Beispiel #1
0
void ProblemMaster::print_var_P(CEnv env, Prob lp) {

	cout << "PRIMAL VARIABLES: " << endl;
	int cur_numcols = CPXgetnumcols(env, lp);
	int surplus;
	status = CPXgetcolname(env, lp, NULL, NULL, 0, &surplus, 0,
			cur_numcols - 1);
	int cur_colnamespace = -surplus; // the space needed to save the names

	// allocate memory
	char** cur_colname = (char **) malloc(sizeof(char *) * cur_numcols);
	char* cur_colnamestore = (char *) malloc(cur_colnamespace);

	// get the names
	CPXgetcolname(env, lp, cur_colname, cur_colnamestore, cur_colnamespace,
			&surplus, 0, cur_numcols - 1);

	//  print index, name and value of each column
	for (int i = 0; i < cur_numcols; i++)
		cout << cur_colname[i] << " = " << varVals[i] << endl;

	// free
	free(cur_colname);
	free(cur_colnamestore);

}
Beispiel #2
0
static int
dumpx (CPXENVptr env, CPXLPptr lp)
{
   int cols, c, surplus, status = 0;
   char *name, buffer[8];
   double x;


   cols = CPXgetnumcols (env, lp);
   for (c = 0; c < cols; ++c) {
      status = CPXgetx (env, lp, &x, c, c);
      if ( status ) {
         fprintf (stderr,
                  "Failed to read value for column %d: %d\n", c, status);
         goto TERMINATE;
      }

      status = CPXgetcolname (env, lp, &name, buffer, sizeof (buffer),
                              &surplus, c, c);
      if ( status ) {
         fprintf (stderr,
                  "Failed to read name for column %d: %d\n", c, status);
         goto TERMINATE;
      }

      printf ("%8s: %15.6f\n", name, x);
   }

 TERMINATE:

   return status;
} /* END dumpx */
Beispiel #3
0
int
main (int argc, char *argv[])
{
   CPXENVptr env = NULL;
   CPXLPptr  lp = NULL;
   int       status = 0;
   int       j;
   int       numcols;
   double    totinv; 

   int       solstat;
   double    objval;
   double    *x = NULL;

   double    rrhs[1];
   char      rsense[1];
   int       rmatbeg[1];

   int       *indices = NULL;
   double    *values = NULL;
   char      *namestore = NULL;
   char      **nameptr = NULL;
   int       surplus, storespace;

   const char * datadir = argc <= 1 ? "../../../examples/data" : argv[1];
   char *prod = NULL;

   prod = (char *) malloc (strlen (datadir) + 1 + strlen("prod.lp") + 1);
   sprintf (prod, "%s/prod.lp", datadir);

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPXPARAM_ScreenOutput indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[CPXMESSAGEBUFSIZE];
      fprintf (stderr, "Could not open CPLEX environment.\n");
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, "%s", errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPXPARAM_ScreenOutput, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               "Failure to turn on screen indicator, error %d.\n", status);
      goto TERMINATE;
   }

   /* Create the problem, using the filename as the problem name */

   lp = CPXcreateprob (env, &status, "prod.lp");

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPXPARAM_ScreenOutput causes the error message to
      appear on stdout.  Note that most CPLEX routines return
      an error code to indicate the reason for failure.   */

   if ( lp == NULL ) {
      fprintf (stderr, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now read the file, and copy the data into the created lp */

   status = CPXreadcopyprob (env, lp, prod, NULL);
   if ( status ) {
      fprintf (stderr, "Failed to read and copy the problem data.\n");
      goto TERMINATE;
   }

   /* Tell presolve to do only primal reductions,
      turn off simplex logging */

   status = CPXsetintparam (env, CPXPARAM_Preprocessing_Reduce, 1);
   if ( status ) {
      fprintf (stderr, "Failed to set CPXPARAM_Preprocessing_Reduce: %d\n", status);
      goto TERMINATE;
   }
   status = CPXsetintparam (env, CPXPARAM_Simplex_Display, 0);
   if ( status ) {
      fprintf (stderr, "Failed to set CPXPARAM_Simplex_Display: %d\n", status);
      goto TERMINATE;
   } 

   if ( status ) {
      fprintf (stderr, "Failure to set parameters\n");
      goto TERMINATE;
   } 


   /* Optimize the problem and obtain solution. */

   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, "Failed to optimize profit LP.\n");
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);
   status  = CPXgetobjval (env, lp, &objval);

   if ( status || solstat != CPX_STAT_OPTIMAL ) {
      fprintf (stderr, "Solution failed. Status %d, solstat %d.\n",
               status, solstat);
      goto TERMINATE;
   }
   printf ("Profit objective value is %g\n", objval);


   /* Allocate space for column names */

   numcols = CPXgetnumcols (env, lp);
   if ( !numcols ) {
      fprintf (stderr, "No columns in problem\n");
      goto TERMINATE;
   }

   CPXgetcolname (env, lp, NULL, NULL, 0, &surplus, 0, numcols-1);
   storespace = - surplus;

   namestore = (char *) malloc (storespace * sizeof(char));
   nameptr   = (char **) malloc (numcols * sizeof(char *));
   if ( namestore == NULL  ||  nameptr == NULL ) {
      fprintf (stderr, "No memory for column names\n");
      goto TERMINATE;
   }
 
   status = CPXgetcolname (env, lp, nameptr, namestore, storespace,
                           &surplus, 0, numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to get column names\n");
      goto TERMINATE;
   }

   /* Allocate space for solution */

   x = (double *) malloc (numcols * sizeof(double));

   if ( x == NULL ) {
      fprintf (stderr,"No memory for solution.\n");
      goto TERMINATE;
   }

   status = CPXgetx (env, lp, x, 0, numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to obtain primal solution.\n");
      goto TERMINATE;
   }

   totinv = 0;
   for (j = 0; j < numcols; j++) {
      if ( !strncmp (nameptr[j], "inv", 3) )  totinv += x[j];
   }
   printf ("Inventory level under profit objective is %g\n", totinv);

   /* Allocate space for a constraint */

   indices = (int *)    malloc (numcols * sizeof (int));
   values  = (double *) malloc (numcols * sizeof (double));

   if ( indices == NULL  ||  values == NULL ) {
      fprintf (stderr, "No memory for constraint\n");
      goto TERMINATE;
   }

   /* Get profit objective and add it as a constraint */

   status = CPXgetobj (env, lp, values, 0, numcols-1);
   if ( status ) {
      fprintf (stderr,
              "Failed to get profit objective.  Status %d\n", status);
      goto TERMINATE;
   }
   for (j = 0; j < numcols; j++) {
      indices[j] = j;
   }

   rrhs[0]    = objval - fabs (objval) * 1e-6;
   rsense[0]  = 'G';
   rmatbeg[0] = 0;

   status = CPXpreaddrows (env, lp, 1, numcols, rrhs, rsense,
                           rmatbeg, indices, values, NULL);

   if ( status ) {
      fprintf (stderr,
              "Failed to add objective as constraint.  Status %d\n",
              status);
      goto TERMINATE;
   }

   /* Set up objective to maximize negative of sum of inventory */

   totinv = 0;
   for (j = 0; j < numcols; j++) {
      if ( strncmp (nameptr[j], "inv", 3) ) {
         values[j] = 0.0;
      }
      else {
         values[j] = - 1.0;
      }
   }

   status = CPXprechgobj (env, lp, numcols, indices, values);

   if ( status ) {
      fprintf (stderr,
              "Failed to change to inventory objective.  Status %d\n",
              status);
      goto TERMINATE;
   }

   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, "Optimization on inventory level failed. Status %d.\n",
              status);
      goto TERMINATE;
   }

   solstat = CPXgetstat (env, lp);
   status  = CPXgetobjval (env, lp, &objval);
   if ( status  ||  solstat != CPX_STAT_OPTIMAL ) {
      fprintf (stderr, "Solution failed. Status %d, solstat %d.\n",
               status, solstat);
      goto TERMINATE;
   }

   printf("Solution status %d.\n", solstat);
   printf ("Inventory level after optimization is %g\n", -objval);


   status = CPXgetx (env, lp, x, 0, numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to obtain primal solution.\n");
      goto TERMINATE;
   }

   printf("Found solution");

   /* Write out the solution */

   printf ("\n");
   for (j = 0; j < numcols; j++) {
      printf ( "%s:  Value = %17.10g\n", nameptr[j], x[j]);
   }


TERMINATE:

   /* Free the filename */

   free_and_null ((char **) &prod);

   /* Free up the basis and solution */

   free_and_null ((char **) &indices);
   free_and_null ((char **) &values);
   free_and_null ((char **) &nameptr);
   free_and_null ((char **) &namestore);
   free_and_null ((char **) &x);


   /* Free up the problem, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPXPARAM_ScreenOutput indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[CPXMESSAGEBUFSIZE];
         fprintf (stderr, "Could not close CPLEX environment.\n");
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, "%s", errmsg);
      }
   }
     
   return (status);

}  /* END main */
Beispiel #4
0
int
main (int argc, char *argv[])
{
   /* Declare and allocate space for the variables and arrays where we will
      store the optimization results including the status, objective value,
      maximum bound violation, variable values, and basis. */

   int      solnstat, solnmethod, solntype;
   double   objval, maxviol;
   double   *x     = NULL;
   int      *cstat = NULL;
   int      *rstat = NULL;

   CPXENVptr     env = NULL;
   CPXLPptr      lp = NULL;
   int           status = 0;
   int           j;
   int           cur_numrows, cur_numcols;
   char          **cur_colname = NULL;
   char          *cur_colnamestore = NULL;
   int           cur_colnamespace;
   int           surplus;
   int           method;

   char          *basismsg;

   /* Check the command line arguments */

   if (( argc != 3 )                                              ||
       ( strchr ("podhbnsc", argv[2][0]) == NULL )  ) {
      usage (argv[0]);
      goto TERMINATE;
   }

   /* Initialize the CPLEX environment */

   env = CPXopenCPLEX (&status);

   /* If an error occurs, the status value indicates the reason for
      failure.  A call to CPXgeterrorstring will produce the text of
      the error message.  Note that CPXopenCPLEX produces no output,
      so the only way to see the cause of the error is to use
      CPXgeterrorstring.  For other CPLEX routines, the errors will
      be seen if the CPXPARAM_ScreenOutput indicator is set to CPX_ON.  */

   if ( env == NULL ) {
      char  errmsg[CPXMESSAGEBUFSIZE];
      fprintf (stderr, "Could not open CPLEX environment.\n");
      CPXgeterrorstring (env, status, errmsg);
      fprintf (stderr, "%s", errmsg);
      goto TERMINATE;
   }

   /* Turn on output to the screen */

   status = CPXsetintparam (env, CPXPARAM_ScreenOutput, CPX_ON);
   if ( status ) {
      fprintf (stderr, 
               "Failure to turn on screen indicator, error %d.\n", status);
      goto TERMINATE;
   }

   /* Create the problem, using the filename as the problem name */

   lp = CPXcreateprob (env, &status, argv[1]);

   /* A returned pointer of NULL may mean that not enough memory
      was available or there was some other problem.  In the case of 
      failure, an error message will have been written to the error 
      channel from inside CPLEX.  In this example, the setting of
      the parameter CPXPARAM_ScreenOutput causes the error message to
      appear on stdout.  Note that most CPLEX routines return
      an error code to indicate the reason for failure.   */

   if ( lp == NULL ) {
      fprintf (stderr, "Failed to create LP.\n");
      goto TERMINATE;
   }

   /* Now read the file, and copy the data into the created lp */

   status = CPXreadcopyprob (env, lp, argv[1], NULL);
   if ( status ) {
      fprintf (stderr, "Failed to read and copy the problem data.\n");
      goto TERMINATE;
   }

   /* Optimize the problem and obtain solution. */

   switch (argv[2][0]) {
      case 'o':
         method = CPX_ALG_AUTOMATIC;
         break;
      case 'p':
         method = CPX_ALG_PRIMAL;
         break;
      case 'd':
         method = CPX_ALG_DUAL;
         break;
      case 'n':
         method = CPX_ALG_NET;
         break;
      case 'h':
         method = CPX_ALG_BARRIER;
         break;
      case 'b':
         method = CPX_ALG_BARRIER;
         status = CPXsetintparam (env, CPXPARAM_Barrier_Crossover,
                                  CPX_ALG_NONE);
         if ( status ) {
            fprintf (stderr, 
                     "Failed to set the crossover method, error %d.\n", status);
            goto TERMINATE;
         }
         break;
      case 's':
         method = CPX_ALG_SIFTING;
         break;
      case 'c':
         method = CPX_ALG_CONCURRENT;
         break;
      default:
         method = CPX_ALG_NONE;
         break;
   }

   status = CPXsetintparam (env, CPXPARAM_LPMethod, method);
   if ( status ) {
      fprintf (stderr, 
               "Failed to set the optimization method, error %d.\n", status);
      goto TERMINATE;
   }
   

   status = CPXlpopt (env, lp);
   if ( status ) {
      fprintf (stderr, "Failed to optimize LP.\n");
      goto TERMINATE;
   }

   solnstat = CPXgetstat (env, lp);

   if      ( solnstat == CPX_STAT_UNBOUNDED ) {
      printf ("Model is unbounded\n");
      goto TERMINATE;
   }
   else if ( solnstat == CPX_STAT_INFEASIBLE ) {
      printf ("Model is infeasible\n");
      goto TERMINATE;
   }
   else if ( solnstat == CPX_STAT_INForUNBD ) {
      printf ("Model is infeasible or unbounded\n");
      goto TERMINATE;
   }

   status = CPXsolninfo (env, lp, &solnmethod, &solntype, NULL, NULL);
   if ( status ) {
      fprintf (stderr, "Failed to obtain solution info.\n");
      goto TERMINATE;
   }
   printf ("Solution status %d, solution method %d\n", solnstat, solnmethod);

   if ( solntype == CPX_NO_SOLN ) {
      fprintf (stderr, "Solution not available.\n");
      goto TERMINATE;
   }
    
   status = CPXgetobjval (env, lp, &objval);
   if ( status ) {
      fprintf (stderr, "Failed to obtain objective value.\n");
      goto TERMINATE;
   }
   printf ("Objective value %.10g.\n", objval);

   /* The size of the problem should be obtained by asking CPLEX what
      the actual size is.  cur_numrows and cur_numcols store the 
      current number of rows and columns, respectively.  */

   cur_numcols = CPXgetnumcols (env, lp);
   cur_numrows = CPXgetnumrows (env, lp);

   /* Retrieve basis, if one is available */

   if ( solntype == CPX_BASIC_SOLN ) {
      cstat = (int *) malloc (cur_numcols*sizeof(int));
      rstat = (int *) malloc (cur_numrows*sizeof(int));
      if ( cstat == NULL || rstat == NULL ) {
         fprintf (stderr, "No memory for basis statuses.\n");
         goto TERMINATE;
      }

      status = CPXgetbase (env, lp, cstat, rstat);
      if ( status ) {
         fprintf (stderr, "Failed to get basis; error %d.\n", status);
         goto TERMINATE;
      }
   }
   else {
      printf ("No basis available\n");
   }


   /* Retrieve solution vector */

   x = (double *) malloc (cur_numcols*sizeof(double));
   if ( x == NULL ) {
      fprintf (stderr, "No memory for solution.\n");
      goto TERMINATE;
   }

   status = CPXgetx (env, lp, x, 0, cur_numcols-1);
   if ( status ) {
      fprintf (stderr, "Failed to obtain primal solution.\n");
      goto TERMINATE;
   }


   /* Now get the column names for the problem.  First we determine how
      much space is used to hold the names, and then do the allocation.
      Then we call CPXgetcolname() to get the actual names. */ 

   status = CPXgetcolname (env, lp, NULL, NULL, 0, &surplus, 0,
                           cur_numcols-1);

   if (( status != CPXERR_NEGATIVE_SURPLUS ) &&
       ( status != 0 )                         )  {
      fprintf (stderr, 
               "Could not determine amount of space for column names.\n");
      goto TERMINATE;
   }

   cur_colnamespace = - surplus;
   if ( cur_colnamespace > 0 ) {
      cur_colname      = (char **) malloc (sizeof(char *)*cur_numcols);
      cur_colnamestore = (char *)  malloc (cur_colnamespace);
      if ( cur_colname      == NULL ||
           cur_colnamestore == NULL   ) {
         fprintf (stderr, "Failed to get memory for column names.\n");
         status = -1;
         goto TERMINATE;
      }
      status = CPXgetcolname (env, lp, cur_colname, cur_colnamestore, 
                              cur_colnamespace, &surplus, 0, cur_numcols-1);
      if ( status ) {
         fprintf (stderr, "CPXgetcolname failed.\n");
         goto TERMINATE;
      }
   }
   else {
      printf ("No names associated with problem.  Using Fake names.\n");
   }

   /* Write out the solution */

   for (j = 0; j < cur_numcols; j++) {
      if ( cur_colnamespace > 0 ) {
         printf ("%-16s:  ", cur_colname[j]);
      }
      else {
         printf ("Fake%-6.6d      :  ", j);;
      }
      printf ("%17.10g", x[j]);
      if ( cstat != NULL ) {
         switch (cstat[j]) {
            case CPX_AT_LOWER:
               basismsg = "Nonbasic at lower bound";
               break;
            case CPX_BASIC:
               basismsg = "Basic";
               break;
            case CPX_AT_UPPER:
               basismsg = "Nonbasic at upper bound";
               break;
            case CPX_FREE_SUPER:
               basismsg = "Superbasic, or free variable at zero";
               break;
            default:
               basismsg = "Bad basis status";
               break;
         }
         printf ("  %s",basismsg);
      }
      printf ("\n");
   }

   /* Display the maximum bound violation. */

   status = CPXgetdblquality (env, lp, &maxviol, CPX_MAX_PRIMAL_INFEAS);
   if ( status ) {
      fprintf (stderr, "Failed to obtain bound violation.\n");
      goto TERMINATE;
   }
   printf ("Maximum bound violation = %17.10g\n", maxviol);

   
TERMINATE:

   /* Free up the basis and solution */

   free_and_null ((char **) &cstat);
   free_and_null ((char **) &rstat);
   free_and_null ((char **) &x);
   free_and_null ((char **) &cur_colname);
   free_and_null ((char **) &cur_colnamestore);

   /* Free up the problem, if necessary */

   if ( lp != NULL ) {
      status = CPXfreeprob (env, &lp);
      if ( status ) {
         fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
      }
   }

   /* Free up the CPLEX environment, if necessary */

   if ( env != NULL ) {
      status = CPXcloseCPLEX (&env);

      /* Note that CPXcloseCPLEX produces no output,
         so the only way to see the cause of the error is to use
         CPXgeterrorstring.  For other CPLEX routines, the errors will
         be seen if the CPXPARAM_ScreenOutput indicator is set to CPX_ON. */

      if ( status ) {
         char  errmsg[CPXMESSAGEBUFSIZE];
         fprintf (stderr, "Could not close CPLEX environment.\n");
         CPXgeterrorstring (env, status, errmsg);
         fprintf (stderr, "%s", errmsg);
      }
   }
     
   return (status);

}  /* END main */
Beispiel #5
0
void
DDSIP_DetEqu ()
{
    CPXLPptr det_equ;

    int status, scen, i, j, k, nzcnt_row, ranged = 0;
    char probname[] = "sipout/det_equ.lp.gz";
    double *scaled_obj_coef = NULL;
    char *sense = NULL, *sense_sorted = NULL;
    char **scen_spec_rowname = NULL;
    char **scen_spec_colname = NULL;
    char **rowname = NULL, *rownamestore = NULL;
    char **colname = NULL, *colnamestore = NULL;
    int rowstorespace, rowsurplus;
    int colstorespace, colsurplus;
    char *string1 = NULL, *string2 = NULL;
    double *lb = NULL, *lb_sorted = NULL;
    double *ub = NULL, *ub_sorted = NULL;
    double *rng = NULL, *rng_sorted = NULL;
    char *vartype = NULL, *vartype_sorted = NULL;
    int *colindex_sorted = NULL, *colindex_revers = NULL;
    double *value = NULL;
    double *det_equ_rhs = NULL;
    double *base_rhs = NULL;
    int nzcnt=0, *rmatbeg=NULL, *rmatind=NULL, *rmatbeg_stage=NULL, *rmatind_stage=NULL, *rowindex=NULL;
    double *rmatval=NULL, *rmatval_stage=NULL;
    double time_start, time_end;
    time_start = DDSIP_GetCpuTime ();
    k = abs(DDSIP_param->riskmod);
    if (k > 2 && k != 4)
    {
        fprintf (stderr,
             "\nNot building deterministic equivalent, not available for risk model %d\n",DDSIP_param->riskmod);
        fprintf (DDSIP_outfile,
             "\nNot building deterministic equivalent, not available for risk model %d\n",DDSIP_param->riskmod);
        return;
    }
    if (DDSIP_data->seccon)
        det_equ_rhs = (double *) DDSIP_Alloc(sizeof(double),DDSIP_Imax(DDSIP_Imax(DDSIP_data->seccon, DDSIP_param->scenarios), DDSIP_data->firstcon),"det_equ_rhs(DetEqu)");
    else
    {
        fprintf (stderr,"XXX ERROR: no second stage contraints, got DDSIP_data->seccon=%d.\n",DDSIP_data->seccon);
        return;
    }

    fprintf (stderr,
             "\nBuilding deterministic equivalent.\nWorks only for expectation-based models.\n");

    colstorespace = DDSIP_data->novar * 255;
    rowstorespace = DDSIP_data->nocon * 255;
    if (!(sense = (char *) DDSIP_Alloc (sizeof (char), DDSIP_data->nocon, "sense(DetEqu)")) ||
        !(sense_sorted = (char *) DDSIP_Alloc (sizeof (char), DDSIP_Imax(DDSIP_param->scenarios, DDSIP_Imax(DDSIP_data->firstcon,DDSIP_data->seccon)), "sense_sorted(DetEqu)")) ||
        !(base_rhs = (double *) DDSIP_Alloc(sizeof(double),DDSIP_data->nocon,"base_rhs(DetEqu)")) ||
        !(scaled_obj_coef = (double *) DDSIP_Alloc (sizeof (double), DDSIP_Imax(DDSIP_data->firstvar, DDSIP_data->secvar), "base_rhs(DetEqu)")) ||
        !(colname = (char **) DDSIP_Alloc (sizeof (char *), DDSIP_data->novar,"base_rhs(DetEqu)")) ||
        !(scen_spec_colname = (char **) DDSIP_Alloc (sizeof (char *), DDSIP_Imax(DDSIP_data->firstvar,DDSIP_data->secvar), "scen_spec_colname(DetEqu)")) ||
        !(colnamestore = (char *) DDSIP_Alloc (sizeof (char), colstorespace, "colnamestore(DetEqu)")) ||
        !(rowname = (char **) DDSIP_Alloc (sizeof (char *), DDSIP_data->nocon, "rowname(DetrEqu)")) ||
        !(scen_spec_rowname = (char **) DDSIP_Alloc (sizeof (char *), DDSIP_Imax(DDSIP_param->scenarios, DDSIP_Imax(DDSIP_data->firstcon,DDSIP_data->seccon)), "scen_spec_rowname(DetEqu)")) ||
        !(rownamestore = (char *) DDSIP_Alloc (sizeof (char), rowstorespace, "rownamestore(DetEqu)")) ||
        !(lb = (double *) DDSIP_Alloc (sizeof (double), DDSIP_data->novar, "lb(DetEqu)")) ||
        !(lb_sorted = (double *) DDSIP_Alloc (sizeof (double), DDSIP_Imax(DDSIP_data->firstvar,DDSIP_data->secvar), "lb_sorted(DetEqu)")) ||
        !(ub = (double *) DDSIP_Alloc (sizeof (double), DDSIP_data->novar, "ub(DetEqu)")) ||
        !(ub_sorted = (double *) DDSIP_Alloc (sizeof (double), DDSIP_Imax(DDSIP_data->firstvar,DDSIP_data->secvar), "ub_sorted(DetEqu)")) ||
        !(vartype = (char *) DDSIP_Alloc (sizeof (char), DDSIP_data->novar, "vartype(DetEqu)")) ||
        !(vartype_sorted = (char *) DDSIP_Alloc (sizeof (double), DDSIP_Imax(DDSIP_data->firstvar,DDSIP_data->secvar), "vartype_sorted(DetEqu)")) ||
        !(colindex_sorted = (int *) DDSIP_Alloc (sizeof (int), DDSIP_data->novar, "colindex_sorted(DetEqu)")) ||
        !(rowindex = (int *) DDSIP_Alloc (sizeof (int), DDSIP_Imax(DDSIP_data->firstcon, DDSIP_data->seccon), "rowindex(DetEqu)")))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        goto FREE;
    }

    // get problem data
    /*____________________________________________________________________________________*/
    if((status = CPXgetcolname (DDSIP_env, DDSIP_lp, colname, colnamestore,
                            colstorespace, &colsurplus, 0, DDSIP_data->novar - 1)) ||
       (status = CPXgetrowname (DDSIP_env, DDSIP_lp, rowname, rownamestore,
                            rowstorespace, &rowsurplus, 0, DDSIP_data->nocon - 1)) ||
       (status = CPXgetsense (DDSIP_env, DDSIP_lp, sense, 0, DDSIP_data->nocon - 1)) ||
       (status = CPXgetrhs (DDSIP_env, DDSIP_lp, base_rhs, 0, DDSIP_data->nocon - 1)) ||
       (status = CPXgetlb (DDSIP_env, DDSIP_lp, lb, 0, DDSIP_data->novar - 1)) ||
       (status = CPXgetub (DDSIP_env, DDSIP_lp, ub, 0, DDSIP_data->novar - 1)) ||
       (status = CPXgetctype (DDSIP_env, DDSIP_lp, vartype, 0, DDSIP_data->novar - 1)))
    {
        fprintf (stderr, "Coud not get problem data, returned %d\n", status);
        goto FREE;
    }
    // check whether there are ranged rows
    for (j=0; j<DDSIP_data->nocon; j++)
    {
        if (sense[j] == 'R')
        {
            ranged = 1;
	    break;
        }
    } 
    if (ranged)
    {
        if (!(rng = (double *) DDSIP_Alloc (sizeof (double), DDSIP_data->nocon, "rng(DetEqu)")) ||
            !(rng_sorted = (double *) DDSIP_Alloc (sizeof (double), DDSIP_Imax(DDSIP_data->firstcon,DDSIP_data->seccon), "rng_sorted(DetEqu)")))
        {
            fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
            goto FREE;
        }
        if ((status = CPXgetrngval (DDSIP_env, DDSIP_lp, rng, 0, DDSIP_data->nocon-1)))
        {
            fprintf (stderr, "Coud not get problem ranges, returned %d\n", status);
            goto FREE;
        }
    }
    /*____________________________________________________________________________________*/

    // create empty problem
    det_equ = CPXcreateprob (DDSIP_env, &status, probname);
    if (status)
    {
        fprintf (stderr, "CPXcreateprob returned %d\n", status);
        goto FREE;
    }
    // add (original) first-stage variables
    for (j = 0; j < DDSIP_data->firstvar; j++)
    {
        vartype_sorted[j]   = vartype[DDSIP_bb->firstindex[j]];
        lb_sorted[j]        = lb[DDSIP_bb->firstindex[j]];
        ub_sorted[j]        = ub[DDSIP_bb->firstindex[j]];
        if (DDSIP_param->deteqType && DDSIP_param->riskmod >= 0)
            scaled_obj_coef[j]  = DDSIP_data->obj_coef[DDSIP_bb->firstindex[j]];
        scen_spec_colname[j]= colname[DDSIP_bb->firstindex[j]];
    }
    if ((status = CPXnewcols (DDSIP_env, det_equ, DDSIP_data->firstvar, scaled_obj_coef,
                        lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname)))
    {
        fprintf (stderr, "CPXnewcols returned %d for first-stage variables\n", status);
        goto FREE;
    }
    // add (original) second-stage variables for all scenarios
    for (j = 0; j < DDSIP_data->secvar; j++)
    {
        vartype_sorted[j] = vartype[DDSIP_bb->secondindex[j]];
        lb_sorted[j]      = lb[DDSIP_bb->secondindex[j]];
        ub_sorted[j]      = ub[DDSIP_bb->secondindex[j]];
    }
    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        for (j = 0; j < DDSIP_data->secvar; j++)
        {
            if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
            {
                fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                goto FREE;
            }
            // append scenario index to colname
            string1 = colname[DDSIP_bb->secondindex[j]];
            sprintf (string2, "%sSC%.3d", string1, scen+1);
            scen_spec_colname[j] = string2;
            if (DDSIP_param->deteqType && DDSIP_param->riskmod >= 0)
                scaled_obj_coef[j] = DDSIP_data->prob[scen] * DDSIP_data->obj_coef[DDSIP_bb->secondindex[j]];
        }
        if ((status = CPXnewcols (DDSIP_env, det_equ, DDSIP_data->secvar, scaled_obj_coef,
                        lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname)))
        {
            fprintf (stderr, "CPXnewcols returned %d for second-stage variables of scenario %d\n", status, scen+1);
            goto FREE;
        }
        for (j = 0; j < DDSIP_data->secvar; j++)
            DDSIP_Free ((void **) &(scen_spec_colname[j]));
    }
    // add second-stage variable for objective value of the scenarios
    if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        goto FREE;
    }
    scen_spec_colname[0] = string2;
    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        vartype_sorted[0] = 'C';
        lb_sorted[0]      = -DDSIP_infty;
        ub_sorted[0]      =  DDSIP_infty;
        sprintf (string2, "DDSIPobj_SC%.3d", scen+1);
        if (!DDSIP_param->deteqType && DDSIP_param->riskmod >= 0)
            scaled_obj_coef[0] = DDSIP_data->prob[scen];
        else
            scaled_obj_coef[0] = 0.;
        if ((status = CPXnewcols (DDSIP_env, det_equ, 1, scaled_obj_coef,
                        lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname)))
        {
            fprintf (stderr, "CPXnewcols returned %d for second-stage variable  DDSIPobj_SC%.3d\n", status, scen+1);
            goto FREE;
        }
    }
    // add the additional variables needed for risk models ///////////////////////////////////////
    if (DDSIP_param->riskmod)
    {
        switch (abs(DDSIP_param->riskmod))
        {
          case 1:  // Expected excess
             // one continuous second-stage variable for each scenario
             for (scen = 0; scen < DDSIP_param->scenarios; scen++)
             {
                vartype_sorted[0] = 'C';
                lb_sorted[0]      = 0.;
                ub_sorted[0]      = DDSIP_infty;
                sprintf (string2, "DDSIP_expexc_SC%.3d", scen+1);
                if (DDSIP_param->riskmod > 0)
                    scaled_obj_coef[0] = DDSIP_param->riskweight*DDSIP_data->prob[scen];
                else if (DDSIP_param->riskmod < 0)
                    scaled_obj_coef[0] = DDSIP_data->prob[scen];
                else
                    scaled_obj_coef[0] = 0.;
                if ((status = CPXnewcols (DDSIP_env, det_equ, 1, scaled_obj_coef,
                                lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname)))
                {
                    fprintf (stderr, "CPXnewcols returned %d for second-stage variable  %s\n", status, string2);
                    goto FREE;
                }
             }  
             break;
          case 2:  // Excess Probability
             // one binary second-stage variable for each scenario
             for (scen = 0; scen < DDSIP_param->scenarios; scen++)
             {
                vartype_sorted[0] = 'B';
                lb_sorted[0]      = 0.;
                ub_sorted[0]      = 1.;
                sprintf (string2, "DDSIP_excprob_SC%.3d", scen+1);
                if (DDSIP_param->riskmod > 0)
                    scaled_obj_coef[0] = DDSIP_param->riskweight*DDSIP_data->prob[scen];
                else if (DDSIP_param->riskmod < 0)
                    scaled_obj_coef[0] = DDSIP_data->prob[scen];
                else
                    scaled_obj_coef[0] = 0.;
                if ((status = CPXnewcols (DDSIP_env, det_equ, 1, scaled_obj_coef,
                                lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname)))
                {
                    fprintf (stderr, "CPXnewcols returned %d for second-stage variable  %s\n", status, string2);
                    goto FREE;
                }
             }  
             break;
          case 4:  // Worst Case Costs
             // one continuous first-stage variable
                vartype_sorted[0] = 'C';
                lb_sorted[0]      = -DDSIP_infty;
                ub_sorted[0]      =  DDSIP_infty;
                if (DDSIP_param->prefix)
                {
                    if (!(strlen(DDSIP_param->prefix)))
                    {
                        fprintf (stderr," *** ERROR: The prefix for the first stage variables has to have a positive length.\n");
                        exit (1);
                    }
                    sprintf (string2, "%sDDSIP_n_aux01",DDSIP_param->prefix);
                }
                else
                {
                    if (!(strlen(DDSIP_param->postfix)))
                    {
                        fprintf (stderr," *** ERROR: The postfix for the first stage variables has to have a positive length.\n");
                        exit (1);
                    }
                    sprintf (string2, "DDSIP_worstc_%s",DDSIP_param->postfix);
                }
                if (DDSIP_param->riskmod > 0)
                    scaled_obj_coef[0] = DDSIP_param->riskweight;
                else if (DDSIP_param->riskmod < 0)
                    scaled_obj_coef[0] = 1.;
                else
                    scaled_obj_coef[0] = 0.;
                if ((status = CPXnewcols (DDSIP_env, det_equ, 1, scaled_obj_coef,
                                lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname)))
                {
                    fprintf (stderr, "CPXnewcols returned %d for second-stage variable  %s\n", status, string2);
                    goto FREE;
                }
        }
    }
    DDSIP_Free ((void **) &(scen_spec_colname[0]));
        
    ///////enter stochastic cost coefficients in case of deteqType 1 //////////////////////////////
    if (DDSIP_param->stoccost && DDSIP_param->deteqType && DDSIP_param->riskmod >= 0)
    {
        for (j = 0; j < DDSIP_param->stoccost; j++)
        {
            scaled_obj_coef[j] = 0.0;
            if ((colindex_sorted[j] = DDSIP_bb->firstindex_reverse[DDSIP_data->costind[j]]))
                 colindex_sorted[j] = DDSIP_data->firstvar + DDSIP_bb->secondindex_reverse[DDSIP_data->costind[j]];
        }
        for (scen = 0; scen < DDSIP_param->scenarios; scen++)
        {
            for (j = 0; j < DDSIP_param->stoccost; j++)
            {
                if (colindex_sorted[j] >= DDSIP_data->firstvar)
                    scaled_obj_coef[j] = DDSIP_data->prob[scen] * DDSIP_data->cost[scen * DDSIP_param->stoccost + j];
                else
                    scaled_obj_coef[j] += DDSIP_data->prob[scen] * DDSIP_data->cost[scen * DDSIP_param->stoccost + j];
            }
            status = CPXchgobj (DDSIP_env, det_equ, DDSIP_param->stoccost, colindex_sorted, scaled_obj_coef);
            if (status)
            {
                char errmsg[1024];
                CPXgeterrorstring (DDSIP_env, status, errmsg);
                fprintf (stderr, "in DetEqu: %s\n", errmsg);
            }
            for (j = 0; j < DDSIP_param->stoccost; j++)
            {
                if (colindex_sorted[j] >= DDSIP_data->firstvar)
                    colindex_sorted[j] += DDSIP_data->secvar;
            }
        }
    }
    //
    // free arrays needeed only for columns
    DDSIP_Free ((void **) &(vartype));
    DDSIP_Free ((void **) &(colname));
    DDSIP_Free ((void **) &(colnamestore));
    DDSIP_Free ((void **) &(lb));
    DDSIP_Free ((void **) &(ub));
    DDSIP_Free ((void **) &(vartype_sorted));
    DDSIP_Free ((void **) &(lb_sorted));
    DDSIP_Free ((void **) &(ub_sorted));
    DDSIP_Free ((void **) &(scaled_obj_coef));
    //
    // get problem matrix coefficients
    // query the length needed for storage of coefficients
    CPXgetrows(DDSIP_env, DDSIP_lp, &nzcnt, rmatbeg, rmatind, rmatval, 0, &rowsurplus, 0, DDSIP_data->nocon-1);
    nzcnt = -rowsurplus;
    if (!(rmatbeg = (int *) DDSIP_Alloc (sizeof (int), DDSIP_data->nocon, "rmatbeg(DetEqu)")) ||
        !(rmatind = (int *) DDSIP_Alloc (sizeof (int), DDSIP_Imax(nzcnt, DDSIP_param->stocmat), "rmatind(DetEqu)")) ||
        !(rmatval = (double *) DDSIP_Alloc (sizeof (double), nzcnt, "rmatval(DetEqu)")))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        goto FREE;
    }
    CPXgetrows(DDSIP_env, DDSIP_lp, &nzcnt, rmatbeg, rmatind, rmatval, nzcnt, &rowsurplus, 0, DDSIP_data->nocon-1);

    printf(" got %d elements of the matrix\n", nzcnt);

    k = DDSIP_Imax(nzcnt + DDSIP_param->stocmat, DDSIP_param->scenarios*(DDSIP_data->novar+1));
    if (!(rmatbeg_stage = (int *) DDSIP_Alloc (sizeof (int), DDSIP_Imax(DDSIP_param->scenarios, DDSIP_Imax(DDSIP_data->firstcon, DDSIP_data->seccon)), "rmatbeg_stage(DetEqu)")) ||
        !(rmatind_stage = (int *) DDSIP_Alloc (sizeof (int), k, "rmatind_stage(DetEqu)")) ||
        !(rmatval_stage = (double *) DDSIP_Alloc (sizeof (double), k, "rmatval_stage(DetEqu)")))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        goto FREE;
    }

    // add first-stage constraints
    k = 0;
    for (j = 0; j < DDSIP_data->firstcon; j++)
    {
        sense_sorted[j] = sense[DDSIP_bb->firstrowind[j]];
        det_equ_rhs[j] = base_rhs[DDSIP_bb->firstrowind[j]];
        scen_spec_rowname[j] = rowname[DDSIP_bb->firstrowind[j]];
	rmatbeg_stage[j] = k;
	if (DDSIP_bb->firstrowind[j] == DDSIP_data->nocon -1)
            nzcnt_row = nzcnt - rmatbeg[DDSIP_data->nocon -1];
        else
            nzcnt_row = rmatbeg[DDSIP_bb->firstrowind[j]+1] - rmatbeg[DDSIP_bb->firstrowind[j]];
	for (i = 0; i < nzcnt_row; i++)
        {
            rmatind_stage[k + i] = DDSIP_bb->firstindex_reverse[rmatind[rmatbeg[DDSIP_bb->firstrowind[j]] + i]];
            rmatval_stage[k + i] = rmatval[rmatbeg[DDSIP_bb->firstrowind[j]] + i];
        }
	k += nzcnt_row;
    }
    if ((status = CPXaddrows(DDSIP_env, det_equ, 0, DDSIP_data->firstcon, k, det_equ_rhs, sense_sorted, rmatbeg_stage, rmatind_stage, rmatval_stage, NULL, scen_spec_rowname)))
    {
        fprintf (stderr, "CPXaddrows returned %d for first-stage constraints\n", status);
        goto FREE;
    }
    if (ranged)
    {
        for (j = 0; j < DDSIP_data->firstcon; j++)
        {
            rng_sorted[j] = rng[DDSIP_bb->firstrowind[j]];
            rowindex[j]   = j;
        }
        if((status = CPXchgrngval(DDSIP_env, det_equ, DDSIP_data->firstcon, rowindex, rng_sorted)))
        {
            fprintf (stderr, "CPXchgrngval returned %d for first-stage constraints\n", status);
            goto FREE;
        }
    }

    // add second-stage constraints
    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        k = 0;
        for (j = 0; j < DDSIP_data->seccon; j++)
        {
            sense_sorted[j] = sense[DDSIP_bb->secondrowind[j]];
            det_equ_rhs[j] = base_rhs[DDSIP_bb->secondrowind[j]];
            if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
            {
                fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                goto FREE;
            }
            // append scenario index to colname
            string1 = rowname[DDSIP_bb->secondrowind[j]];
            sprintf (string2, "%sSC%.3d", string1, scen+1);
            scen_spec_rowname[j] = string2;
            rmatbeg_stage[j] = k;
            if (DDSIP_bb->secondrowind[j] == DDSIP_data->nocon -1)
                nzcnt_row = nzcnt - rmatbeg[DDSIP_data->nocon -1];
            else
            {
                nzcnt_row = rmatbeg[DDSIP_bb->secondrowind[j]+1] - rmatbeg[DDSIP_bb->secondrowind[j]];

            }
            for (i = 0; i < nzcnt_row; i++)
            {
                if (DDSIP_bb->firstindex_reverse[rmatind[rmatbeg[DDSIP_bb->secondrowind[j]] + i]] < 0)
                    rmatind_stage[k + i] = DDSIP_data->firstvar + scen*DDSIP_data->secvar + DDSIP_bb->secondindex_reverse[rmatind[rmatbeg[DDSIP_bb->secondrowind[j]] + i]];
                else
                    rmatind_stage[k + i] = DDSIP_bb->firstindex_reverse[rmatind[rmatbeg[DDSIP_bb->secondrowind[j]] + i]];
                rmatval_stage[k + i] = rmatval[rmatbeg[DDSIP_bb->secondrowind[j]] + i];
            }
            k += nzcnt_row;
        }
        ///////enter stochastic rhs entries//////////////////////////////////////////////////////
        for (j=0; j< DDSIP_param->stocrhs; j++)
        {
            det_equ_rhs[DDSIP_bb->secondrowind_reverse[DDSIP_data->rhsind[j]]] = DDSIP_data->rhs[scen * DDSIP_param->stocrhs + j];
        }

        if ((status = CPXaddrows(DDSIP_env, det_equ, 0, DDSIP_data->seccon, k, det_equ_rhs, sense_sorted, rmatbeg_stage, rmatind_stage, rmatval_stage, NULL, scen_spec_rowname)))
        {
            fprintf (stderr, "CPXaddrows returned %d for second-stage constraints scenario %d\n", status, scen+1);
            goto FREE;
        }
        for (j = 0; j < DDSIP_data->seccon; j++)
            DDSIP_Free ((void **) &(scen_spec_rowname[j]));
        if (ranged)
        {
            for (j = 0; j < DDSIP_data->seccon; j++)
            {
                rng_sorted[j] = rng[DDSIP_bb->secondrowind[j]];
                rowindex[j]   = DDSIP_data->firstcon + scen * DDSIP_data->seccon + j;
            }
            if ((status = CPXchgrngval(DDSIP_env, det_equ, DDSIP_data->seccon, rowindex, rng_sorted)))
            {
                fprintf (stderr, "CPXchgrngval returned %d for first-stage constraints\n", status);
                goto FREE;
            }
        }
    }
    ///////enter stochastic matrix entries//////////////////////////////////////////////////////
    if (DDSIP_param->stocmat)
    {

        if (!(value = (double *) calloc (DDSIP_param->stocmat, sizeof (double))))
        {
            fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
            goto FREE;
        }
        for (j = 0; j < DDSIP_param->stocmat; j++)
        {
            if ((colindex_sorted[j] = DDSIP_bb->firstindex_reverse[DDSIP_data->matcol[j]]))
                 colindex_sorted[j] = DDSIP_data->firstvar + DDSIP_bb->secondindex_reverse[DDSIP_data->matcol[j]];
            rmatind[j] = DDSIP_data->firstcon + DDSIP_bb->secondrowind_reverse[DDSIP_data->matrow[j]];
        }
        for (scen = 0; scen < DDSIP_param->scenarios; scen++)
        {
            for (j = 0; j < DDSIP_param->stocmat; j++)
            {
                value[j] = DDSIP_data->matval[scen * DDSIP_param->stocmat + j];
            }
            status = CPXchgcoeflist (DDSIP_env, det_equ, DDSIP_param->stocmat, rmatind, colindex_sorted, value);
            if (status)
            {
                char errmsg[1024];
                CPXgeterrorstring (DDSIP_env, status, errmsg);
                fprintf (stderr, "in DetEqu chgcoeflist returned %d: %s\n", status, errmsg);
            }
            for (j = 0; j < DDSIP_param->stocmat; j++)
            {
                rmatind[j] += DDSIP_data->seccon;
                if (colindex_sorted[j] >= DDSIP_data->firstvar)
                    colindex_sorted[j] += DDSIP_data->secvar;
            }
        }
        DDSIP_Free ((void **) &(value));
    }

    // add second-stage equations for the objective values of the scenarios
    k = 0;
    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        sense_sorted[scen] = 'E';
        det_equ_rhs[scen] = 0.;
        if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
        {
            fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
            goto FREE;
        }
        sprintf (string2, "DDSIP_o_SC%.3d", scen+1);
        scen_spec_rowname[scen] = string2;
        rmatbeg_stage[scen] = k;
        nzcnt_row = DDSIP_data->novar + 1;
        for (i = 0; i < DDSIP_data->novar; i++)
        {
            if (DDSIP_bb->firstindex_reverse[i] < 0)
            {
                rmatind_stage[k + i] = DDSIP_data->firstvar + scen*DDSIP_data->secvar + DDSIP_bb->secondindex_reverse[i];
            }
            else
            {
                rmatind_stage[k + i] = DDSIP_bb->firstindex_reverse[i];
            }
            rmatval_stage[k + i] = DDSIP_data->obj_coef[i];
        }
        rmatind_stage[k + DDSIP_data->novar] = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + scen;
        rmatval_stage[k + DDSIP_data->novar] = -1.;
        k += nzcnt_row;
    }
    if ((status = CPXaddrows(DDSIP_env, det_equ, 0, DDSIP_param->scenarios, k, det_equ_rhs, sense_sorted, rmatbeg_stage, rmatind_stage, rmatval_stage, NULL, scen_spec_rowname)))
    {
        fprintf (stderr, "CPXaddrows returned %d for second-stage objective constraints\n", status);
        goto FREE;
    }
    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        DDSIP_Free ((void **) &(scen_spec_rowname[scen]));
    }
    ///////enter stochastic cost coefficients in the objective equations //////////////////////////////
    if (DDSIP_param->stoccost)
    {
        if (!(value = (double *) calloc (DDSIP_param->stoccost, sizeof (double))))
        {
            fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
            goto FREE;
        }
        for (scen = 0; scen < DDSIP_param->scenarios; scen++)
        {
            for (j = 0; j < DDSIP_param->stoccost; j++)
            {
                if ((colindex_sorted[j] = DDSIP_bb->firstindex_reverse[DDSIP_data->costind[j]]) < 0)
                     colindex_sorted[j] = DDSIP_data->firstvar + scen * DDSIP_data->secvar +DDSIP_bb->secondindex_reverse[DDSIP_data->costind[j]];
                rmatind[j] = DDSIP_data->firstcon + DDSIP_param->scenarios*DDSIP_data->seccon + scen;
                value[j] = DDSIP_data->cost[scen * DDSIP_param->stoccost + j];
            }
            status = CPXchgcoeflist (DDSIP_env, det_equ, DDSIP_param->stoccost, rmatind, colindex_sorted, value);
            if (status)
            {
                char errmsg[1024];
                CPXgeterrorstring (DDSIP_env, status, errmsg);
                fprintf (stderr, "in DetEqu chgcoeflist returned %d: %s\n", status, errmsg);
            }
            for (j = 0; j < DDSIP_param->stocmat; j++)
            {
                rmatind[j] += DDSIP_data->seccon;
                if (colindex_sorted[j] >= DDSIP_data->firstvar)
                    colindex_sorted[j] += DDSIP_data->secvar;
            }
        }
        DDSIP_Free ((void **) &(value));
    }
    // add second-stage equations for the risk models //////////////////////////////////
    switch (abs(DDSIP_param->riskmod))
    {
      case 1:  // Expected excess
         k = 0;
         for (scen = 0; scen < DDSIP_param->scenarios; scen++)
         {
             sense_sorted[scen] = 'L';
             det_equ_rhs[scen]  = DDSIP_param->risktarget;
             if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
             {
                 fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                 goto FREE;
             }
             sprintf (string2, "DDSIP_exp_excess_SC%.3d", scen+1);
             scen_spec_rowname[scen] = string2;
             rmatbeg_stage[scen] = k;
             nzcnt_row = 2;
             rmatind_stage[k]     = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + scen; 
             rmatval_stage[k]     = 1.;
             rmatind_stage[k + 1] = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + DDSIP_param->scenarios + scen; 
             rmatval_stage[k + 1] = -1.;
             k += nzcnt_row;
         }
         if ((status = CPXaddrows(DDSIP_env, det_equ, 0, DDSIP_param->scenarios, k, det_equ_rhs, sense_sorted, rmatbeg_stage, rmatind_stage, rmatval_stage, NULL, scen_spec_rowname)))
         {
             fprintf (stderr, "CPXaddrows returned %d for second-stage risk constraints\n", status);
             goto FREE;
         }
         break;
      case 2:  // Excess probability
         k = 0;
         for (scen = 0; scen < DDSIP_param->scenarios; scen++)
         {
             sense_sorted[scen] = 'L';
             det_equ_rhs[scen]  = DDSIP_param->risktarget;
             if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
             {
                 fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                 goto FREE;
             }
             sprintf (string2, "DDSIP_excess_prob_SC%.3d", scen+1);
             scen_spec_rowname[scen] = string2;
             rmatbeg_stage[scen] = k;
             nzcnt_row = 2;
             rmatind_stage[k]     = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + scen; 
             rmatval_stage[k]     = 1.;
             rmatind_stage[k + 1] = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + DDSIP_param->scenarios + scen; 
             rmatval_stage[k + 1] = -DDSIP_param->riskM;
             k += nzcnt_row;
         }
         if ((status = CPXaddrows(DDSIP_env, det_equ, 0, DDSIP_param->scenarios, k, det_equ_rhs, sense_sorted, rmatbeg_stage, rmatind_stage, rmatval_stage, NULL, scen_spec_rowname)))
         {
             fprintf (stderr, "CPXaddrows returned %d for second-stage risk constraints\n", status);
             goto FREE;
         }
         break;
      case 4:  // Worst case cost
         k = 0;
         for (scen = 0; scen < DDSIP_param->scenarios; scen++)
         {
             sense_sorted[scen] = 'L';
             det_equ_rhs[scen]  = 0.;
             if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
             {
                 fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                 goto FREE;
             }
             sprintf (string2, "DDSIP_worst_case_SC%.3d", scen+1);
             scen_spec_rowname[scen] = string2;
             rmatbeg_stage[scen] = k;
             nzcnt_row = 2;
             rmatind_stage[k]     = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + scen; 
             rmatval_stage[k]     = 1.;
             rmatind_stage[k + 1] = DDSIP_data->firstvar + DDSIP_param->scenarios*DDSIP_data->secvar + DDSIP_param->scenarios; 
             rmatval_stage[k + 1] = -1.;
             k += nzcnt_row;
         }
         if ((status = CPXaddrows(DDSIP_env, det_equ, 0, DDSIP_param->scenarios, k, det_equ_rhs, sense_sorted, rmatbeg_stage, rmatind_stage, rmatval_stage, NULL, scen_spec_rowname)))
         {
             fprintf (stderr, "CPXaddrows returned %d for second-stage risk constraints\n", status);
             goto FREE;
         }
         break;
    }
    for (j = 0; j < DDSIP_param->scenarios; j++)
        DDSIP_Free ((void **) &(scen_spec_rowname[j]));

    time_end = DDSIP_GetCpuTime ();
    fprintf (DDSIP_outfile, " %6.2f sec  for building deterministic equivalent\n",time_end-time_start);

    status = CPXwriteprob (DDSIP_env, det_equ, probname, NULL);
    if (status)
    {
        fprintf (DDSIP_outfile, " *** Deterministic equivalent not written successfully, status = %d\n", status);
        printf  (" *** Deterministic equivalent not written successfully, status = %d\n", status);
    }
    else
    {
        fprintf (DDSIP_outfile, " *** Deterministic equivalent %s written successfully\n", probname);
        printf  (" *** Deterministic equivalent %s written successfully\n", probname);
    }
    status = CPXfreeprob (DDSIP_env, &det_equ);
    time_start = DDSIP_GetCpuTime ();
    fprintf (DDSIP_outfile, " %6.2f sec  for writing deterministic equivalent\n",time_start-time_end);

FREE:
    DDSIP_Free ((void **) &(sense));
    DDSIP_Free ((void **) &(sense_sorted));
    DDSIP_Free ((void **) &(vartype));
    DDSIP_Free ((void **) &(rowname));
    DDSIP_Free ((void **) &(rownamestore));
    DDSIP_Free ((void **) &(colname));
    DDSIP_Free ((void **) &(colnamestore));
    DDSIP_Free ((void **) &(det_equ_rhs));
    DDSIP_Free ((void **) &(base_rhs));
    DDSIP_Free ((void **) &(lb));
    DDSIP_Free ((void **) &(ub));
    DDSIP_Free ((void **) &(vartype_sorted));
    DDSIP_Free ((void **) &(lb_sorted));
    DDSIP_Free ((void **) &(ub_sorted));
    DDSIP_Free ((void **) &(scaled_obj_coef));
    DDSIP_Free ((void **) &(colindex_sorted));
    DDSIP_Free ((void **) &(colindex_revers));
    DDSIP_Free ((void **) &(scen_spec_rowname));
    DDSIP_Free ((void **) &(scen_spec_colname));
    DDSIP_Free ((void **) &(rmatbeg));
    DDSIP_Free ((void **) &(rmatind));
    DDSIP_Free ((void **) &(rmatval));
    DDSIP_Free ((void **) &(rmatbeg_stage));
    DDSIP_Free ((void **) &(rmatind_stage));
    DDSIP_Free ((void **) &(rmatval_stage));
    DDSIP_Free ((void **) &(rowindex));
    if (ranged)
    {
        DDSIP_Free ((void **) &(rng));
        DDSIP_Free ((void **) &(rng_sorted));
    }
    return;
}
Beispiel #6
0
void
DDSIP_DetEqu ()
{
    CPXLPptr det_equ;

    int status, scen, i, j, k;
    char probname[] = "sipout/det_equ.lp.gz";
    double *obj_coef;
    double *scaled_obj_coef;
    char *sense;
    char **scen_spec_rowname;
    char **scen_spec_colname;
    char **rowname, *rownamestore;
    char **colname, *colnamestore;
    int rowstorespace, rowsurplus_p;
    int colstorespace, colsurplus_p;
    char *string1, *string2;
    double coef;
    double *lb, *lb_sorted;
    double *ub, *ub_sorted;
    char *vartype, *vartype_sorted;
    int *colindex_sorted, *colindex_revers, *matcol_sorted;
    double *value;
    double *det_equ_rhs = NULL;
    double *non_stoc_rhs = NULL;
    if (DDSIP_param->seccon)
        det_equ_rhs = (double *) DDSIP_Alloc(sizeof(double),DDSIP_param->seccon,"det_equ_rhs(DetEqu)");
    else
    {
        fprintf (stderr,"XXX ERROR: no second stage contraints, got DDSIP_param->seccon=%d.\n",DDSIP_param->seccon);
        exit (1);
    }
    if (DDSIP_param->seccon - DDSIP_param->stocrhs>0)
        non_stoc_rhs = (double *) DDSIP_Alloc(sizeof(double),DDSIP_param->seccon - DDSIP_param->stocrhs,"non_stoc_rhs(DetEqu)");

    fprintf (stderr,
             "\nBuilding deterministic equivalent. This may take some time.\nWorks only for expectation-based model so far.\n");

    if (!(sense = (char *) calloc (DDSIP_param->seccon, sizeof (char))))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        return;
    }

    if (!(obj_coef = (double *) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (double))) ||
            !(scaled_obj_coef = (double *) calloc (DDSIP_bb->secvar, sizeof (double))))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        return;
    }


    det_equ = CPXcloneprob (DDSIP_env, DDSIP_lp, &status);
    CPXchgprobname (DDSIP_env, det_equ, probname);

    if (!(rowname = (char **) calloc (DDSIP_param->seccon, sizeof (char *)))
            || !(scen_spec_rowname = (char **) calloc (DDSIP_param->seccon, sizeof (char *)))
            || !(rownamestore = (char *) calloc (DDSIP_param->seccon * 255, sizeof (char))))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        return;
    }
    rowstorespace = DDSIP_param->seccon * 255;
    status = CPXgetrowname (DDSIP_env, DDSIP_lp, rowname, rownamestore,
                            rowstorespace, &rowsurplus_p, DDSIP_param->firstcon, DDSIP_param->firstcon + DDSIP_param->seccon - 1);


    if (!(colname = (char **) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (char *)))
            || !(scen_spec_colname = (char **) calloc (DDSIP_param->secvar, sizeof (char *)))
            || !(colnamestore = (char *) calloc (DDSIP_param->secvar * 255, sizeof (char))))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        return;
    }
    colstorespace = (DDSIP_param->firstvar + DDSIP_param->secvar) * 255;
    status = CPXgetcolname (DDSIP_env, DDSIP_lp, colname, colnamestore,
                            colstorespace, &colsurplus_p, 0, DDSIP_param->firstvar + DDSIP_param->secvar - 1);

    /*____________________________________________________________________________________*/
    status = CPXgetsense (DDSIP_env, DDSIP_lp, sense, DDSIP_param->firstcon, DDSIP_param->firstcon + DDSIP_param->seccon - 1);
    /*____________________________________________________________________________________*/
    status = CPXgetrhs (DDSIP_env, DDSIP_lp, non_stoc_rhs, DDSIP_param->firstcon + DDSIP_param->stocrhs, DDSIP_param->firstcon + DDSIP_param->seccon - 1);
    /*____________________________________________________________________________________*/
    status = CPXgetobj (DDSIP_env, DDSIP_lp, obj_coef, 0, DDSIP_param->firstvar + DDSIP_param->secvar - 1);
    /*____________________________________________________________________________________*/
    //copy rownames scenario many times, append scenario index
    //and enter sense and rhs
    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        for (j = 0; j < DDSIP_param->seccon; j++)
        {
            if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
            {
                fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                return;
            }
            string1 = rowname[j];
            sprintf (string2, "%sSC%.3d", string1, scen);
            scen_spec_rowname[j] = string2;

            if (j < DDSIP_param->stocrhs)
                det_equ_rhs[j] = DDSIP_data->rhs[DDSIP_param->stocrhs * scen + j];
            else
                det_equ_rhs[j] = non_stoc_rhs[j - DDSIP_param->stocrhs];
        }
        status = CPXnewrows (DDSIP_env, det_equ, DDSIP_param->seccon, det_equ_rhs, sense, NULL, scen_spec_rowname);
        for (j = 0; j < DDSIP_param->seccon; j++)
            DDSIP_Free ((void **) &(scen_spec_rowname[j]));
    }

    //copy colnames scenario many times, append scenario index
    //and enter into constraint matrix
    if (!(lb = (double *) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (double)))
            || !(lb_sorted = (double *) calloc (DDSIP_param->secvar, sizeof (double)))
            || !(ub = (double *) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (double)))
            || !(ub_sorted = (double *) calloc (DDSIP_param->secvar, sizeof (double)))
            || !(vartype = (char *) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (char)))
            || !(vartype_sorted = (char *) calloc (DDSIP_param->secvar, sizeof (double)))
            || !(colindex_revers = (int *) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (int)))
            || !(colindex_sorted = (int *) calloc (DDSIP_param->firstvar + DDSIP_param->secvar, sizeof (int))))
    {
        fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
        return;
    }

    status = CPXgetlb (DDSIP_env, det_equ, lb, 0, DDSIP_param->firstvar + DDSIP_param->secvar - 1);
    status = CPXgetub (DDSIP_env, det_equ, ub, 0, DDSIP_param->firstvar + DDSIP_param->secvar - 1);
    status = CPXgetctype (DDSIP_env, det_equ, vartype, 0, DDSIP_param->firstvar + DDSIP_param->secvar - 1);
    for (j = 0; j < DDSIP_param->secvar; j++)
    {
        vartype_sorted[j] = vartype[DDSIP_bb->secondindex[j]];
        lb_sorted[j] = lb[DDSIP_bb->secondindex[j]];
        ub_sorted[j] = ub[DDSIP_bb->secondindex[j]];
    }


    for (scen = 0; scen < DDSIP_param->scenarios; scen++)
    {
        for (j = 0; j < DDSIP_param->secvar; j++)
        {
            if (!(string2 = (char *) calloc (1, 255 * sizeof (char))))
            {
                fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
                return;
            }
            string1 = colname[DDSIP_bb->secondindex[j]];
            sprintf (string2, "%sSC%.3d", string1, scen);
            scen_spec_colname[j] = string2;
            scaled_obj_coef[j] = DDSIP_data->prob[scen] * obj_coef[DDSIP_bb->secondindex[j]];
        }

        status =
            CPXnewcols (DDSIP_env, det_equ, DDSIP_param->secvar, scaled_obj_coef,
                        lb_sorted, ub_sorted, vartype_sorted, scen_spec_colname);
        for (j = 0; j < DDSIP_param->secvar; j++)
            DDSIP_Free ((void **) &(scen_spec_colname[j]));

    }

    /////////////////////////////////////////////////
    for (j = 0; j < DDSIP_param->firstvar; j++)
    {
        colindex_sorted[j] = DDSIP_bb->firstindex[j];
    }
    for (j = 0; j < DDSIP_param->secvar; j++)
    {
        colindex_sorted[DDSIP_param->firstvar + j] = DDSIP_bb->secondindex[j];
    }
    for (j = 0; j < DDSIP_param->firstvar + DDSIP_param->secvar; j++)
    {
        colindex_revers[colindex_sorted[j]] = j;
    }

    k = DDSIP_param->seccon / 60;
    printf ("\n0%%                                                         100%%\n");
    for (i = 0; i < DDSIP_param->seccon; i++)
    {
        for (j = 0; j < DDSIP_param->firstvar; j++)
        {
            if ((status = CPXgetcoef (DDSIP_env, det_equ, DDSIP_param->firstcon + i, colindex_sorted[j], &coef)))
            {
                fprintf (stderr, " Build det. equivalent: Error retrieving coefficient of first-stage Variable %d.\n", j);
                exit (1);
            }
            if (coef)
            {
                for (scen = 0; scen < DDSIP_param->scenarios; scen++)
                {
                    status =
                        CPXchgcoef (DDSIP_env, det_equ, DDSIP_param->firstcon + DDSIP_bb->seccon + scen * DDSIP_param->seccon + i, colindex_sorted[j], coef);
                    if (status)
                    {
                        fprintf (stderr, " Build det. equivalent: Error setting coefficient of first-stage Variable %d.\n", j);
                        exit (1);
                    }
                }
            }
        }
        for (j = DDSIP_param->firstvar; j < DDSIP_param->firstvar + DDSIP_param->secvar; j++)
        {
            if ((status = CPXgetcoef (DDSIP_env, det_equ, DDSIP_param->firstcon + i, colindex_sorted[j], &coef)))
            {
                fprintf (stderr,
                         " Build det. equivalent: Error retrieving coefficient of second-stage Variable %d.\n",
                         j - DDSIP_param->firstvar);
                exit (1);
            }
            if (coef)
            {
                for (scen = 0; scen < DDSIP_param->scenarios; scen++)
                {
                    status =
                        CPXchgcoef (DDSIP_env, det_equ,
                                    DDSIP_param->firstcon + DDSIP_bb->seccon + scen * DDSIP_param->seccon + i, (scen + 1) * DDSIP_param->secvar + j, coef);
                }
                if (status)
                {
                    fprintf (stderr,
                             " Build det. equivalent: Error setting coefficient of second-stage Variable %d.\n",
                             j - DDSIP_param->firstvar);
                    exit (1);
                }
            }
        }
        if (!k)
        {
            for (j = 0; j <= 60 / DDSIP_param->seccon; j++)
                printf ("#");
        }
        else if (i % k == k - 1)
            printf ("#");
    }
    printf ("\n\n");

    ///////delete original second stage rows & cols ////////////////////////////////////////////

    status = CPXdelrows (DDSIP_env, det_equ, DDSIP_param->firstcon, DDSIP_param->firstcon + DDSIP_bb->seccon - 1);
    j = 0;
    for (i = 0; i < DDSIP_param->secvar; i++)
    {
        status = CPXdelcols (DDSIP_env, det_equ, DDSIP_bb->secondindex[i] - j, DDSIP_bb->secondindex[i] - j);
        j++;
    }

    ///////enter stochastic matrix entries//////////////////////////////////////////////////////
    if (DDSIP_param->stocmat)
    {

        if (!(value = (double *) calloc (DDSIP_param->stocmat, sizeof (double)))
                || !(matcol_sorted = (int *) calloc (DDSIP_param->stocmat, sizeof (int))))
        {
            fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
            return;
        }
        for (j = 0; j < DDSIP_param->stocmat; j++)
        {
            matcol_sorted[j] = colindex_revers[DDSIP_data->matcol[j]];
        }
        for (scen = 0; scen < DDSIP_param->scenarios; scen++)
        {
            for (j = 0; j < DDSIP_param->stocmat; j++)
            {
                value[j] = DDSIP_data->matval[scen * DDSIP_param->stocmat + j];
            }
            status = CPXchgcoeflist (DDSIP_env, det_equ, DDSIP_param->stocmat, DDSIP_data->matrow, matcol_sorted, value);
            if (status)
            {
                char errmsg[1024];
                CPXgeterrorstring (DDSIP_env, status, errmsg);
                fprintf (stderr, "in DetEqu: %s\n", errmsg);
            }
            for (j = 0; j < DDSIP_param->stocmat; j++)
            {
                DDSIP_data->matrow[j] += DDSIP_param->seccon;
                if (matcol_sorted[j] >= DDSIP_param->firstvar)
                    matcol_sorted[j] += DDSIP_param->secvar;
            }
        }
        DDSIP_Free ((void **) &(value));
        DDSIP_Free ((void **) &(matcol_sorted));
        //set matrow to the old values
        for (j = 0; j < DDSIP_param->stocmat; j++)
        {
            DDSIP_data->matrow[j] -= DDSIP_param->scenarios * DDSIP_param->seccon;
        }

    }
    ///////enter stochastic cost coefficients //////////////////////////////////////////////////
    if (DDSIP_param->stoccost)
    {

        if (!(value = (double *) calloc (DDSIP_param->stoccost, sizeof (double)))
                || !(matcol_sorted = (int *) calloc (DDSIP_param->stoccost, sizeof (int))))
        {
            fprintf (stderr, "Not enough memory for building deterministic equivalent\n");
            return;
        }
        for (j = 0; j < DDSIP_param->stoccost; j++)
        {
            value[j] = 0.0;
            matcol_sorted[j] = colindex_revers[DDSIP_data->costind[j]];
        }
        for (scen = 0; scen < DDSIP_param->scenarios; scen++)
        {
            for (j = 0; j < DDSIP_param->stoccost; j++)
            {
                if (matcol_sorted[j] >= DDSIP_param->firstvar)
                    value[j] = DDSIP_data->prob[scen] * DDSIP_data->cost[scen * DDSIP_param->stoccost + j];
                else
                    value[j] += DDSIP_data->prob[scen] * DDSIP_data->cost[scen * DDSIP_param->stoccost + j];
            }
            status = CPXchgobj (DDSIP_env, det_equ, DDSIP_param->stoccost, matcol_sorted, value);
            if (status)
            {
                char errmsg[1024];
                CPXgeterrorstring (DDSIP_env, status, errmsg);
                fprintf (stderr, "in DetEqu: %s\n", errmsg);
            }
            for (j = 0; j < DDSIP_param->stoccost; j++)
            {
                if (matcol_sorted[j] >= DDSIP_param->firstvar)
                    matcol_sorted[j] += DDSIP_param->secvar;
            }
        }
        DDSIP_Free ((void **) &(value));
        DDSIP_Free ((void **) &(matcol_sorted));

    }
    ////////////////////////////////////////////////////////////////////////////////////////////

    status = CPXwriteprob (DDSIP_env, det_equ, probname, NULL);
    if (status)
        fprintf (DDSIP_outfile, " *** Deterministic equivalent not written successfully, status = %d\n", status);
    else
        fprintf (DDSIP_outfile, " *** Deterministic equivalent written successfully\n");
    status = CPXfreeprob (DDSIP_env, &det_equ);

    DDSIP_Free ((void **) &(sense));
    DDSIP_Free ((void **) &(vartype));
    DDSIP_Free ((void **) &(rowname));
    DDSIP_Free ((void **) &(rownamestore));
    DDSIP_Free ((void **) &(colname));
    DDSIP_Free ((void **) &(colnamestore));
    DDSIP_Free ((void **) &(det_equ_rhs));
    DDSIP_Free ((void **) &(non_stoc_rhs));
    DDSIP_Free ((void **) &(lb));
    DDSIP_Free ((void **) &(ub));
    DDSIP_Free ((void **) &(vartype_sorted));
    DDSIP_Free ((void **) &(lb_sorted));
    DDSIP_Free ((void **) &(ub_sorted));
    DDSIP_Free ((void **) &(obj_coef));
    DDSIP_Free ((void **) &(scaled_obj_coef));
    DDSIP_Free ((void **) &(colindex_sorted));
    DDSIP_Free ((void **) &(colindex_revers));
    DDSIP_Free ((void **) &(scen_spec_rowname));
    DDSIP_Free ((void **) &(scen_spec_colname));
    return;
}