Beispiel #1
0
bool TestAltivecOps()
{
    std::cout << "\nTesting Altivec operations...\n\n";

    if (HasAltivec() == false)
    {
        std::cout << "\nAltivec not available, skipping test." << std::endl;
        return true;
    }

    // These tests may seem superflous, but we really want to test the
    // Altivec/POWER4 implementation. That does not happen when POWER7
    // or POWER8 is available because we use POWER7's unaligned loads
    // and stores with POWER8's AES, SHA, etc. These tests enage
    // Altivec/POWER4 without POWER7, like on an old PowerMac.

    //********** Unaligned loads and stores **********//
    bool pass1=true;

    CRYPTOPP_ALIGN_DATA(16)
    byte dest[20], src[20] = {23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4};
    const byte st1[16] = {22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7};
    const byte st2[16] = {21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6};
    const byte st3[16] = {20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5};

    VecStore(VecLoad(src), dest);
    pass1 = (0 == std::memcmp(src, dest, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStore(VecLoad(src+1), dest+1);
    pass1 = (0 == std::memcmp(st1, dest+1, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStore(VecLoad(src+2), dest+2);
    pass1 = (0 == std::memcmp(st2, dest+2, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStore(VecLoad(src+3), dest+3);
    pass1 = (0 == std::memcmp(st3, dest+3, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStoreBE(VecLoadBE(src), dest);
    pass1 = (0 == std::memcmp(src, dest, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStoreBE(VecLoadBE(src+1), dest+1);
    pass1 = (0 == std::memcmp(st1, dest+1, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStoreBE(VecLoadBE(src+2), dest+2);
    pass1 = (0 == std::memcmp(st2, dest+2, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStoreBE(VecLoadBE(src+3), dest+3);
    pass1 = (0 == std::memcmp(st3, dest+3, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

#if (CRYPTOPP_LITTLE_ENDIAN)
    VecStore(VecLoadBE(src), dest);
    pass1 = (0 != std::memcmp(src, dest, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);

    VecStoreBE(VecLoad(src), dest);
    pass1 = (0 != std::memcmp(src, dest, 16)) && pass1;
    CRYPTOPP_ASSERT(pass1);
#endif

    if (!pass1)
        std::cout << "FAILED:";
    else
        std::cout << "passed:";
    std::cout << "  Altivec loads and stores" << std::endl;

    //********** Shifts **********//
    bool pass2=true;

    uint8x16_p val = {0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,
                      0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff};

    pass2 = (VecEqual(val, VecShiftLeftOctet<0>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);
    pass2 = (VecEqual(val, VecShiftRightOctet<0>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);

    uint8x16_p lsh1 = {0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,
                       0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0x00};
    uint8x16_p rsh1 = {0x00,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,
                       0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff};

    pass2 = (VecEqual(lsh1, VecShiftLeftOctet<1>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);
    pass2 = (VecEqual(rsh1, VecShiftRightOctet<1>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);

    uint8x16_p lsh15 = {0xff,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,
                        0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00};
    uint8x16_p rsh15 = {0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,
                        0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xff};

    pass2 = (VecEqual(lsh15, VecShiftLeftOctet<15>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);
    pass2 = (VecEqual(rsh15, VecShiftRightOctet<15>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);

    uint8x16_p lsh16 = {0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,
                        0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00};
    uint8x16_p rsh16 = {0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,
                        0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00};

    pass2 = (VecEqual(lsh16, VecShiftLeftOctet<16>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);
    pass2 = (VecEqual(rsh16, VecShiftRightOctet<16>(val))) && pass2;
    CRYPTOPP_ASSERT(pass2);

    if (!pass2)
        std::cout << "FAILED:";
    else
        std::cout << "passed:";
    std::cout << "  Altivec left and right shifts" << std::endl;

    //********** Extraction **********//
    bool pass3=true;

    const byte bex1[] = {0x1f,0x1e,0x1d,0x1c, 0x1b,0x1a,0x19,0x18,
                         0x17,0x16,0x15,0x14, 0x13,0x12,0x11,0x10};
    const byte bex2[] = {0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,
                         0x17,0x16,0x15,0x14, 0x13,0x12,0x11,0x10};
    const byte bex3[] = {0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,
                         0x1f,0x1e,0x1d,0x1c, 0x1b,0x1a,0x19,0x18};

    const uint8x16_p ex1 = (uint8x16_p)VecLoad(bex1);
    const uint8x16_p ex2 = (uint8x16_p)VecLoad(bex2);
    const uint8x16_p ex3 = (uint8x16_p)VecLoad(bex3);

    pass3 = VecEqual(ex2, VecGetLow(ex1)) && pass3;
    CRYPTOPP_ASSERT(pass3);
    pass3 = VecEqual(ex3, VecGetHigh(ex1)) && pass3;
    CRYPTOPP_ASSERT(pass3);

    uint8x16_p ex4 = VecShiftRightOctet<8>(VecShiftLeftOctet<8>(ex1));
    pass3 = VecEqual(ex4, VecGetLow(ex1)) && pass3;
    CRYPTOPP_ASSERT(pass3);
    uint8x16_p ex5 = VecShiftRightOctet<8>(ex1);
    pass3 = VecEqual(ex5, VecGetHigh(ex1)) && pass3;
    CRYPTOPP_ASSERT(pass3);

    if (!pass3)
        std::cout << "FAILED:";
    else
        std::cout << "passed:";
    std::cout << "  Altivec vector extraction" << std::endl;

    return pass1 && pass2 && pass3;
}
Beispiel #2
0
int ReadVolumeHeader (BOOL bBoot, char *encryptedHeader, Password *password, int selected_pkcs5_prf, int pim, BOOL truecryptMode, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo)
{
    char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE];
    CRYPTOPP_ALIGN_DATA(16) KEY_INFO keyInfo;
    PCRYPTO_INFO cryptoInfo;
    char dk[MASTER_KEYDATA_SIZE];
    int enqPkcs5Prf, pkcs5_prf;
    uint16 headerVersion;
    int status = ERR_PARAMETER_INCORRECT;
    int primaryKeyOffset;

    TC_EVENT keyDerivationCompletedEvent;
    TC_EVENT noOutstandingWorkItemEvent;
    KeyDerivationWorkItem *keyDerivationWorkItems;
    KeyDerivationWorkItem *item;
    int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1;
    size_t encryptionThreadCount = GetEncryptionThreadCount();
    size_t queuedWorkItems = 0;
    LONG outstandingWorkItemCount = 0;
    int i;

    // if no PIM specified, use default value
    if (pim < 0)
        pim = 0;

    if (truecryptMode)
    {
        // SHA-256 not supported in TrueCrypt mode
        if (selected_pkcs5_prf == SHA256)
            return ERR_PARAMETER_INCORRECT;
        pkcs5PrfCount--; // don't count SHA-256 in case of TrueCrypt mode
    }

    if (retHeaderCryptoInfo != NULL)
    {
        cryptoInfo = retHeaderCryptoInfo;
    }
    else
    {
        if (!retInfo)
            return ERR_PARAMETER_INCORRECT;

        cryptoInfo = *retInfo = crypto_open ();
        if (cryptoInfo == NULL)
            return ERR_OUTOFMEMORY;
    }

    /* use thread pool only if no PRF was specified */
    if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1))
    {
        keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
        if (!keyDerivationWorkItems)
            return ERR_OUTOFMEMORY;

        for (i = 0; i < pkcs5PrfCount; ++i)
            keyDerivationWorkItems[i].Free = TRUE;

#ifdef DEVICE_DRIVER
        KeInitializeEvent (&keyDerivationCompletedEvent, SynchronizationEvent, FALSE);
        KeInitializeEvent (&noOutstandingWorkItemEvent, SynchronizationEvent, TRUE);
#else
        keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
        if (!keyDerivationCompletedEvent)
        {
            TCfree (keyDerivationWorkItems);
            return ERR_OUTOFMEMORY;
        }

        noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL);
        if (!noOutstandingWorkItemEvent)
        {
            CloseHandle (keyDerivationCompletedEvent);
            TCfree (keyDerivationWorkItems);
            return ERR_OUTOFMEMORY;
        }
#endif
    }

#ifndef DEVICE_DRIVER
    VirtualLock (&keyInfo, sizeof (keyInfo));
    VirtualLock (&dk, sizeof (dk));
#endif

    crypto_loadkey (&keyInfo, password->Text, (int) password->Length);

    // PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password
    memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE);

    // Test all available PKCS5 PRFs
    for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf)
    {
        // if a PRF is specified, we skip all other PRFs
        if (selected_pkcs5_prf != 0 && enqPkcs5Prf != selected_pkcs5_prf)
            continue;

        // skip SHA-256 in case of TrueCrypt mode
        if (truecryptMode && (enqPkcs5Prf == SHA256))
            continue;

        if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1))
        {
            // Enqueue key derivation on thread pool
            if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID)
            {
                for (i = 0; i < pkcs5PrfCount; ++i)
                {
                    item = &keyDerivationWorkItems[i];
                    if (item->Free)
                    {
                        item->Free = FALSE;
                        item->KeyReady = FALSE;
                        item->Pkcs5Prf = enqPkcs5Prf;

                        EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent,
                                                                &item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey,
                                                                keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, pim, truecryptMode, bBoot), item->DerivedKey);

                        ++queuedWorkItems;
                        break;
                    }
                }

                if (enqPkcs5Prf < LAST_PRF_ID)
                    continue;
            }
            else
                --enqPkcs5Prf;

            // Wait for completion of a key derivation
            while (queuedWorkItems > 0)
            {
                for (i = 0; i < pkcs5PrfCount; ++i)
                {
                    item = &keyDerivationWorkItems[i];
                    if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE)
                    {
                        pkcs5_prf = item->Pkcs5Prf;
                        keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, pim, truecryptMode, bBoot);
                        memcpy (dk, item->DerivedKey, sizeof (dk));

                        item->Free = TRUE;
                        --queuedWorkItems;
                        goto KeyReady;
                    }
                }

                if (queuedWorkItems > 0)
                    TC_WAIT_EVENT (keyDerivationCompletedEvent);
            }
            continue;
KeyReady:
            ;
        }
        else
        {
            pkcs5_prf = enqPkcs5Prf;
            keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, pim, truecryptMode, bBoot);

            switch (pkcs5_prf)
            {
            case RIPEMD160:
                derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
                                      PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
                break;

            case SHA512:
                derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
                                   PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
                break;

            case WHIRLPOOL:
                derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
                                      PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
                break;

            case SHA256:
                derive_key_sha256 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
                                   PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
                break;

            default:
                // Unknown/wrong ID
                TC_THROW_FATAL_EXCEPTION;
            }
        }

        // Test all available modes of operation
        for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID;
                cryptoInfo->mode <= LAST_MODE_OF_OPERATION;
                cryptoInfo->mode++)
        {
            switch (cryptoInfo->mode)
            {

            default:
                primaryKeyOffset = 0;
            }

            // Test all available encryption algorithms
            for (cryptoInfo->ea = EAGetFirst ();
                    cryptoInfo->ea != 0;
                    cryptoInfo->ea = EAGetNext (cryptoInfo->ea))
            {
                int blockSize;

                if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode))
                    continue;	// This encryption algorithm has never been available with this mode of operation

                blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea));

                status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks);
                if (status == ERR_CIPHER_INIT_FAILURE)
                    goto err;

                // Init objects related to the mode of operation

                if (cryptoInfo->mode == XTS)
                {
                    // Copy the secondary key (if cascade, multiple concatenated)
                    memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));

                    // Secondary key schedule
                    if (!EAInitMode (cryptoInfo))
                    {
                        status = ERR_MODE_INIT_FAILED;
                        goto err;
                    }
                }
                else
                {
                    continue;
                }

                // Copy the header for decryption
                memcpy (header, encryptedHeader, sizeof (header));

                // Try to decrypt header

                DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);

                // Magic 'VERA' or 'TRUE' depending if we are in TrueCrypt mode or not
                if ((truecryptMode && GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x54525545)
                        || (!truecryptMode && GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x56455241)
                   )
                    continue;

                // Header version
                headerVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION);

                if (headerVersion > VOLUME_HEADER_VERSION)
                {
                    status = ERR_NEW_VERSION_REQUIRED;
                    goto err;
                }

                // Check CRC of the header fields
                if (!ReadVolumeHeaderRecoveryMode
                        && headerVersion >= 4
                        && GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC))
                    continue;

                // Required program version
                cryptoInfo->RequiredProgramVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_REQUIRED_VERSION);
                if (truecryptMode)
                {
                    if (cryptoInfo->RequiredProgramVersion < 0x600 || cryptoInfo->RequiredProgramVersion > 0x71a)
                    {
                        status = ERR_UNSUPPORTED_TRUECRYPT_FORMAT | (((int)cryptoInfo->RequiredProgramVersion) << 16);
                        goto err;
                    }
                    cryptoInfo->LegacyVolume = FALSE;
                }
                else
                    cryptoInfo->LegacyVolume = cryptoInfo->RequiredProgramVersion < 0x10b;

                // Check CRC of the key set
                if (!ReadVolumeHeaderRecoveryMode
                        && GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE))
                    continue;

                // Now we have the correct password, cipher, hash algorithm, and volume type

                // Check the version required to handle this volume
                if (!truecryptMode && (cryptoInfo->RequiredProgramVersion > VERSION_NUM))
                {
                    status = ERR_NEW_VERSION_REQUIRED;
                    goto err;
                }

                // Header version
                cryptoInfo->HeaderVersion = headerVersion;

                // Volume creation time (legacy)
                cryptoInfo->volume_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_CREATION_TIME).Value;

                // Header creation time (legacy)
                cryptoInfo->header_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_MODIFICATION_TIME).Value;

                // Hidden volume size (if any)
                cryptoInfo->hiddenVolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE).Value;

                // Hidden volume status
                cryptoInfo->hiddenVolume = (cryptoInfo->hiddenVolumeSize != 0);

                // Volume size
                cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE);

                // Encrypted area size and length
                cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START);
                cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH);

                // Flags
                cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS);

                // Sector size
                if (headerVersion >= 5)
                    cryptoInfo->SectorSize = GetHeaderField32 (header, TC_HEADER_OFFSET_SECTOR_SIZE);
                else
                    cryptoInfo->SectorSize = TC_SECTOR_SIZE_LEGACY;

                if (cryptoInfo->SectorSize < TC_MIN_VOLUME_SECTOR_SIZE
                        || cryptoInfo->SectorSize > TC_MAX_VOLUME_SECTOR_SIZE
                        || cryptoInfo->SectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0)
                {
                    status = ERR_PARAMETER_INCORRECT;
                    goto err;
                }

                // Preserve scheduled header keys if requested
                if (retHeaderCryptoInfo)
                {
                    if (retInfo == NULL)
                    {
                        cryptoInfo->pkcs5 = pkcs5_prf;
                        cryptoInfo->noIterations = keyInfo.noIterations;
                        cryptoInfo->bTrueCryptMode = truecryptMode;
                        cryptoInfo->volumePim = pim;
                        goto ret;
                    }

                    cryptoInfo = *retInfo = crypto_open ();
                    if (cryptoInfo == NULL)
                    {
                        status = ERR_OUTOFMEMORY;
                        goto err;
                    }

                    memcpy (cryptoInfo, retHeaderCryptoInfo, sizeof (*cryptoInfo));
                }

                // Master key data
                memcpy (keyInfo.master_keydata, header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE);
                memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE);

                // PKCS #5
                memcpy (cryptoInfo->salt, keyInfo.salt, PKCS5_SALT_SIZE);
                cryptoInfo->pkcs5 = pkcs5_prf;
                cryptoInfo->noIterations = keyInfo.noIterations;
                cryptoInfo->bTrueCryptMode = truecryptMode;
                cryptoInfo->volumePim = pim;

                // Init the cipher with the decrypted master key
                status = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks);
                if (status == ERR_CIPHER_INIT_FAILURE)
                    goto err;

                switch (cryptoInfo->mode)
                {

                default:
                    // The secondary master key (if cascade, multiple concatenated)
                    memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));

                }

                if (!EAInitMode (cryptoInfo))
                {
                    status = ERR_MODE_INIT_FAILED;
                    goto err;
                }

                status = ERR_SUCCESS;
                goto ret;
            }
        }
    }
    status = ERR_PASSWORD_WRONG;

err:
    if (cryptoInfo != retHeaderCryptoInfo)
    {
        crypto_close(cryptoInfo);
        *retInfo = NULL;
    }

ret:
    burn (&keyInfo, sizeof (keyInfo));
    burn (dk, sizeof(dk));

#ifndef DEVICE_DRIVER
    VirtualUnlock (&keyInfo, sizeof (keyInfo));
    VirtualUnlock (&dk, sizeof (dk));
#endif

    if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1))
    {
        TC_WAIT_EVENT (noOutstandingWorkItemEvent);

        burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
        TCfree (keyDerivationWorkItems);

#ifndef DEVICE_DRIVER
        CloseHandle (keyDerivationCompletedEvent);
        CloseHandle (noOutstandingWorkItemEvent);
#endif
    }

    return status;
}