void AddEmitSurfaceLights( const Vector &vStart, Vector lightBoxColor[6] )
{
	fltx4 fractionVisible;

	FourVectors vStart4, wlOrigin4;
	vStart4.DuplicateVector ( vStart );

	for ( int iLight=0; iLight < *pNumworldlights; iLight++ )
	{
		dworldlight_t *wl = &dworldlights[iLight];

		// Should this light even go in the ambient cubes?
		if ( !( wl->flags & DWL_FLAGS_INAMBIENTCUBE ) )
			continue;

		Assert( wl->type == emit_surface );

		// Can this light see the point?
		wlOrigin4.DuplicateVector ( wl->origin );
		TestLine ( vStart4, wlOrigin4, &fractionVisible );
		if ( !TestSignSIMD ( CmpGtSIMD ( fractionVisible, Four_Zeros ) ) )
			continue;

		// Add this light's contribution.
		Vector vDelta = wl->origin - vStart;
		float flDistanceScale = Engine_WorldLightDistanceFalloff( wl, vDelta );

		Vector vDeltaNorm = vDelta;
		VectorNormalize( vDeltaNorm );
		float flAngleScale = Engine_WorldLightAngle( wl, wl->normal, vDeltaNorm, vDeltaNorm );

		float ratio = flDistanceScale * flAngleScale * SubFloat ( fractionVisible, 0 );
		if ( ratio == 0 )
			continue;

		for ( int i=0; i < 6; i++ )
		{
			float t = DotProduct( g_BoxDirections[i], vDeltaNorm );
			if ( t > 0 )
			{
				lightBoxColor[i] += wl->intensity * (t * ratio);
			}
		}
	}	
}
void RayTracingEnvironment::RenderScene(
	int width, int height,								   // width and height of desired rendering
	int stride,											 // actual width in pixels of target buffer
	uint32 *output_buffer,									// pointer to destination 
	Vector CameraOrigin,									// eye position
	Vector ULCorner,										// word space coordinates of upper left
															// monitor corner
	Vector URCorner,										// top right corner
	Vector LLCorner,										// lower left
	Vector LRCorner,										// lower right
	RayTraceLightingMode_t lmode)
{
	// first, compute deltas
	Vector dxvector=URCorner;
	dxvector-=ULCorner;
	dxvector*=(1.0/width);
	Vector dxvectortimes2=dxvector;
	dxvectortimes2+=dxvector;

	Vector dyvector=LLCorner;
	dyvector-=ULCorner;
	dyvector*=(1.0/height);


	// block_offsets-relative offsets for eahc of the 4 pixels in the block, in sse format
	FourVectors block_offsets;
	block_offsets.LoadAndSwizzle(Vector(0,0,0),dxvector,dyvector,dxvector+dyvector);
	
	FourRays myrays;
	myrays.origin.DuplicateVector(CameraOrigin);
	
	// tmprays is used fo rthe case when we cannot trace 4 rays at once.
	FourRays tmprays;
	tmprays.origin.DuplicateVector(CameraOrigin);

	// now, we will ray trace pixels. we will do the rays in a 2x2 pattern
	for(int y=0;y<height;y+=2)
	{
		Vector SLoc=dyvector;
		SLoc*=((float) y);
		SLoc+=ULCorner;
		uint32 *dest=output_buffer+y*stride;
		for(int x=0;x<width;x+=2)
		{
			myrays.direction.DuplicateVector(SLoc);
			myrays.direction+=block_offsets;
			myrays.direction.VectorNormalize();
			
			RayTracingResult rslt;
			Trace4Rays(myrays,all_zeros,TraceLimit, &rslt);
			if ((rslt.HitIds[0]==-1) && (rslt.HitIds[1]==-1) && 
				(rslt.HitIds[2]==-1) && (rslt.HitIds[3]==-1))
				MapLinearIntensities(BackgroundColor,dest,dest+1,dest+stride,dest+stride+1);
			else
			{
				// make sure normal points back towards ray origin
				fltx4 ndoti=rslt.surface_normal*myrays.direction;
				fltx4 bad_dirs=AndSIMD(CmpGtSIMD(ndoti,Four_Zeros),
										   LoadAlignedSIMD((float *) signmask));

				// flip signs of all "wrong" normals
				rslt.surface_normal.x=XorSIMD(bad_dirs,rslt.surface_normal.x);
				rslt.surface_normal.y=XorSIMD(bad_dirs,rslt.surface_normal.y);
				rslt.surface_normal.z=XorSIMD(bad_dirs,rslt.surface_normal.z);

				FourVectors intens;
				intens.DuplicateVector(Vector(0,0,0));
				// set up colors
				FourVectors surf_colors;
				surf_colors.DuplicateVector(Vector(0,0,0));
				for(int i=0;i<4;i++)
				{
					if (rslt.HitIds[i]>=0)
					{
						surf_colors.X(i)=TriangleColors[rslt.HitIds[i]].x;
						surf_colors.Y(i)=TriangleColors[rslt.HitIds[i]].y;
						surf_colors.Z(i)=TriangleColors[rslt.HitIds[i]].z;
					}

				}
				FourVectors surface_pos=myrays.direction;
				surface_pos*=rslt.HitDistance;
				surface_pos+=myrays.origin;
				
				switch(lmode)
				{
					case DIRECT_LIGHTING:
					{
						// light all points
						for(int l=0;l<LightList.Count();l++)
						{
							LightList[l].ComputeLightAtPoints(surface_pos,rslt.surface_normal,
															  intens);
						}
					}
					break;

					case DIRECT_LIGHTING_WITH_SHADOWS:
					{
						// light all points
						for(int l=0;l<LightList.Count();l++)
						{
							FourVectors ldir;
							ldir.DuplicateVector(LightList[l].m_Position);
							ldir-=surface_pos;
							fltx4 MaxT=ldir.length();
							ldir.VectorNormalizeFast();
							// now, compute shadow flag
							FourRays myrays;
							myrays.origin=surface_pos;
							FourVectors epsilon=ldir;
							epsilon*=0.01;
							myrays.origin+=epsilon;
							myrays.direction=ldir;
							RayTracingResult shadowtest;
							Trace4Rays(myrays,Four_Zeros,MaxT, &shadowtest);
							fltx4 unshadowed=CmpGtSIMD(shadowtest.HitDistance,MaxT);
							if (! (IsAllZeros(unshadowed)))
							{
								FourVectors tmp;
								tmp.DuplicateVector(Vector(0,0,0));
								LightList[l].ComputeLightAtPoints(surface_pos,rslt.surface_normal,
																  tmp);
								intens.x=AddSIMD(intens.x,AndSIMD(tmp.x,unshadowed));
								intens.y=AddSIMD(intens.y,AndSIMD(tmp.y,unshadowed));
								intens.z=AddSIMD(intens.z,AndSIMD(tmp.z,unshadowed));
							}
						}
					}
					break;
				}
				// now, mask off non-hitting pixels
				intens.VProduct(surf_colors);
				fltx4 no_hit_mask=CmpGtSIMD(rslt.HitDistance,TraceLimit);
				
				intens.x=OrSIMD(AndSIMD(BackgroundColor.x,no_hit_mask),
								   AndNotSIMD(no_hit_mask,intens.x));
				intens.y=OrSIMD(AndSIMD(BackgroundColor.y,no_hit_mask),
								   AndNotSIMD(no_hit_mask,intens.y));
				intens.z=OrSIMD(AndSIMD(BackgroundColor.y,no_hit_mask),
								   AndNotSIMD(no_hit_mask,intens.z));

				MapLinearIntensities(intens,dest,dest+1,dest+stride,dest+stride+1);
			}
			dest+=2;
			SLoc+=dxvectortimes2;
		}
	}
}
void LightDesc_t::ComputeLightAtPoints( const FourVectors &pos, const FourVectors &normal,
										FourVectors &color, bool DoHalfLambert ) const
{
	FourVectors delta;
	Assert((m_Type==MATERIAL_LIGHT_POINT) || (m_Type==MATERIAL_LIGHT_SPOT) || (m_Type==MATERIAL_LIGHT_DIRECTIONAL));
	switch (m_Type)
	{
		case MATERIAL_LIGHT_POINT:
		case MATERIAL_LIGHT_SPOT:
			delta.DuplicateVector(m_Position);
			delta-=pos;
			break;
				
		case MATERIAL_LIGHT_DIRECTIONAL:
			ComputeLightAtPointsForDirectional( pos, normal, color, DoHalfLambert );
			return;

		default:
			return;
	}

	fltx4 dist2 = delta*delta;

	dist2=MaxSIMD( Four_Ones, dist2 );

	fltx4 falloff;

	if( m_Flags & LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION0 )
	{
		falloff = ReplicateX4(m_Attenuation0);
	}
	else
		falloff= Four_Epsilons;

	if( m_Flags & LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION1 )
	{
		falloff=AddSIMD(falloff,MulSIMD(ReplicateX4(m_Attenuation1),SqrtEstSIMD(dist2)));
	}

	if( m_Flags & LIGHTTYPE_OPTIMIZATIONFLAGS_HAS_ATTENUATION2 )
	{
		falloff=AddSIMD(falloff,MulSIMD(ReplicateX4(m_Attenuation2),dist2));
	}

	falloff=ReciprocalEstSIMD(falloff);
	// Cull out light beyond this radius
	// now, zero out elements for which dist2 was > range^2. !!speed!! lights should store dist^2 in sse format
	if (m_Range != 0.f)
	{
		fltx4 RangeSquared=ReplicateX4(m_RangeSquared); // !!speed!!
		falloff=AndSIMD(falloff,CmpLtSIMD(dist2,RangeSquared));
	}

	delta.VectorNormalizeFast();
	fltx4 strength=delta*normal;
	if (DoHalfLambert)
	{
		strength=AddSIMD(MulSIMD(strength,Four_PointFives),Four_PointFives);
	}
	else
		strength=MaxSIMD(Four_Zeros,delta*normal);
		
	switch(m_Type)
	{
		case MATERIAL_LIGHT_POINT:
			// half-lambert
			break;
				
		case MATERIAL_LIGHT_SPOT:
		{
			fltx4 dot2=SubSIMD(Four_Zeros,delta*m_Direction); // dot position with spot light dir for cone falloff


			fltx4 cone_falloff_scale=MulSIMD(ReplicateX4(m_OneOverThetaDotMinusPhiDot),
												 SubSIMD(dot2,ReplicateX4(m_PhiDot)));
			cone_falloff_scale=MinSIMD(cone_falloff_scale,Four_Ones);
			
			if ((m_Falloff!=0.0) && (m_Falloff!=1.0))
			{
				// !!speed!! could compute integer exponent needed by powsimd and store in light
				cone_falloff_scale=PowSIMD(cone_falloff_scale,m_Falloff);
			}
			strength=MulSIMD(cone_falloff_scale,strength);

			// now, zero out lighting where dot2<phidot. This will mask out any invalid results
			// from pow function, etc
			fltx4 OutsideMask=CmpGtSIMD(dot2,ReplicateX4(m_PhiDot)); // outside light cone?
			strength=AndSIMD(OutsideMask,strength);
		}
		break;

		default:
			break;
	}
	strength=MulSIMD(strength,falloff);
	color.x=AddSIMD(color.x,MulSIMD(strength,ReplicateX4(m_Color.x)));
	color.y=AddSIMD(color.y,MulSIMD(strength,ReplicateX4(m_Color.y)));
	color.z=AddSIMD(color.z,MulSIMD(strength,ReplicateX4(m_Color.z)));
}
void RayTracingEnvironment::ComputeVirtualLightSources(void)
{
	int start_pos=0;
	for(int b=0;b<3;b++)
	{
		int nl=LightList.Count();
		int where_to_start=start_pos;
		start_pos=nl;
		for(int l=where_to_start;l<nl;l++)
		{
			DirectionalSampler_t sample_generator;
			int n_desired=1*LightList[l].m_Color.Length();
			if (LightList[l].m_Type==MATERIAL_LIGHT_SPOT)
				n_desired*=LightList[l].m_Phi/2;
			for(int try1=0;try1<n_desired;try1++)
			{
				LightDesc_t const &li=LightList[l];
				FourRays myrays;
				myrays.origin.DuplicateVector(li.m_Position);
				RayTracingResult rslt;
				Vector trial_dir=sample_generator.NextValue();
				if (li.IsDirectionWithinLightCone(trial_dir))
				{
					myrays.direction.DuplicateVector(trial_dir);
					Trace4Rays(myrays,all_zeros,ReplicateX4(1000.0), &rslt);
					if ((rslt.HitIds[0]!=-1))
					{
						// make sure normal points back towards ray origin
						fltx4 ndoti=rslt.surface_normal*myrays.direction;
						fltx4 bad_dirs=AndSIMD(CmpGtSIMD(ndoti,Four_Zeros),
												   LoadAlignedSIMD((float *) signmask));
						
						// flip signs of all "wrong" normals
						rslt.surface_normal.x=XorSIMD(bad_dirs,rslt.surface_normal.x);
						rslt.surface_normal.y=XorSIMD(bad_dirs,rslt.surface_normal.y);
						rslt.surface_normal.z=XorSIMD(bad_dirs,rslt.surface_normal.z);

						// a hit! let's make a virtual light source

						// treat the virtual light as a disk with its center at the hit position
						// and its radius scaled by the amount of the solid angle this probe
						// represents.
						float area_of_virtual_light=
							4.0*M_PI*SQ( SubFloat( rslt.HitDistance, 0 ) )*(1.0/n_desired);

						FourVectors intens;
						intens.DuplicateVector(Vector(0,0,0));

						FourVectors surface_pos=myrays.direction;
						surface_pos*=rslt.HitDistance;
						surface_pos+=myrays.origin;
						FourVectors delta=rslt.surface_normal;
						delta*=0.1;
						surface_pos+=delta;
						LightList[l].ComputeLightAtPoints(surface_pos,rslt.surface_normal,
														  intens);
						FourVectors surf_colors;
						surf_colors.DuplicateVector(TriangleColors[rslt.HitIds[0]]);
						intens*=surf_colors;
						// see if significant
						LightDesc_t l1;
						l1.m_Type=MATERIAL_LIGHT_SPOT;
						l1.m_Position=Vector(surface_pos.X(0),surface_pos.Y(0),surface_pos.Z(0));
						l1.m_Direction=Vector(rslt.surface_normal.X(0),rslt.surface_normal.Y(0),
											  rslt.surface_normal.Z(0));
						l1.m_Color=Vector(intens.X(0),intens.Y(0),intens.Z(0));
						if (l1.m_Color.Length()>0)
						{
							l1.m_Color*=area_of_virtual_light/M_PI;
							l1.m_Range=0.0;
							l1.m_Falloff=1.0;
							l1.m_Attenuation0=1.0;
							l1.m_Attenuation1=0.0;
							l1.m_Attenuation2=1.0;			// intens falls off as 1/r^2
							l1.m_Theta=0;
							l1.m_Phi=M_PI;
							l1.RecalculateDerivedValues();
							LightList.AddToTail(l1);
						}
					}
				}
			}
		}
	}
}
void RayTracingEnvironment::Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax,
									   int DirectionSignMask, RayTracingResult *rslt_out,
									   int32 skip_id, ITransparentTriangleCallback *pCallback)
{
	rays.Check();

	memset(rslt_out->HitIds,0xff,sizeof(rslt_out->HitIds));

	rslt_out->HitDistance=ReplicateX4(1.0e23);

	rslt_out->surface_normal.DuplicateVector(Vector(0.,0.,0.));
	FourVectors OneOverRayDir=rays.direction;
	OneOverRayDir.MakeReciprocalSaturate();
	
	// now, clip rays against bounding box
	for(int c=0;c<3;c++)
	{
		fltx4 isect_min_t=
			MulSIMD(SubSIMD(ReplicateX4(m_MinBound[c]),rays.origin[c]),OneOverRayDir[c]);
		fltx4 isect_max_t=
			MulSIMD(SubSIMD(ReplicateX4(m_MaxBound[c]),rays.origin[c]),OneOverRayDir[c]);
		TMin=MaxSIMD(TMin,MinSIMD(isect_min_t,isect_max_t));
		TMax=MinSIMD(TMax,MaxSIMD(isect_min_t,isect_max_t));
	}
	fltx4 active=CmpLeSIMD(TMin,TMax);					// mask of which rays are active
	if (! IsAnyNegative(active) )
		return;												// missed bounding box

	int32 mailboxids[MAILBOX_HASH_SIZE];					// used to avoid redundant triangle tests
	memset(mailboxids,0xff,sizeof(mailboxids));				// !!speed!! keep around?

	int front_idx[3],back_idx[3];							// based on ray direction, whether to
															// visit left or right node first

	if (DirectionSignMask & 1)
	{
		back_idx[0]=0;
		front_idx[0]=1;
	}
		else
	{
		back_idx[0]=1;
		front_idx[0]=0;
	}
	if (DirectionSignMask & 2)
	{
		back_idx[1]=0;
		front_idx[1]=1;
	}
	else
	{
		back_idx[1]=1;
		front_idx[1]=0;
	}
	if (DirectionSignMask & 4)
	{
		back_idx[2]=0;
		front_idx[2]=1;
	}
	else
	{
		back_idx[2]=1;
		front_idx[2]=0;
	}
		
	NodeToVisit NodeQueue[MAX_NODE_STACK_LEN];
	CacheOptimizedKDNode const *CurNode=&(OptimizedKDTree[0]);
	NodeToVisit *stack_ptr=&NodeQueue[MAX_NODE_STACK_LEN];
	while(1)
	{
		while (CurNode->NodeType() != KDNODE_STATE_LEAF)		// traverse until next leaf
		{	   
			int split_plane_number=CurNode->NodeType();
			CacheOptimizedKDNode const *FrontChild=&(OptimizedKDTree[CurNode->LeftChild()]);
			
			fltx4 dist_to_sep_plane=						// dist=(split-org)/dir
				MulSIMD(
					SubSIMD(ReplicateX4(CurNode->SplittingPlaneValue),
							   rays.origin[split_plane_number]),OneOverRayDir[split_plane_number]);
			fltx4 active=CmpLeSIMD(TMin,TMax);			// mask of which rays are active

			// now, decide how to traverse children. can either do front,back, or do front and push
			// back.
			fltx4 hits_front=AndSIMD(active,CmpGeSIMD(dist_to_sep_plane,TMin));
			if (! IsAnyNegative(hits_front))
			{
				// missed the front. only traverse back
				//printf("only visit back %d\n",CurNode->LeftChild()+back_idx[split_plane_number]);
				CurNode=FrontChild+back_idx[split_plane_number];
				TMin=MaxSIMD(TMin, dist_to_sep_plane);

			}
			else
			{
				fltx4 hits_back=AndSIMD(active,CmpLeSIMD(dist_to_sep_plane,TMax));
				if (! IsAnyNegative(hits_back) )
				{
					// missed the back - only need to traverse front node
					//printf("only visit front %d\n",CurNode->LeftChild()+front_idx[split_plane_number]);
					CurNode=FrontChild+front_idx[split_plane_number];
					TMax=MinSIMD(TMax, dist_to_sep_plane);
				}
				else
				{
					// at least some rays hit both nodes.
					// must push far, traverse near
 					//printf("visit %d,%d\n",CurNode->LeftChild()+front_idx[split_plane_number],
 					//	   CurNode->LeftChild()+back_idx[split_plane_number]);
					assert(stack_ptr>NodeQueue);
					--stack_ptr;
					stack_ptr->node=FrontChild+back_idx[split_plane_number];
					stack_ptr->TMin=MaxSIMD(TMin,dist_to_sep_plane);
					stack_ptr->TMax=TMax;
					CurNode=FrontChild+front_idx[split_plane_number];
					TMax=MinSIMD(TMax,dist_to_sep_plane);
				}
			}
		}
		// hit a leaf! must do intersection check
		int ntris=CurNode->NumberOfTrianglesInLeaf();
		if (ntris)
		{
			int32 const *tlist=&(TriangleIndexList[CurNode->TriangleIndexStart()]);
			do
			{
				int tnum=*(tlist++);
				//printf("try tri %d\n",tnum);
				// check mailbox
				int mbox_slot=tnum & (MAILBOX_HASH_SIZE-1);
				TriIntersectData_t const *tri = &( OptimizedTriangleList[tnum].m_Data.m_IntersectData );
				if ( ( mailboxids[mbox_slot] != tnum ) && ( tri->m_nTriangleID != skip_id ) )
				{
					n_intersection_calculations++;
					mailboxids[mbox_slot] = tnum;
					// compute plane intersection


					FourVectors N;
					N.x = ReplicateX4( tri->m_flNx );
					N.y = ReplicateX4( tri->m_flNy );
					N.z = ReplicateX4( tri->m_flNz );

					fltx4 DDotN = rays.direction * N;
					// mask off zero or near zero (ray parallel to surface)
					fltx4 did_hit = OrSIMD( CmpGtSIMD( DDotN,FourEpsilons ),
											CmpLtSIMD( DDotN, FourNegativeEpsilons ) );

					fltx4 numerator=SubSIMD( ReplicateX4( tri->m_flD ), rays.origin * N );

					fltx4 isect_t=DivSIMD( numerator,DDotN );
					// now, we have the distance to the plane. lets update our mask
					did_hit = AndSIMD( did_hit, CmpGtSIMD( isect_t, FourZeros ) );
					//did_hit=AndSIMD(did_hit,CmpLtSIMD(isect_t,TMax));
					did_hit = AndSIMD( did_hit, CmpLtSIMD( isect_t, rslt_out->HitDistance ) );

					if ( ! IsAnyNegative( did_hit ) )
						continue;

					// now, check 3 edges
					fltx4 hitc1 = AddSIMD( rays.origin[tri->m_nCoordSelect0],
										MulSIMD( isect_t, rays.direction[ tri->m_nCoordSelect0] ) );
					fltx4 hitc2 = AddSIMD( rays.origin[tri->m_nCoordSelect1],
										   MulSIMD( isect_t, rays.direction[tri->m_nCoordSelect1] ) );
					
					// do barycentric coordinate check
					fltx4 B0 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[0] ), hitc1 );

					B0 = AddSIMD(
						B0,
						MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[1] ), hitc2 ) );
					B0 = AddSIMD(
						B0, ReplicateX4( tri->m_ProjectedEdgeEquations[2] ) );

					did_hit = AndSIMD( did_hit, CmpGeSIMD( B0, FourZeros ) );

					fltx4 B1 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[3] ), hitc1 );
					B1 = AddSIMD(
						B1,
						MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[4]), hitc2 ) );

					B1 = AddSIMD(
						B1, ReplicateX4( tri->m_ProjectedEdgeEquations[5] ) );
					
					did_hit = AndSIMD( did_hit, CmpGeSIMD( B1, FourZeros ) );

					fltx4 B2 = AddSIMD( B1, B0 );
					did_hit = AndSIMD( did_hit, CmpLeSIMD( B2, Four_Ones ) );

					if ( ! IsAnyNegative( did_hit ) )
						continue;

					// if the triangle is transparent
					if ( tri->m_nFlags & FCACHETRI_TRANSPARENT )
					{
						if ( pCallback )
						{
							// assuming a triangle indexed as v0, v1, v2
							// the projected edge equations are set up such that the vert opposite the first
							// equation is v2, and the vert opposite the second equation is v0
							// Therefore we pass them back in 1, 2, 0 order
							// Also B2 is currently B1 + B0 and needs to be 1 - (B1+B0) in order to be a real
							// barycentric coordinate.  Compute that now and pass it to the callback
							fltx4 b2 = SubSIMD( Four_Ones, B2 );
							if ( pCallback->VisitTriangle_ShouldContinue( *tri, rays, &did_hit, &B1, &b2, &B0, tnum ) )
							{
								did_hit = Four_Zeros;
							}
						}
					}
					// now, set the hit_id and closest_hit fields for any enabled rays
					fltx4 replicated_n = ReplicateIX4(tnum);
					StoreAlignedSIMD((float *) rslt_out->HitIds,
								 OrSIMD(AndSIMD(replicated_n,did_hit),
										   AndNotSIMD(did_hit,LoadAlignedSIMD(
															 (float *) rslt_out->HitIds))));
					rslt_out->HitDistance=OrSIMD(AndSIMD(isect_t,did_hit),
									 AndNotSIMD(did_hit,rslt_out->HitDistance));

					rslt_out->surface_normal.x=OrSIMD(
						AndSIMD(N.x,did_hit),
						AndNotSIMD(did_hit,rslt_out->surface_normal.x));
					rslt_out->surface_normal.y=OrSIMD(
						AndSIMD(N.y,did_hit),
						AndNotSIMD(did_hit,rslt_out->surface_normal.y));
					rslt_out->surface_normal.z=OrSIMD(
						AndSIMD(N.z,did_hit),
						AndNotSIMD(did_hit,rslt_out->surface_normal.z));
					
				}
			} while (--ntris);
			// now, check if all rays have terminated
			fltx4 raydone=CmpLeSIMD(TMax,rslt_out->HitDistance);
			if (! IsAnyNegative(raydone))
			{
				return;
			}
		}
		
 		if (stack_ptr==&NodeQueue[MAX_NODE_STACK_LEN])
		{
			return;
		}
		// pop stack!
		CurNode=stack_ptr->node;
		TMin=stack_ptr->TMin;
		TMax=stack_ptr->TMax;
		stack_ptr++;
	}
}