%s_ARG", CFCVariable_get_name(var));
        }
        else {
            dest_name = "obj";
            var_name = CFCUtil_sprintf("wrap_arg_%s", micro_sym);
        }
    }
    else {
        dest_name = "INVALID";
    }
    char *content = CFCUtil_sprintf(", CFBind_%sconvert_%s, &%s",
                                    maybe_maybe, dest_name, var_name);
    FREEMEM(var_name);
    return content;
}
static char*
S_perl_var_name(CFCType *type, int is_ctor_retval) {
    const char *specifier = CFCType_get_specifier(type);
    char       *perl_name = NULL;

    if (CFCType_is_object(type)) {
        if (!is_ctor_retval && strcmp(specifier, "cfish_Vector") == 0) {
            perl_name = CFCUtil_strdup("arrayref");
        }
        else if (!is_ctor_retval && strcmp(specifier, "cfish_Hash") == 0) {
            perl_name = CFCUtil_strdup("hashref");
        }
        else {
            // Skip parcel prefix.
            if (CFCUtil_islower(*specifier)) {
                for (specifier++; *specifier; specifier++) {
                    if (*specifier == '_') {
                        specifier++;
                        break;
                    }
                }
            }

            perl_name = S_camel_to_lower(specifier);
        }
    }
    else if (CFCType_is_integer(type)) {
        if (strcmp(specifier, "bool") == 0) {
            perl_name = CFCUtil_strdup("bool");
        }
        else {
            perl_name = CFCUtil_strdup("int");
        }
    }
    else if (CFCType_is_floating(type)) {
        perl_name = CFCUtil_strdup("float");
    }
    else {
        CFCUtil_die("Don't know how to create code sample for type '%s'",
                    specifier);
    }

    return perl_name;
}
Beispiel #19
0
static char*
S_allot_params_arg(CFCType *type, const char *label, int required) {
    const char *type_c_string = CFCType_to_c(type);
    unsigned label_len = (unsigned)strlen(label);
    const char *req_string = required ? "true" : "false";

    if (CFCType_is_object(type)) {
        const char *struct_sym = CFCType_get_specifier(type);
        const char *class_var  = CFCType_get_class_var(type);

        // Share buffers rather than copy between Perl scalars and Clownfish
        // string types.
        int use_sv_buffer = false;
        if (strcmp(struct_sym, "cfish_String") == 0
            || strcmp(struct_sym, "cfish_Obj") == 0
           ) {
            use_sv_buffer = true;
        }
        const char *allocation = use_sv_buffer
                                 ? "alloca(cfish_SStr_size())"
                                 : "NULL";
        const char pattern[] = "ALLOT_OBJ(&arg_%s, \"%s\", %u, %s, %s, %s)";
        char *arg = CFCUtil_sprintf(pattern, label, label, label_len,
                                    req_string, class_var, allocation);
        return arg;
    }
    else if (CFCType_is_primitive(type)) {
        for (int i = 0; prim_type_to_allot_macro[i].prim_type != NULL; i++) {
            const char *prim_type = prim_type_to_allot_macro[i].prim_type;
            if (strcmp(prim_type, type_c_string) == 0) {
                const char *allot = prim_type_to_allot_macro[i].allot_macro;
                char pattern[] = "%s(&arg_%s, \"%s\", %u, %s)";
                char *arg = CFCUtil_sprintf(pattern, allot, label, label,
                                            label_len, req_string);
                return arg;
            }
        }
    }

    CFCUtil_die("Missing typemap for %s", type_c_string);
    return NULL; // unreachable
}
Beispiel #20
0
static char*
S_build_pymeth_invocation(CFCMethod *method) {
    CFCType *return_type = CFCMethod_get_return_type(method);
    const char *micro_sym = CFCSymbol_get_name((CFCSymbol*)method);
    char *invocation = NULL;
    const char *ret_type_str = CFCType_to_c(return_type);

    if (CFCType_is_void(return_type)) {
        const char pattern[] =
            "    CALL_PYMETH_VOID((PyObject*)self, \"%s\", cfcb_ARGS);";
        invocation = CFCUtil_sprintf(pattern, micro_sym);
    }
    else if (CFCType_is_object(return_type)) {
        const char *nullable
            = CFCType_nullable(return_type) ? "true" : "false";
        const char *ret_class = CFCType_get_class_var(return_type);
        const char pattern[] =
            "    %s cfcb_RESULT = (%s)CALL_PYMETH_OBJ((PyObject*)self, \"%s\", cfcb_ARGS, %s, %s);";
        invocation = CFCUtil_sprintf(pattern, ret_type_str, ret_type_str, micro_sym,
                                     ret_class, nullable);
    }
    else if (CFCType_is_primitive(return_type)) {
        char type_upcase[64];
        if (strlen(ret_type_str) > 63) {
            CFCUtil_die("Unexpectedly long type name: %s", ret_type_str);
        }
        for (int i = 0, max = strlen(ret_type_str) + 1; i < max; i++) {
            type_upcase[i] = toupper(ret_type_str[i]);
        }
        const char pattern[] =
            "    %s cfcb_RESULT = CALL_PYMETH_%s((PyObject*)self, \"%s\", cfcb_ARGS);";
        invocation = CFCUtil_sprintf(pattern, ret_type_str, type_upcase,
                                     micro_sym);
    }
    else {
        CFCUtil_die("Unexpected return type: %s", CFCType_to_c(return_type));
    }

    return invocation;
}
Beispiel #21
0
const char*
CFCType_to_c(CFCType *self) {
    char *c_string = self->c_string;

    if (c_string) { return c_string; }

    if (CFCType_is_composite(self)) {
        // NOTE: Array postfixes are NOT included.
        const char *child_c_string = CFCType_to_c(self->child);
        size_t      child_c_len    = strlen(child_c_string);
        size_t      amount         = child_c_len + self->indirection;
        c_string = (char*)MALLOCATE(amount + 1);
        strcpy(c_string, child_c_string);
        for (int i = 0; i < self->indirection; i++) {
            strncat(c_string, "*", 1);
        }
    }
    else if (CFCType_is_object(self)) {
        if (CFCType_const(self)) {
            c_string = CFCUtil_sprintf("const %s*", self->specifier);
        }
        else {
            c_string = CFCUtil_sprintf("%s*", self->specifier);
        }
    }
    else {
        if (CFCType_const(self)) {
            c_string = CFCUtil_sprintf("const %s", self->specifier);
        }
        else {
            c_string = CFCUtil_strdup(self->specifier);
        }
    }

    self->c_string = c_string;

    return c_string;
}
Beispiel #22
0
static char*
S_perl_var_name(CFCVariable *var) {
    CFCType    *type      = CFCVariable_get_type(var);
    const char *specifier = CFCType_get_specifier(type);
    char       *perl_name = NULL;

    if (CFCType_is_object(type)) {
        // Skip parcel prefix.
        if (islower(*specifier)) {
            for (specifier++; *specifier; specifier++) {
                if (*specifier == '_') {
                    specifier++;
                    break;
                }
            }
        }

        perl_name = S_camel_to_lower(specifier);
    }
    else if (CFCType_is_integer(type)) {
        if (strcmp(specifier, "bool") == 0) {
            perl_name = CFCUtil_strdup("bool");
        }
        else {
            perl_name = CFCUtil_strdup("int");
        }
    }
    else if (CFCType_is_floating(type)) {
        perl_name = CFCUtil_strdup("float");
    }
    else {
        CFCUtil_die("Don't know how to create code sample for type '%s'",
                    specifier);
    }

    return perl_name;
}
Beispiel #23
0
static void
S_run_tests(CFCTest *test) {
    CFCParser *parser = CFCParser_new();
    OK(test, parser != NULL, "new");

    {
        CFCParcel *fish = CFCTest_parse_parcel(test, parser, "parcel Fish;");

        CFCParcel *registered
            = CFCParcel_new("Crustacean", "Crust", NULL, false);
        CFCParcel_register(registered);
        CFCParcel *parcel
            = CFCTest_parse_parcel(test, parser, "parcel Crustacean;");
        OK(test, parcel == registered, "Fetch registered parcel");
        OK(test, CFCParser_get_parcel(parser) == parcel,
           "parcel_definition sets internal var");

        CFCBase_decref((CFCBase*)fish);
        CFCBase_decref((CFCBase*)registered);
        CFCBase_decref((CFCBase*)parcel);
    }

    {
        static const char *const specifiers[8] = {
            "foo", "_foo", "foo_yoo", "FOO", "Foo", "fOO", "f00", "foo_foo_foo"
        };
        for (int i = 0; i < 8; ++i) {
            const char *specifier = specifiers[i];
            char *src = CFCUtil_sprintf("int32_t %s;", specifier);
            CFCVariable *var = CFCTest_parse_variable(test, parser, src);
            STR_EQ(test, CFCVariable_micro_sym(var), specifier,
                   "identifier/declarator: %s", specifier);
            FREEMEM(src);
            CFCBase_decref((CFCBase*)var);
        }
    }

    {
        static const char *const specifiers[6] = {
            "void", "float", "uint32_t", "int64_t", "uint8_t", "bool"
        };
        for (int i = 0; i < 6; ++i) {
            const char *specifier = specifiers[i];
            char *src = CFCUtil_sprintf("int32_t %s;", specifier);
            CFCBase *result = CFCParser_parse(parser, src);
            OK(test, result == NULL,
               "reserved word not parsed as identifier: %s", specifier);
            FREEMEM(src);
            CFCBase_decref(result);
        }
    }

    {
        static const char *const type_strings[7] = {
            "bool", "const char *", "Obj*", "i32_t", "char[]", "long[1]",
            "i64_t[30]"
        };
        for (int i = 0; i < 7; ++i) {
            const char *type_string = type_strings[i];
            CFCType *type = CFCTest_parse_type(test, parser, type_string);
            CFCBase_decref((CFCBase*)type);
        }
    }

    {
        static const char *const class_names[7] = {
            "ByteBuf", "Obj", "ANDMatcher", "Foo", "FooJr", "FooIII", "Foo4th"
        };
        CFCClass *class_list[8];
        for (int i = 0; i < 7; ++i) {
            char *class_code = CFCUtil_sprintf("class %s {}", class_names[i]);
            CFCClass *klass = CFCTest_parse_class(test, parser, class_code);
            class_list[i] = klass;
            FREEMEM(class_code);
        }
        class_list[7] = NULL;
        for (int i = 0; i < 7; ++i) {
            const char *class_name = class_names[i];
            char *src      = CFCUtil_sprintf("%s*", class_name);
            char *expected = CFCUtil_sprintf("crust_%s", class_name);
            CFCType *type = CFCTest_parse_type(test, parser, src);
            CFCType_resolve(type, class_list);
            STR_EQ(test, CFCType_get_specifier(type), expected,
                   "object_type_specifier: %s", class_name);
            FREEMEM(src);
            FREEMEM(expected);
            CFCBase_decref((CFCBase*)type);
        }
        for (int i = 0; i < 7; ++i) {
            CFCBase_decref((CFCBase*)class_list[i]);
        }
        CFCClass_clear_registry();
    }

    {
        CFCType *type = CFCTest_parse_type(test, parser, "const char");
        OK(test, CFCType_const(type), "type_qualifier const");
        CFCBase_decref((CFCBase*)type);
    }

    {
        static const char *const exposures[2] = {
            "public", ""
        };
        static int (*const accessors[2])(CFCSymbol *sym) = {
            CFCSymbol_public, CFCSymbol_parcel
        };
        for (int i = 0; i < 2; ++i) {
            const char *exposure = exposures[i];
            char *src = CFCUtil_sprintf("%s inert int32_t foo;", exposure);
            CFCVariable *var = CFCTest_parse_variable(test, parser, src);
            OK(test, accessors[i]((CFCSymbol*)var), "exposure_specifier %s",
               exposure);
            FREEMEM(src);
            CFCBase_decref((CFCBase*)var);
        }
    }

    {
        static const char *const hex_constants[] = {
            "0x1", "0x0a", "0xFFFFFFFF", "-0xFC", NULL
        };
        S_test_initial_value(test, parser, hex_constants, "int32_t",
                             "hex_constant:");
    }

    {
        static const char *const integer_constants[] = {
            "1", "-9999", "0", "10000", NULL
        };
        S_test_initial_value(test, parser, integer_constants, "int32_t",
                             "integer_constant:");
    }

    {
        static const char *const float_constants[] = {
            "1.0", "-9999.999", "0.1", "0.0", NULL
        };
        S_test_initial_value(test, parser, float_constants, "double",
                             "float_constant:");
    }

    {
        static const char *const string_literals[] = {
            "\"blah\"", "\"blah blah\"", "\"\\\"blah\\\" \\\"blah\\\"\"", NULL
        };
        S_test_initial_value(test, parser, string_literals, "String*",
                             "string_literal:");
    }

    {
        static const char *const composites[5] = {
            "int[]", "i32_t **", "Foo **", "Foo ***", "const void *"
        };
        for (int i = 0; i < 5; ++i) {
            const char *composite = composites[i];
            CFCType *type = CFCTest_parse_type(test, parser, composite);
            OK(test, CFCType_is_composite(type), "composite_type: %s",
               composite);
            CFCBase_decref((CFCBase*)type);
        }
    }

    {
        static const char *const object_types[5] = {
            "Obj *", "incremented Foo*", "decremented String *"
        };
        for (int i = 0; i < 3; ++i) {
            const char *object_type = object_types[i];
            CFCType *type = CFCTest_parse_type(test, parser, object_type);
            OK(test, CFCType_is_object(type), "object_type: %s",
               object_type);
            CFCBase_decref((CFCBase*)type);
        }
    }

    {
        static const char *const param_list_strings[3] = {
            "()",
            "(int foo)",
            "(Obj *foo, Foo **foo_ptr)"
        };
        for (int i = 0; i < 3; ++i) {
            const char *param_list_string = param_list_strings[i];
            CFCParamList *param_list
                = CFCTest_parse_param_list(test, parser, param_list_string);
            INT_EQ(test, CFCParamList_num_vars(param_list), i,
                   "param list num_vars: %d", i);
            CFCBase_decref((CFCBase*)param_list);
        }
    }

    {
        CFCParamList *param_list
            = CFCTest_parse_param_list(test, parser, "(int foo, ...)");
        OK(test, CFCParamList_variadic(param_list), "variadic param list");
        CFCBase_decref((CFCBase*)param_list);
    }

    {
        const char *param_list_string =
            "(int foo = 0xFF, char *bar =\"blah\")";
        CFCParamList *param_list
            = CFCTest_parse_param_list(test, parser, param_list_string);
        const char **initial_values
            = CFCParamList_get_initial_values(param_list);
        STR_EQ(test, initial_values[0], "0xFF",
               "param list initial_values[0]");
        STR_EQ(test, initial_values[1], "\"blah\"",
               "param list initial_values[1]");
        OK(test, initial_values[2] == NULL, "param list initial_values[2]");
        CFCBase_decref((CFCBase*)param_list);
    }

    {
        CFCParser_set_class_name(parser, "Stuff::Obj");
        CFCParser_set_class_cnick(parser, "Obj");

        const char *method_string =
            "public Foo* Spew_Foo(Obj *self, uint32_t *how_many);";
        CFCMethod *method = CFCTest_parse_method(test, parser, method_string);
        CFCBase_decref((CFCBase*)method);

        const char *var_string =
            "public inert Hash *hash;";
        CFCVariable *var = CFCTest_parse_variable(test, parser, var_string);
        CFCBase_decref((CFCBase*)var);
    }

    {
        static const char *const class_names[4] = {
            "Foo", "Foo::FooJr", "Foo::FooJr::FooIII",
            "Foo::FooJr::FooIII::Foo4th"
        };
        for (int i = 0; i < 4; ++i) {
            const char *class_name = class_names[i];
            char *class_string = CFCUtil_sprintf("class %s { }", class_name);
            CFCClass *klass
                = CFCTest_parse_class(test, parser, class_string);
            STR_EQ(test, CFCClass_get_class_name(klass), class_name,
                   "class_name: %s", class_name);
            FREEMEM(class_string);
            CFCBase_decref((CFCBase*)klass);
        }
    }

    {
        static const char *const cnicks[2] =  { "Food", "FF" };
        for (int i = 0; i < 2; ++i) {
            const char *cnick = cnicks[i];
            char *class_string
                = CFCUtil_sprintf("class Foodie%s cnick %s { }", cnick, cnick);
            CFCClass *klass
                = CFCTest_parse_class(test, parser, class_string);
            STR_EQ(test, CFCClass_get_cnick(klass), cnick, "cnick: %s", cnick);
            FREEMEM(class_string);
            CFCBase_decref((CFCBase*)klass);
        }
    }

    CFCBase_decref((CFCBase*)parser);

    CFCClass_clear_registry();
    CFCParcel_reap_singletons();
}
Beispiel #24
0
char*
CFCPerlTypeMap_from_perl(CFCType *type, const char *xs_var) {
    char *result = NULL;

    if (CFCType_is_object(type)) {
        const char *struct_sym = CFCType_get_specifier(type);
        const char *vtable_var = CFCType_get_vtable_var(type);
        if (strcmp(struct_sym, "lucy_CharBuf") == 0
            || strcmp(struct_sym, "cfish_CharBuf") == 0
            || strcmp(struct_sym, "lucy_Obj") == 0
            || strcmp(struct_sym, "cfish_Obj") == 0
           ) {
            // Share buffers rather than copy between Perl scalars and
            // Clownfish string types.
            result = CFCUtil_cat(CFCUtil_strdup(""), "(", struct_sym,
                                 "*)XSBind_sv_to_cfish_obj(", xs_var,
                                 ", ", vtable_var,
                                 ", alloca(cfish_ZCB_size()))", NULL);
        }
        else {
            result = CFCUtil_cat(CFCUtil_strdup(""), "(", struct_sym,
                                 "*)XSBind_sv_to_cfish_obj(", xs_var,
                                 ", ", vtable_var, ", NULL)", NULL);
        }
    }
    else if (CFCType_is_primitive(type)) {
        const char *specifier = CFCType_get_specifier(type);
        size_t size = 80 + strlen(xs_var) * 2;
        result = (char*)MALLOCATE(size);

        if (strcmp(specifier, "double") == 0) {
            sprintf(result, "SvNV(%s)", xs_var);
        }
        else if (strcmp(specifier, "float") == 0) {
            sprintf(result, "(float)SvNV(%s)", xs_var);
        }
        else if (strcmp(specifier, "int") == 0) {
            sprintf(result, "(int)SvIV(%s)", xs_var);
        }
        else if (strcmp(specifier, "short") == 0) {
            sprintf(result, "(short)SvIV(%s)", xs_var);
        }
        else if (strcmp(specifier, "long") == 0) {
            const char pattern[] =
                "((sizeof(long) <= sizeof(IV)) ? (long)SvIV(%s) "
                ": (long)SvNV(%s))";
            sprintf(result, pattern, xs_var, xs_var);
        }
        else if (strcmp(specifier, "size_t") == 0) {
            sprintf(result, "(size_t)SvIV(%s)", xs_var);
        }
        else if (strcmp(specifier, "uint64_t") == 0) {
            sprintf(result, "(uint64_t)SvNV(%s)", xs_var);
        }
        else if (strcmp(specifier, "uint32_t") == 0) {
            sprintf(result, "(uint32_t)SvUV(%s)", xs_var);
        }
        else if (strcmp(specifier, "uint16_t") == 0) {
            sprintf(result, "(uint16_t)SvUV(%s)", xs_var);
        }
        else if (strcmp(specifier, "uint8_t") == 0) {
            sprintf(result, "(uint8_t)SvUV(%s)", xs_var);
        }
        else if (strcmp(specifier, "int64_t") == 0) {
            sprintf(result, "(int64_t)SvNV(%s)", xs_var);
        }
        else if (strcmp(specifier, "int32_t") == 0) {
            sprintf(result, "(int32_t)SvIV(%s)", xs_var);
        }
        else if (strcmp(specifier, "int16_t") == 0) {
            sprintf(result, "(int16_t)SvIV(%s)", xs_var);
        }
        else if (strcmp(specifier, "int8_t") == 0) {
            sprintf(result, "(int8_t)SvIV(%s)", xs_var);
        }
        else if (strcmp(specifier, "chy_bool_t") == 0) {
            sprintf(result, "SvTRUE(%s) ? 1 : 0", xs_var);
        }
        else {
            FREEMEM(result);
            result = NULL;
        }
    }

    return result;
}
Beispiel #25
0
static char*
S_callback_params(CFCMethod *method) {
    const char *micro_sym = CFCSymbol_micro_sym((CFCSymbol*)method);
    CFCParamList *param_list = CFCMethod_get_param_list(method);
    unsigned num_params = CFCParamList_num_vars(param_list) - 1;
    size_t needed = strlen(micro_sym) + 30;
    char *params = (char*)MALLOCATE(needed);

    // TODO: use something other than micro_sym here.
    sprintf(params, "self, \"%s\", %u", micro_sym, num_params);

    // Iterate over arguments, mapping them to various arg wrappers which
    // conform to Host's callback interface.
    CFCVariable **arg_vars = CFCParamList_get_variables(param_list);
    for (int i = 1; arg_vars[i] != NULL; i++) {
        CFCVariable *var      = arg_vars[i];
        const char  *name     = CFCVariable_micro_sym(var);
        size_t       name_len = strlen(name);
        CFCType     *type     = CFCVariable_get_type(var);
        const char  *c_type   = CFCType_to_c(type);
        size_t       size     = strlen(params)
                                + strlen(c_type)
                                + name_len * 2
                                + 30;
        char        *new_buf  = (char*)MALLOCATE(size);

        if (CFCType_is_string_type(type)) {
            sprintf(new_buf, "%s, CFISH_ARG_STR(\"%s\", %s)", params, name, name);
        }
        else if (CFCType_is_object(type)) {
            sprintf(new_buf, "%s, CFISH_ARG_OBJ(\"%s\", %s)", params, name, name);
        }
        else if (CFCType_is_integer(type)) {
            int width = CFCType_get_width(type);
            if (width) {
                if (width <= 4) {
                    sprintf(new_buf, "%s, CFISH_ARG_I32(\"%s\", %s)", params,
                            name, name);
                }
                else {
                    sprintf(new_buf, "%s, CFISH_ARG_I64(\"%s\", %s)", params,
                            name, name);
                }
            }
            else {
                sprintf(new_buf, "%s, CFISH_ARG_I(%s, \"%s\", %s)", params,
                        c_type, name, name);
            }
        }
        else if (CFCType_is_floating(type)) {
            sprintf(new_buf, "%s, CFISH_ARG_F64(\"%s\", %s)", params, name, name);
        }
        else {
            // Can't map variable type.  Signal to caller.
            FREEMEM(params);
            FREEMEM(new_buf);
            return NULL;
        }

        FREEMEM(params);
        params = new_buf;
    }

    return params;
}
Beispiel #26
0
static char*
S_xsub_body(CFCPerlMethod *self) {
    CFCMethod    *method        = self->method;
    CFCParamList *param_list    = CFCMethod_get_param_list(method);
    CFCVariable **arg_vars      = CFCParamList_get_variables(param_list);
    const char   *name_list     = CFCParamList_name_list(param_list);
    char *body = CFCUtil_strdup("");

    CFCParcel *parcel = CFCMethod_get_parcel(method);
    const char *class_name = CFCMethod_get_class_name(method);
    CFCClass *klass = CFCClass_fetch_singleton(parcel, class_name);
    if (!klass) {
        CFCUtil_die("Can't find a CFCClass for '%s'", class_name);
    }

    // Extract the method function pointer.
    char *full_typedef = CFCMethod_full_typedef(method, klass);
    char *full_meth    = CFCMethod_full_method_sym(method, klass);
    char *method_ptr
        = CFCUtil_sprintf("%s method = CFISH_METHOD_PTR(%s, %s);\n    ",
                          full_typedef, CFCClass_full_vtable_var(klass),
                          full_meth);
    body = CFCUtil_cat(body, method_ptr, NULL);
    FREEMEM(full_typedef);
    FREEMEM(full_meth);
    FREEMEM(method_ptr);

    // Compensate for functions which eat refcounts.
    for (int i = 0; arg_vars[i] != NULL; i++) {
        CFCVariable *var = arg_vars[i];
        CFCType     *type = CFCVariable_get_type(var);
        if (CFCType_is_object(type) && CFCType_decremented(type)) {
            body = CFCUtil_cat(body, "CFISH_INCREF(",
                               CFCVariable_micro_sym(var), ");\n    ", NULL);
        }
    }

    if (CFCType_is_void(CFCMethod_get_return_type(method))) {
        // Invoke method in void context.
        body = CFCUtil_cat(body, "method(", name_list,
                           ");\n    XSRETURN(0);", NULL);
    }
    else {
        // Return a value for method invoked in a scalar context.
        CFCType *return_type = CFCMethod_get_return_type(method);
        const char *type_str = CFCType_to_c(return_type);
        char *assignment = CFCPerlTypeMap_to_perl(return_type, "retval");
        if (!assignment) {
            CFCUtil_die("Can't find typemap for '%s'", type_str);
        }
        body = CFCUtil_cat(body, type_str, " retval = method(",
                           name_list, ");\n    ST(0) = ", assignment, ";",
                           NULL);
        if (CFCType_is_object(return_type)
            && CFCType_incremented(return_type)
           ) {
            body = CFCUtil_cat(body, "\n    CFISH_DECREF(retval);", NULL);
        }
        body = CFCUtil_cat(body, "\n    sv_2mortal( ST(0) );\n    XSRETURN(1);",
                           NULL);
        FREEMEM(assignment);
    }

    return body;
}
Beispiel #27
0
static char*
S_callback_start(CFCMethod *method) {
    CFCParamList *param_list = CFCMethod_get_param_list(method);
    static const char pattern[] =
        "    dSP;\n"
        "    EXTEND(SP, %d);\n"
        "    ENTER;\n"
        "    SAVETMPS;\n"
        "    PUSHMARK(SP);\n"
        "    mPUSHs((SV*)Cfish_Obj_To_Host((cfish_Obj*)self));\n";
    int num_args = (int)CFCParamList_num_vars(param_list) - 1;
    int num_to_extend = num_args == 0 ? 1
                      : num_args == 1 ? 2
                      : 1 + (num_args * 2);
    char *params = CFCUtil_sprintf(pattern, num_to_extend);

    // Iterate over arguments, mapping them to Perl scalars.
    CFCVariable **arg_vars = CFCParamList_get_variables(param_list);
    for (int i = 1; arg_vars[i] != NULL; i++) {
        CFCVariable *var      = arg_vars[i];
        const char  *name     = CFCVariable_micro_sym(var);
        CFCType     *type     = CFCVariable_get_type(var);
        const char  *c_type   = CFCType_to_c(type);

        // Add labels when there are two or more parameters.
        if (num_args > 1) {
            char num_buf[20];
            sprintf(num_buf, "%d", (int)strlen(name));
            params = CFCUtil_cat(params, "   mPUSHp(\"", name, "\", ",
                                 num_buf, ");\n", NULL);
        }

        if (CFCType_is_string_type(type)) {
            // Convert Clownfish string type to UTF-8 Perl string scalars.
            params = CFCUtil_cat(params, "    mPUSHs(XSBind_cb_to_sv(",
                                 "(cfish_CharBuf*)", name, "));\n", NULL);
        }
        else if (CFCType_is_object(type)) {
            // Wrap other Clownfish object types in Perl objects.
            params = CFCUtil_cat(params, "    mPUSHs(XSBind_cfish_to_perl(",
                                 "(cfish_Obj*)", name, "));\n", NULL);
        }
        else if (CFCType_is_integer(type)) {
            // Convert primitive integer types to IV Perl scalars.
            int width = (int)CFCType_get_width(type);
            if (width != 0 && width <= 4) {
                params = CFCUtil_cat(params, "   mPUSHi(",
                                     name, ");\n", NULL);
            }
            else {
                // If the Perl IV integer type is not wide enough, use
                // doubles.  This may be lossy if the value is above 2**52,
                // but practically speaking, it's important to handle numbers
                // between 2**32 and 2**52 cleanly.
                params = CFCUtil_cat(params,
                                     "    if (sizeof(IV) >= sizeof(", c_type,
                                     ")) { mPUSHi(", name, "); }\n",
                                     "    else { mPUSHn((double)", name,
                                     "); } // lossy \n", NULL);
            }
        }
        else if (CFCType_is_floating(type)) {
            // Convert primitive floating point types to NV Perl scalars.
            params = CFCUtil_cat(params, "   mPUSHn(",
                                 name, ");\n", NULL);
        }
        else {
            // Can't map variable type.  Signal to caller.
            FREEMEM(params);
            return NULL;
        }
    }

    // Restore the Perl stack pointer.
    params = CFCUtil_cat(params, "    PUTBACK;\n", NULL);

    return params;
}
Beispiel #28
0
static void
S_run_object_tests(CFCTest *test) {
    static const char *modifiers[4] = {
        "const", "incremented", "decremented", "nullable"
    };
    static int flags[4] = {
        CFCTYPE_CONST,
        CFCTYPE_INCREMENTED,
        CFCTYPE_DECREMENTED,
        CFCTYPE_NULLABLE
    };
    static int (*accessors[4])(CFCType *type) = {
        CFCType_const,
        CFCType_incremented,
        CFCType_decremented,
        CFCType_nullable
    };

    {
        CFCParser *parser = CFCParser_new();
        CFCParcel *neato_parcel
            = CFCTest_parse_parcel(test, parser, "parcel Neato;");

        static const char *specifiers[4] = {
            "Foo", "FooJr", "FooIII", "Foo4th"
        };
        for (int i = 0; i < 4; ++i) {
            const char *specifier = specifiers[i];

            char *class_code = CFCUtil_sprintf("class %s {}", specifier);
            CFCClass *klass = CFCTest_parse_class(test, parser, class_code);
            FREEMEM(class_code);

            static const char *prefixes[2] = { "", "neato_" };
            char *expect = CFCUtil_sprintf("neato_%s", specifier);
            for (int j = 0; j < 2; ++j) {
                char *src = CFCUtil_sprintf("%s%s*", prefixes[j], specifier);
                CFCType *type = CFCTest_parse_type(test, parser, src);
                CFCType_resolve(type);
                STR_EQ(test, CFCType_get_specifier(type), expect,
                       "object_type_specifier: %s", src);
                OK(test, CFCType_is_object(type), "%s is_object", src);
                INT_EQ(test, CFCType_get_indirection(type), 1,
                       "%s indirection", src);

                FREEMEM(src);
                CFCBase_decref((CFCBase*)type);
            }
            FREEMEM(expect);

            for (int j = 0; j < 4; ++j) {
                char *src = CFCUtil_sprintf("%s %s*", modifiers[j], specifier);
                CFCType *type = CFCTest_parse_type(test, parser, src);
                OK(test, CFCType_is_object(type), "%s is_object", src);
                OK(test, accessors[j](type), "%s accessor", src);

                FREEMEM(src);
                CFCBase_decref((CFCBase*)type);
            }

            CFCBase_decref((CFCBase*)klass);
            CFCClass_clear_registry();
        }

        CFCBase_decref((CFCBase*)neato_parcel);
        CFCBase_decref((CFCBase*)parser);
    }

    CFCParcel *neato_parcel = CFCParcel_new("Neato", NULL, NULL, NULL);
    CFCClass *foo_class
        = CFCClass_create(neato_parcel, NULL, "Foo", NULL, NULL, NULL, NULL,
                          NULL, false, false, false);
    CFCType *foo = CFCType_new_object(0, neato_parcel, "Foo", 1);
    CFCType_resolve(foo);

    {
        CFCType *another_foo = CFCType_new_object(0, neato_parcel, "Foo", 1);
        CFCType_resolve(another_foo);
        OK(test, CFCType_equals(foo, another_foo), "equals");
        CFCBase_decref((CFCBase*)another_foo);
    }

    {
        CFCClass *bar_class
            = CFCClass_create(neato_parcel, NULL, "Bar", NULL, NULL, NULL,
                              NULL, NULL, false, false, false);
        CFCType *bar = CFCType_new_object(0, neato_parcel, "Bar", 1);
        CFCType_resolve(bar);
        OK(test, !CFCType_equals(foo, bar),
           "different specifier spoils equals");
        CFCBase_decref((CFCBase*)bar);
        CFCBase_decref((CFCBase*)bar_class);
    }

    {
        CFCParcel *foreign_parcel
            = CFCParcel_new("Foreign", NULL, NULL, NULL);
        CFCClass *foreign_foo_class
            = CFCClass_create(foreign_parcel, NULL, "Foreign::Foo", NULL, NULL,
                              NULL, NULL, NULL, false, false, false);
        CFCType *foreign_foo = CFCType_new_object(0, foreign_parcel, "Foo", 1);
        CFCType_resolve(foreign_foo);
        OK(test, !CFCType_equals(foo, foreign_foo),
           "different parcel spoils equals");
        STR_EQ(test, CFCType_get_specifier(foreign_foo), "foreign_Foo",
               "prepend parcel prefix to specifier");
        CFCBase_decref((CFCBase*)foreign_parcel);
        CFCBase_decref((CFCBase*)foreign_foo_class);
        CFCBase_decref((CFCBase*)foreign_foo);
    }

    {
        for (int i = 0; i < 4; ++i) {
            CFCType *modified_foo
                = CFCType_new_object(flags[i], neato_parcel, "Foo", 1);
            CFCType_resolve(modified_foo);
            OK(test, accessors[i](modified_foo), "%s", modifiers[i]);
            OK(test, !accessors[i](foo), "not %s", modifiers[i]);
            OK(test, !CFCType_equals(foo, modified_foo),
               "different %s spoils equals", modifiers[i]);
            OK(test, !CFCType_similar(foo, modified_foo),
               "different %s spoils similar", modifiers[i]);
            CFCBase_decref((CFCBase*)modified_foo);
        }
    }

    {
        CFCType *string_type
            = CFCType_new_object(0, neato_parcel, "String", 1);
        OK(test, CFCType_is_string_type(string_type), "%s", "is_string_type");
        OK(test, !CFCType_is_string_type(foo), "not %s", "not is_string_type");
        CFCBase_decref((CFCBase*)string_type);
    }

    CFCBase_decref((CFCBase*)neato_parcel);
    CFCBase_decref((CFCBase*)foo_class);
    CFCBase_decref((CFCBase*)foo);

    CFCClass_clear_registry();
    CFCParcel_reap_singletons();
}
Beispiel #29
0
char*
CFCGoTypeMap_go_type_name(CFCType *type, CFCParcel *current_parcel) {
    if (CFCType_cfish_obj(type)) {
        return CFCUtil_strdup("interface{}");
    }
    else if (CFCType_cfish_string(type)) {
        return CFCUtil_strdup("string");
    }
    else if (CFCType_cfish_blob(type)) {
        return CFCUtil_strdup("[]byte");
    }
    else if (CFCType_cfish_vector(type)) {
        return CFCUtil_strdup("[]interface{}");
    }
    else if (CFCType_cfish_hash(type)) {
        return CFCUtil_strdup("map[string]interface{}");
    }
    else if (CFCType_is_object(type)) {
        // Divide the specifier into prefix and struct name.
        const char *specifier  = CFCType_get_specifier(type);
        size_t      prefix_len = 0;
        for (size_t max = strlen(specifier); prefix_len < max; prefix_len++) {
            if (isupper(specifier[prefix_len])) {
                break;
            }
        }
        if (!prefix_len) {
            CFCUtil_die("Can't convert object type name '%s'", specifier);
        }
        const char *struct_sym = specifier + prefix_len;

        // Find the parcel that the type lives in.
        CFCParcel** all_parcels = CFCParcel_all_parcels();
        CFCParcel *parcel = NULL;
        for (int i = 0; all_parcels[i] != NULL; i++) {
            const char *candidate = CFCParcel_get_prefix(all_parcels[i]);
            if (strncmp(candidate, specifier, prefix_len) == 0
                && strlen(candidate) == prefix_len
               ) {
                parcel = all_parcels[i];
                break;
            }
        }
        if (!parcel) {
            CFCUtil_die("Can't find parcel for type '%s'", specifier);
        }

        // If the type lives in this parcel, return only the struct sym
        // without a go package prefix.
        if (parcel == current_parcel) {
            return CFCUtil_strdup(struct_sym);
        }

        // The type lives in another parcel, so prefix its Go package name.
        // TODO: Stop downcasing once Clownfish parcel names are constrained
        // to lower case.
        const char *package_name = CFCParcel_get_name(parcel);
        if (strrchr(package_name, '.')) {
            package_name = strrchr(package_name, '.') + 1;
        }
        char *result = CFCUtil_sprintf("%s.%s", package_name, struct_sym);
        for (int i = 0; result[i] != '.'; i++) {
            result[i] = tolower(result[i]);
        }
        return result;
    }
    else if (CFCType_is_primitive(type)) {
        const char *specifier = CFCType_get_specifier(type);
        for (int i = 0; i < num_conversions; i++) {
            if (strcmp(specifier, conversions[i].c) == 0) {
                return CFCUtil_strdup(conversions[i].go);
            }
        }
    }

    return NULL;
}
Beispiel #30
0
char*
CFCPerlTypeMap_to_perl(CFCType *type, const char *cf_var) {
    const char *type_str = CFCType_to_c(type);
    char *result = NULL;

    if (CFCType_is_object(type)) {
        result = CFCUtil_cat(CFCUtil_strdup(""), "(", cf_var,
                             " == NULL ? newSV(0) : "
                             "XSBind_cfish_to_perl((cfish_Obj*)",
                             cf_var, "))", NULL);
    }
    else if (CFCType_is_primitive(type)) {
        // Convert from a primitive type to a Perl scalar.
        const char *specifier = CFCType_get_specifier(type);
        size_t size = 80 + strlen(cf_var) * 2;
        result = (char*)MALLOCATE(size);

        if (strcmp(specifier, "double") == 0) {
            sprintf(result, "newSVnv(%s)", cf_var);
        }
        else if (strcmp(specifier, "float") == 0) {
            sprintf(result, "newSVnv(%s)", cf_var);
        }
        else if (strcmp(specifier, "int") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else if (strcmp(specifier, "short") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else if (strcmp(specifier, "long") == 0) {
            char pattern[] =
                "((sizeof(long) <= sizeof(IV)) ? "
                "newSViv((IV)%s) : newSVnv((NV)%s))";
            sprintf(result, pattern, cf_var, cf_var);
        }
        else if (strcmp(specifier, "size_t") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else if (strcmp(specifier, "uint64_t") == 0) {
            char pattern[] = "sizeof(UV) == 8 ? newSVuv((UV)%s) : newSVnv((NV)%s)";
            sprintf(result, pattern, cf_var, cf_var);
        }
        else if (strcmp(specifier, "uint32_t") == 0) {
            sprintf(result, "newSVuv(%s)", cf_var);
        }
        else if (strcmp(specifier, "uint16_t") == 0) {
            sprintf(result, "newSVuv(%s)", cf_var);
        }
        else if (strcmp(specifier, "uint8_t") == 0) {
            sprintf(result, "newSVuv(%s)", cf_var);
        }
        else if (strcmp(specifier, "int64_t") == 0) {
            char pattern[] = "sizeof(IV) == 8 ? newSViv((IV)%s) : newSVnv((NV)%s)";
            sprintf(result, pattern, cf_var, cf_var);
        }
        else if (strcmp(specifier, "int32_t") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else if (strcmp(specifier, "int16_t") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else if (strcmp(specifier, "int8_t") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else if (strcmp(specifier, "chy_bool_t") == 0) {
            sprintf(result, "newSViv(%s)", cf_var);
        }
        else {
            FREEMEM(result);
            result = NULL;
        }
    }
    else if (CFCType_is_composite(type)) {
        if (strcmp(type_str, "void*") == 0) {
            // Assume that void* is a reference SV -- either a hashref or an
            // arrayref.
            result = CFCUtil_cat(CFCUtil_strdup(""), "newRV_inc((SV*)",
                                 cf_var, ")", NULL);
        }
    }

    return result;
}