Beispiel #1
0
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *xset , *cset, *mset=NULL ;
   int nopt=1 , method=PEARSON , do_autoclip=0 ;
   int nvox , nvals , ii, jj, kout, kin, polort=1 ;
   int ix1,jy1,kz1, ix2, jy2, kz2 ;
   char *prefix = "degree_centrality" ;
   byte *mask=NULL;
   int   nmask , abuc=1 ;
   int   all_source=0;        /* output all source voxels  25 Jun 2010 [rickr] */
   char str[32] , *cpt ;
   int *imap = NULL ; MRI_vectim *xvectim ;
   float (*corfun)(int,float *,float*) = NULL ;
   /* djc - add 1d file output for similarity matrix */
   FILE *fout1D=NULL;

   /* CC - we will have two subbricks: binary and weighted centrality */
   int nsubbriks = 2;
   int subbrik = 0;
   float * bodset;
   float * wodset;

   int nb_ctr = 0;

   /* CC - added flags for thresholding correlations */
   double thresh = 0.0;
   double othresh = 0.0;
   int dothresh = 0;
   double sparsity = 0.0;
   int dosparsity = 0;
  
   /* variables for calculating degree centrality */
   long * binaryDC = NULL;
   double * weightedDC = NULL;

   /* variables for histogram */
   hist_node_head* histogram=NULL;
   hist_node* hptr=NULL;
   hist_node* pptr=NULL;
   int bottom_node_idx = 0;
   int totNumCor = 0;
   long totPosCor = 0;
   int ngoal = 0;
   int nretain = 0;
   float binwidth = 0.0;
   int nhistnodes = 50;

   /*----*/

   AFNI_SETUP_OMP(0) ;  /* 24 Jun 2013 */

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
      printf(
"Usage: 3dDegreeCentrality [options] dset\n"
"  Computes voxelwise weighted and binary degree centrality and\n"
"  stores the result in a new 3D bucket dataset as floats to\n"
"  preserve their values. Degree centrality reflects the strength and\n"
"  extent of the correlation of a voxel with every other voxel in\n"
"  the brain.\n\n"
"  Conceptually the process involves: \n"
"      1. Calculating the correlation between voxel time series for\n"
"         every pair of voxels in the brain (as determined by masking)\n"
"      2. Applying a threshold to the resulting correlations to exclude\n"
"         those that might have arisen by chance, or to sparsify the\n"
"         connectivity graph.\n"
"      3. At each voxel, summarizing its correlation with other voxels\n"
"         in the brain, by either counting the number of voxels correlated\n"
"         with the seed voxel (binary) or by summing the correlation \n"
"         coefficients (weighted).\n"
"   Practically the algorithm is ordered differently to optimize for\n"
"   computational time and memory usage.\n\n"
"   The threshold can be supplied as a correlation coefficient, \n"
"   or a sparsity threshold. The sparsity threshold reflects the fraction\n"
"   of connections that should be retained after the threshold has been\n"
"   applied. To minimize resource consumption, using a sparsity threshold\n"
"   involves a two-step procedure. In the first step, a correlation\n"
"   coefficient threshold is applied to substantially reduce the number\n"
"   of correlations. Next, the remaining correlations are sorted and a\n"
"   threshold is calculated so that only the specified fraction of \n"
"   possible correlations are above threshold. Due to ties between\n"
"   correlations, the fraction of correlations that pass the sparsity\n"
"   threshold might be slightly more than the number specified.\n\n"
"   Regardless of the thresholding procedure employed, negative \n"
"   correlations are excluded from the calculations.\n" 
"\n"
"Options:\n"
"  -pearson  = Correlation is the normal Pearson (product moment)\n"
"               correlation coefficient [default].\n"
   #if 0
"  -spearman = Correlation is the Spearman (rank) correlation\n"
"               coefficient.\n"
"  -quadrant = Correlation is the quadrant correlation coefficient.\n"
   #else
"  -spearman AND -quadrant are disabled at this time :-(\n"
   #endif
"\n"
"  -thresh r = exclude correlations <= r from calculations\n"
"  -sparsity s = only use top s percent of correlations in calculations\n"
"                s should be an integer between 0 and 100. Uses an\n"
"                an adaptive thresholding procedure to reduce memory.\n"
"                The speed of determining the adaptive threshold can\n"
"                be improved by specifying an initial threshold with\n"
"                the -thresh flag.\n"
"\n"
"  -polort m = Remove polynomical trend of order 'm', for m=-1..3.\n"
"               [default is m=1; removal is by least squares].\n"
"               Using m=-1 means no detrending; this is only useful\n"
"               for data/information that has been pre-processed.\n"
"\n"
"  -autoclip = Clip off low-intensity regions in the dataset,\n"
"  -automask =  so that the correlation is only computed between\n"
"               high-intensity (presumably brain) voxels.  The\n"
"               mask is determined the same way that 3dAutomask works.\n"
"\n"
"  -mask mmm = Mask to define 'in-brain' voxels. Reducing the number\n"
"               the number of voxels included in the calculation will\n"
"               significantly speedup the calculation. Consider using\n"
"               a mask to constrain the calculations to the grey matter\n"
"               rather than the whole brain. This is also preferrable\n"
"               to using -autoclip or -automask.\n"
"\n"
"  -prefix p = Save output into dataset with prefix 'p', this file will\n"
"               contain bricks for both 'weighted' or 'degree' centrality\n"
"               [default prefix is 'deg_centrality'].\n"
"\n"
"  -out1D f = Save information about the above threshold correlations to\n"
"              1D file 'f'. Each row of this file will contain:\n"
"               Voxel1 Voxel2 i1 j1 k1 i2 j2 k2 Corr\n"
"              Where voxel1 and voxel2 are the 1D indices of the pair of\n"
"              voxels, i j k correspond to their 3D coordinates, and Corr\n"
"              is the value of the correlation between the voxel time courses.\n" 
"\n"
"Notes:\n"
" * The output dataset is a bucket type of floats.\n"
" * The program prints out an estimate of its memory used\n"
"    when it ends.  It also prints out a progress 'meter'\n"
"    to keep you pacified.\n"
"\n"
"-- RWCox - 31 Jan 2002 and 16 Jul 2010\n"
"-- Cameron Craddock - 26 Sept 2015 \n"
            ) ;
      PRINT_AFNI_OMP_USAGE("3dDegreeCentrality",NULL) ;
      PRINT_COMPILE_DATE ; exit(0) ;
   }

   mainENTRY("3dDegreeCentrality main"); machdep(); PRINT_VERSION("3dDegreeCentrality");
   AFNI_logger("3dDegreeCentrality",argc,argv);

   /*-- option processing --*/

   while( nopt < argc && argv[nopt][0] == '-' ){

      if( strcmp(argv[nopt],"-time") == 0 ){
         abuc = 0 ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-autoclip") == 0 ||
          strcmp(argv[nopt],"-automask") == 0   ){

         do_autoclip = 1 ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-mask") == 0 ){
         mset = THD_open_dataset(argv[++nopt]);
         CHECK_OPEN_ERROR(mset,argv[nopt]);
         nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-pearson") == 0 ){
         method = PEARSON ; nopt++ ; continue ;
      }

#if 0
      if( strcmp(argv[nopt],"-spearman") == 0 ){
         method = SPEARMAN ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-quadrant") == 0 ){
         method = QUADRANT ; nopt++ ; continue ;
      }
#endif

      if( strcmp(argv[nopt],"-eta2") == 0 ){
         method = ETA2 ; nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-prefix") == 0 ){
         prefix = strdup(argv[++nopt]) ;
         if( !THD_filename_ok(prefix) ){
            ERROR_exit("Illegal value after -prefix!") ;
         }
         nopt++ ; continue ;
      }

      if( strcmp(argv[nopt],"-thresh") == 0 ){
         double val = (double)strtod(argv[++nopt],&cpt) ;
         if( *cpt != '\0' || val >= 1.0 || val < 0.0 ){
            ERROR_exit("Illegal value (%f) after -thresh!", val) ;
         }
         dothresh = 1;
         thresh = val ; othresh = val ; nopt++ ; continue ;
      }
      if( strcmp(argv[nopt],"-sparsity") == 0 ){
         double val = (double)strtod(argv[++nopt],&cpt) ;
         if( *cpt != '\0' || val > 100 || val <= 0 ){
            ERROR_exit("Illegal value (%f) after -sparsity!", val) ;
         }
         if( val > 5.0 )
         {
             WARNING_message("Sparsity %3.2f%% is large and will require alot of memory and time, consider using a smaller value. ", val);
         }
         dosparsity = 1 ;
         sparsity = val ; nopt++ ; continue ;
      }
      if( strcmp(argv[nopt],"-polort") == 0 ){
         int val = (int)strtod(argv[++nopt],&cpt) ;
         if( *cpt != '\0' || val < -1 || val > 3 ){
            ERROR_exit("Illegal value after -polort!") ;
         }
         polort = val ; nopt++ ; continue ;
      }
      if( strcmp(argv[nopt],"-mem_stat") == 0 ){
         MEM_STAT = 1 ; nopt++ ; continue ;
      }
      if( strncmp(argv[nopt],"-mem_profile",8) == 0 ){
         MEM_PROF = 1 ; nopt++ ; continue ;
      }
      /* check for 1d argument */
      if ( strcmp(argv[nopt],"-out1D") == 0 ){
          if (!(fout1D = fopen(argv[++nopt], "w"))) {
             ERROR_message("Failed to open %s for writing", argv[nopt]);
             exit(1);
          }
          nopt++ ; continue ;
      }

      ERROR_exit("Illegal option: %s",argv[nopt]) ;
   }

   /*-- open dataset, check for legality --*/

   if( nopt >= argc ) ERROR_exit("Need a dataset on command line!?") ;

   xset = THD_open_dataset(argv[nopt]); CHECK_OPEN_ERROR(xset,argv[nopt]);


   if( DSET_NVALS(xset) < 3 )
     ERROR_exit("Input dataset %s does not have 3 or more sub-bricks!",argv[nopt]) ;
   DSET_load(xset) ; CHECK_LOAD_ERROR(xset) ;

   /*-- compute mask array, if desired --*/
   nvox = DSET_NVOX(xset) ; nvals = DSET_NVALS(xset) ;
   INC_MEM_STATS((nvox * nvals * sizeof(double)), "input dset");
   PRINT_MEM_STATS("inset");

   /* if a mask was specified make sure it is appropriate */
   if( mset ){

      if( DSET_NVOX(mset) != nvox )
         ERROR_exit("Input and mask dataset differ in number of voxels!") ;
      mask  = THD_makemask(mset, 0, 1.0, 0.0) ;

      /* update running memory statistics to reflect loading the image */
      INC_MEM_STATS( mset->dblk->total_bytes, "mask dset" );
      PRINT_MEM_STATS( "mset load" );

      nmask = THD_countmask( nvox , mask ) ;
      INC_MEM_STATS( nmask * sizeof(byte), "mask array" );
      PRINT_MEM_STATS( "mask" );

      INFO_message("%d voxels in -mask dataset",nmask) ;
      if( nmask < 2 ) ERROR_exit("Only %d voxels in -mask, exiting...",nmask);

      /* update running memory statistics to reflect loading the image */
      DEC_MEM_STATS( mset->dblk->total_bytes, "mask dset" );
      DSET_unload(mset) ;
      PRINT_MEM_STATS( "mset unload" );
   } 
   /* if automasking is requested, handle that now */
   else if( do_autoclip ){
      mask  = THD_automask( xset ) ;
      nmask = THD_countmask( nvox , mask ) ;
      INFO_message("%d voxels survive -autoclip",nmask) ;
      if( nmask < 2 ) ERROR_exit("Only %d voxels in -automask!",nmask);
   }
   /* otherwise we use all of the voxels in the image */
   else {
      nmask = nvox ;
      INFO_message("computing for all %d voxels",nmask) ;
   }
   
   if( method == ETA2 && polort >= 0 )
      WARNING_message("Polort for -eta2 should probably be -1...");

    /* djc - 1d file out init */
    if (fout1D != NULL) {
        /* define affine matrix */
        mat44 affine_mat = xset->daxes->ijk_to_dicom;

        /* print command line statement */
        fprintf(fout1D,"#Similarity matrix from command:\n#");
        for(ii=0; ii<argc; ++ii) fprintf(fout1D,"%s ", argv[ii]);

        /* Print affine matrix */
        fprintf(fout1D,"\n");
        fprintf(fout1D,"#[ ");
        int mi, mj;
        for(mi = 0; mi < 4; mi++) {
            for(mj = 0; mj < 4; mj++) {
                fprintf(fout1D, "%.6f ", affine_mat.m[mi][mj]);
            }
        }
        fprintf(fout1D, "]\n");

        /* Print image extents*/
        THD_dataxes *xset_daxes = xset->daxes;
        fprintf(fout1D, "#Image dimensions:\n");
        fprintf(fout1D, "#[%d, %d, %d]\n",
                xset_daxes->nxx, xset_daxes->nyy, xset_daxes->nzz);

        /* Similarity matrix headers */
        fprintf(fout1D,"#Voxel1 Voxel2 i1 j1 k1 i2 j2 k2 Corr\n");
    }


   /* CC calculate the total number of possible correlations, will be 
       usefule down the road */
   totPosCor = (.5*((float)nmask))*((float)(nmask-1));

   /**  For the case of Pearson correlation, we make sure the  **/
   /**  data time series have their mean removed (polort >= 0) **/
   /**  and are normalized, so that correlation = dot product, **/
   /**  and we can use function zm_THD_pearson_corr for speed. **/

   switch( method ){
     default:
     case PEARSON: corfun = zm_THD_pearson_corr ; break ;
     case ETA2:    corfun = my_THD_eta_squared  ; break ;
   }

   /*-- create vectim from input dataset --*/
   INFO_message("vectim-izing input dataset") ;

   /*-- CC added in mask to reduce the size of xvectim -- */
   xvectim = THD_dset_to_vectim( xset , mask , 0 ) ;
   if( xvectim == NULL ) ERROR_exit("Can't create vectim?!") ;

   /*-- CC update our memory stats to reflect vectim -- */
   INC_MEM_STATS((xvectim->nvec*sizeof(int)) +
                       ((xvectim->nvec)*(xvectim->nvals))*sizeof(float) +
                       sizeof(MRI_vectim), "vectim");
   PRINT_MEM_STATS( "vectim" );

   /*--- CC the vectim contains a mapping between voxel index and mask index, 
         tap into that here to avoid duplicating memory usage ---*/

   if( mask != NULL )
   {
       imap = xvectim->ivec;

       /* --- CC free the mask */
       DEC_MEM_STATS( nmask*sizeof(byte), "mask array" );
       free(mask); mask=NULL;
       PRINT_MEM_STATS( "mask unload" );
   }

   /* -- CC unloading the dataset to reduce memory usage ?? -- */
   DEC_MEM_STATS((DSET_NVOX(xset) * DSET_NVALS(xset) * sizeof(double)), "input dset");
   DSET_unload(xset) ;
   PRINT_MEM_STATS("inset unload");

   /* -- CC configure detrending --*/
   if( polort < 0 && method == PEARSON ){
     polort = 0; WARNING_message("Pearson correlation always uses polort >= 0");
   }
   if( polort >= 0 ){
     for( ii=0 ; ii < xvectim->nvec ; ii++ ){  /* remove polynomial trend */
       DETREND_polort(polort,nvals,VECTIM_PTR(xvectim,ii)) ;
     }
   }


   /* -- this procedure does not change time series that have zero variance -- */
   if( method == PEARSON ) THD_vectim_normalize(xvectim) ;  /* L2 norm = 1 */

    /* -- CC create arrays to hold degree and weighted centrality while
          they are being calculated -- */
    if( dosparsity == 0 )
    {
        if( ( binaryDC = (long*)calloc( nmask, sizeof(long) )) == NULL )
        {
            ERROR_message( "Could not allocate %d byte array for binary DC calculation\n",
                nmask*sizeof(long)); 
        }

        /* -- update running memory estimate to reflect memory allocation */ 
        INC_MEM_STATS( nmask*sizeof(long), "binary DC array" );
        PRINT_MEM_STATS( "binaryDC" );

        if( ( weightedDC = (double*)calloc( nmask, sizeof(double) )) == NULL )
        {
            if (binaryDC){ free(binaryDC); binaryDC = NULL; }
            ERROR_message( "Could not allocate %d byte array for weighted DC calculation\n",
                nmask*sizeof(double)); 
        }
        /* -- update running memory estimate to reflect memory allocation */ 
        INC_MEM_STATS( nmask*sizeof(double), "weighted DC array" );
        PRINT_MEM_STATS( "weightedDC" );
    }


    /* -- CC if we are using a sparsity threshold, build a histogram to calculate the 
         threshold */
    if (dosparsity == 1)
    {
        /* make sure that there is a bin for correlation values that == 1.0 */
        binwidth = (1.005-thresh)/nhistnodes;

        /* calculate the number of correlations we wish to retain */
        ngoal = nretain = (int)(((double)totPosCor)*((double)sparsity) / 100.0);

        /* allocate memory for the histogram bins */
        if(( histogram = (hist_node_head*)malloc(nhistnodes*sizeof(hist_node_head))) == NULL )
        {
            /* if the allocation fails, free all memory and exit */
            if (binaryDC){ free(binaryDC); binaryDC = NULL; }
            if (weightedDC){ free(weightedDC); weightedDC = NULL; }
            ERROR_message( "Could not allocate %d byte array for histogram\n",
                nhistnodes*sizeof(hist_node_head)); 
        }
        else {
            /* -- update running memory estimate to reflect memory allocation */ 
            INC_MEM_STATS( nhistnodes*sizeof(hist_node_head), "hist bins" );
            PRINT_MEM_STATS( "hist1" );
        }

        /* initialize history bins */
        for( kout = 0; kout < nhistnodes; kout++ )
        {
            histogram[ kout ].bin_low = thresh+kout*binwidth;
            histogram[ kout ].bin_high = histogram[ kout ].bin_low+binwidth;
            histogram[ kout ].nbin = 0;
            histogram[ kout ].nodes = NULL; 
            /*INFO_message("Hist bin %d [%3.3f, %3.3f) [%d, %p]\n",
                kout, histogram[ kout ].bin_low, histogram[ kout ].bin_high,
                histogram[ kout ].nbin, histogram[ kout ].nodes );*/
        }
    }

    /*-- tell the user what we are about to do --*/
    if (dosparsity == 0 )
    {
        INFO_message( "Calculating degree centrality with threshold = %f.\n", thresh);
    }
    else
    {
        INFO_message( "Calculating degree centrality with threshold = %f and sparsity = %3.2f%% (%d)\n",
            thresh, sparsity, nretain);
    }

    /*---------- loop over mask voxels, correlate ----------*/
    AFNI_OMP_START ;
#pragma omp parallel if( nmask > 999 )
    {
       int lii,ljj,lin,lout,ithr,nthr,vstep,vii ;
       float *xsar , *ysar ;
       hist_node* new_node = NULL ;
       hist_node* tptr = NULL ;
       hist_node* rptr = NULL ;
       int new_node_idx = 0;
       double car = 0.0 ; 

       /*-- get information about who we are --*/
#ifdef USE_OMP
       ithr = omp_get_thread_num() ;
       nthr = omp_get_num_threads() ;
       if( ithr == 0 ) INFO_message("%d OpenMP threads started",nthr) ;
#else
       ithr = 0 ; nthr = 1 ;
#endif

       /*-- For the progress tracker, we want to print out 50 numbers,
            figure out a number of loop iterations that will make this easy */
       vstep = (int)( nmask / (nthr*50.0f) + 0.901f ) ; vii = 0 ;
       if((MEM_STAT==0) && (ithr == 0 )) fprintf(stderr,"Looping:") ;

#pragma omp for schedule(static, 1)
       for( lout=0 ; lout < xvectim->nvec ; lout++ ){  /*----- outer voxel loop -----*/

          if( ithr == 0 && vstep > 2 ) /* allow small dsets 16 Jun 2011 [rickr] */
          { vii++ ; if( vii%vstep == vstep/2 && MEM_STAT == 0 ) vstep_print(); }

          /* get ref time series from this voxel */
          xsar = VECTIM_PTR(xvectim,lout) ;

          /* try to make calculation more efficient by only calculating the unique 
             correlations */
          for( lin=(lout+1) ; lin < xvectim->nvec ; lin++ ){  /*----- inner loop over voxels -----*/

             /* extract the voxel time series */
             ysar = VECTIM_PTR(xvectim,lin) ;

             /* now correlate the time series */
             car = (double)(corfun(nvals,xsar,ysar)) ;

             if ( car <= thresh )
             {
                 continue ;
             }

/* update degree centrality values, hopefully the pragma
   will handle mutual exclusion */
#pragma omp critical(dataupdate)
             {
                 /* if the correlation is less than threshold, ignore it */
                 if ( car > thresh )
                 {
                     totNumCor += 1;
               
                     if ( dosparsity == 0 )
                     { 
                         binaryDC[lout] += 1; binaryDC[lin] += 1;
                         weightedDC[lout] += car; weightedDC[lin] += car;

                         /* print correlation out to the 1D file */
                         if ( fout1D != NULL )
                         {
                             /* determine the i,j,k coords */
                             ix1 = DSET_index_to_ix(xset,lii) ;
                             jy1 = DSET_index_to_jy(xset,lii) ;
                             kz1 = DSET_index_to_kz(xset,lii) ;
                             ix2 = DSET_index_to_ix(xset,ljj) ;
                             jy2 = DSET_index_to_jy(xset,ljj) ;
                             kz2 = DSET_index_to_kz(xset,ljj) ;
                             /* add source, dest, correlation to 1D file */
                             fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n",
                                lii, ljj, ix1, jy1, kz1, ix2, jy2, kz2, car);
                        }
                    }
                    else
                    {
                        /* determine the index in the histogram to add the node */
                        new_node_idx = (int)floor((double)(car-othresh)/(double)binwidth);
                        if ((new_node_idx > nhistnodes) || (new_node_idx < bottom_node_idx))
                        {
                            /* this error should indicate a programming error and should not happen */
                            WARNING_message("Node index %d is out of range [%d,%d)!",new_node_idx,
                            bottom_node_idx, nhistnodes);
                        }
                        else
                        {
                            /* create a node to add to the histogram */
                            new_node = (hist_node*)calloc(1,sizeof(hist_node));
                            if( new_node == NULL )
                            {
                                /* allocate memory for this node, rather than fiddling with 
                                   error handling here, lets just move on */
                                WARNING_message("Could not allocate a new node!");
                            }
                            else
                            {
                 
                                /* populate histogram node */
                                new_node->i = lout; 
                                new_node->j = lin;
                                new_node->corr = car;
                                new_node->next = NULL;

                                /* -- update running memory estimate to reflect memory allocation */ 
                                INC_MEM_STATS( sizeof(hist_node), "hist nodes" );
                                if ((totNumCor % (1024*1024)) == 0) PRINT_MEM_STATS( "hist nodes" );

                                /* populate histogram */
                                new_node->next = histogram[new_node_idx].nodes;
                                histogram[new_node_idx].nodes = new_node;
                                histogram[new_node_idx].nbin++; 

                                /* see if there are enough correlations in the histogram
                                   for the sparsity */
                                if ((totNumCor - histogram[bottom_node_idx].nbin) > nretain)
                                { 
                                    /* delete the list of nodes */
                                    rptr = histogram[bottom_node_idx].nodes;
                                    while(rptr != NULL)
                                    {
                                        tptr = rptr;
                                        rptr = rptr->next;
                                        /* check that the ptr is not null before freeing it*/
                                        if(tptr!= NULL)
                                        {
                                            DEC_MEM_STATS( sizeof(hist_node), "hist nodes" );
                                            free(tptr);
                                        }
                                    }
                                    PRINT_MEM_STATS( "unloaded hist nodes - thresh increase" );

                                    histogram[bottom_node_idx].nodes = NULL;
                                    totNumCor -= histogram[bottom_node_idx].nbin;
                                    histogram[bottom_node_idx].nbin=0;
 
                                    /* get the new threshold */
                                    thresh = (double)histogram[++bottom_node_idx].bin_low;
                                    if(MEM_STAT == 1) INFO_message("Increasing threshold to %3.2f (%d)\n",
                                        thresh,bottom_node_idx); 
                                }

                            } /* else, newptr != NULL */
                        } /* else, new_node_idx in range */
                    } /* else, do_sparsity == 1 */
                 } /* car > thresh */
             } /* this is the end of the critical section */
          } /* end of inner loop over voxels */
       } /* end of outer loop over ref voxels */

       if( ithr == 0 ) fprintf(stderr,".\n") ;

    } /* end OpenMP */
    AFNI_OMP_END ;

    /* update the user so that they know what we are up to */
    INFO_message ("AFNI_OMP finished\n");
    INFO_message ("Found %d (%3.2f%%) correlations above threshold (%f)\n",
       totNumCor, 100.0*((float)totNumCor)/((float)totPosCor), thresh);

   /*----------  Finish up ---------*/

   /*if( dosparsity == 1 )
   {
       for( kout = 0; kout < nhistnodes; kout++ )
       {
           INFO_message("Hist bin %d [%3.3f, %3.3f) [%d, %p]\n",
                kout, histogram[ kout ].bin_low, histogram[ kout ].bin_high,
                histogram[ kout ].nbin, histogram[ kout ].nodes );
       }
   }*/

   /*-- create output dataset --*/
   cset = EDIT_empty_copy( xset ) ;

   /*-- configure the output dataset */
   if( abuc ){
     EDIT_dset_items( cset ,
                        ADN_prefix    , prefix         ,
                        ADN_nvals     , nsubbriks      , /* 2 subbricks, degree and weighted centrality */
                        ADN_ntt       , 0              , /* no time axis */
                        ADN_type      , HEAD_ANAT_TYPE ,
                        ADN_func_type , ANAT_BUCK_TYPE ,
                        ADN_datum_all , MRI_float      ,
                      ADN_none ) ;
   } else {
     EDIT_dset_items( cset ,
                        ADN_prefix    , prefix         ,
                        ADN_nvals     , nsubbriks      , /* 2 subbricks, degree and weighted centrality */
                        ADN_ntt       , nsubbriks      ,  /* num times */
                        ADN_ttdel     , 1.0            ,  /* fake TR */
                        ADN_nsl       , 0              ,  /* no slice offsets */
                        ADN_type      , HEAD_ANAT_TYPE ,
                        ADN_func_type , ANAT_EPI_TYPE  ,
                        ADN_datum_all , MRI_float      ,
                      ADN_none ) ;
   }

   /* add history information to the hearder */
   tross_Make_History( "3dDegreeCentrality" , argc,argv , cset ) ;

   ININFO_message("creating output dataset in memory") ;

   /* -- Configure the subbriks: Binary Degree Centrality */
   subbrik = 0;
   EDIT_BRICK_TO_NOSTAT(cset,subbrik) ;                     /* stat params  */
   /* CC this sets the subbrik scaling factor, which we will probably want
      to do again after we calculate the voxel values */
   EDIT_BRICK_FACTOR(cset,subbrik,1.0) ;                 /* scale factor */

   sprintf(str,"Binary Degree Centrality") ;

   EDIT_BRICK_LABEL(cset,subbrik,str) ;
   EDIT_substitute_brick(cset,subbrik,MRI_float,NULL) ;   /* make array   */


   /* copy measure data into the subbrik */
   bodset = DSET_ARRAY(cset,subbrik);
 
   /* -- Configure the subbriks: Weighted Degree Centrality */
   subbrik = 1;
   EDIT_BRICK_TO_NOSTAT(cset,subbrik) ;                     /* stat params  */
   /* CC this sets the subbrik scaling factor, which we will probably want
      to do again after we calculate the voxel values */
   EDIT_BRICK_FACTOR(cset,subbrik,1.0) ;                 /* scale factor */

   sprintf(str,"Weighted Degree Centrality") ;

   EDIT_BRICK_LABEL(cset,subbrik,str) ;
   EDIT_substitute_brick(cset,subbrik,MRI_float,NULL) ;   /* make array   */

   /* copy measure data into the subbrik */
   wodset = DSET_ARRAY(cset,subbrik);

   /* increment memory stats */
   INC_MEM_STATS( (DSET_NVOX(cset)*DSET_NVALS(cset)*sizeof(float)), "output dset");
   PRINT_MEM_STATS( "outset" );

   /* pull the values out of the histogram */
   if( dosparsity == 0 )
   {
       for( kout = 0; kout < nmask; kout++ )
       {
          if ( imap != NULL )
          {
              ii = imap[kout] ;  /* ii= source voxel (we know that ii is in the mask) */
          }
          else
          {
              ii = kout ;
          }
   
          if( ii >= DSET_NVOX(cset) )
          {
              WARNING_message("Avoiding bodset, wodset overflow %d > %d (%s,%d)\n",
                  ii,DSET_NVOX(cset),__FILE__,__LINE__ );
          }
          else
          {
              bodset[ ii ] = (float)(binaryDC[kout]);
              wodset[ ii ] = (float)(weightedDC[kout]);
          }
       }

       /* we are done with this memory, and can kill it now*/
       if(binaryDC)
       {
           free(binaryDC);
           binaryDC=NULL;
           /* -- update running memory estimate to reflect memory allocation */ 
           DEC_MEM_STATS( nmask*sizeof(long), "binary DC array" );
           PRINT_MEM_STATS( "binaryDC" );
       }
       if(weightedDC)
       {
           free(weightedDC);
           weightedDC=NULL;
           /* -- update running memory estimate to reflect memory allocation */ 
           DEC_MEM_STATS( nmask*sizeof(double), "weighted DC array" );
           PRINT_MEM_STATS( "weightedDC" );
       }
   }
   else
   {

       /* add in the values from the histogram, this is a two stage procedure:
             at first we add in values a whole bin at the time until we get to a point
             where we need to add in a partial bin, then we create a new histogram
             to sort the values in the bin and then add those bins at a time */
       kout = nhistnodes - 1;
       while (( histogram[kout].nbin < nretain ) && ( kout >= 0 ))
       {
           hptr = pptr = histogram[kout].nodes;
           while( hptr != NULL )
           {

               /* determine the indices corresponding to this node */
               if ( imap != NULL )
               {
                   ii = imap[hptr->i] ;  /* ii= source voxel (we know that ii is in the mask) */
               }
               else 
               {
                   ii = hptr->i ;
               }
               if ( imap != NULL )
               {
                   jj = imap[hptr->j] ;  /* ii= source voxel (we know that ii is in the mask) */
               }
               else
               {
                   jj = hptr->j ;
               }

               /* add in the values */
               if(( ii >= DSET_NVOX(cset) ) || ( jj >= DSET_NVOX(cset)))
               {
                   if( ii >= DSET_NVOX(cset))
                   {
                       WARNING_message("Avoiding bodset, wodset overflow (ii) %d > %d\n (%s,%d)\n",
                           ii,DSET_NVOX(cset),__FILE__,__LINE__ );
                   }
                   if( jj >= DSET_NVOX(cset))
                   {
                       WARNING_message("Avoiding bodset, wodset overflow (jj) %d > %d\n (%s,%d)\n",
                           jj,DSET_NVOX(cset),__FILE__,__LINE__ );
                   }
               }
               else
               {
                   bodset[ ii ] += 1.0 ;
                   wodset[ ii ] += (float)(hptr->corr);
                   bodset[ jj ] += 1.0 ;
                   wodset[ jj ] += (float)(hptr->corr);
               }

               if( fout1D != NULL )
               {
                   /* add source, dest, correlation to 1D file */
                   ix1 = DSET_index_to_ix(cset,ii) ;
                   jy1 = DSET_index_to_jy(cset,ii) ;
                   kz1 = DSET_index_to_kz(cset,ii) ;
                   ix2 = DSET_index_to_ix(cset,jj) ;
                   jy2 = DSET_index_to_jy(cset,jj) ;
                   kz2 = DSET_index_to_kz(cset,jj) ;
                   fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n",
                           ii, jj, ix1, jy1, kz1, ix2, jy2, kz2, (float)(hptr->corr));
               }

               /* increment node pointers */
               pptr = hptr;
               hptr = hptr->next;

               /* delete the node */
               if(pptr)
               {
                   /* -- update running memory estimate to reflect memory allocation */ 
                   DEC_MEM_STATS(sizeof( hist_node ), "hist nodes" );
                   /* free the mem */
                   free(pptr);
                   pptr=NULL;
               }
           } 
           /* decrement the number of correlations we wish to retain */
           nretain -= histogram[kout].nbin;
           histogram[kout].nodes = NULL;

           /* go on to the next bin */
           kout--;
       }
       PRINT_MEM_STATS( "hist1 bins free - inc into output" );

        /* if we haven't used all of the correlations that are available, go through and 
           add a subset of the voxels from the remaining bin */
        if(( nretain > 0 ) && (kout >= 0))
        {

            hist_node_head* histogram2 = NULL; 
            hist_node_head* histogram2_save = NULL; 
            int h2nbins = 100;
            float h2binwidth = 0.0;
            int h2ndx=0;

            h2binwidth = (((1.0+binwidth/((float)h2nbins))*histogram[kout].bin_high) - histogram[kout].bin_low) /
               ((float)h2nbins);

            /* allocate the bins */
            if(( histogram2 = (hist_node_head*)malloc(h2nbins*sizeof(hist_node_head))) == NULL )
            {
                if (binaryDC){ free(binaryDC); binaryDC = NULL; }
                if (weightedDC){ free(weightedDC); weightedDC = NULL; }
                if (histogram){ histogram = free_histogram(histogram, nhistnodes); }
                ERROR_message( "Could not allocate %d byte array for histogram2\n",
                    h2nbins*sizeof(hist_node_head)); 
            }
            else {
                /* -- update running memory estimate to reflect memory allocation */ 
                histogram2_save = histogram2;
                INC_MEM_STATS(( h2nbins*sizeof(hist_node_head )), "hist bins");
                PRINT_MEM_STATS( "hist2" );
            }
   
            /* initiatize the bins */ 
            for( kin = 0; kin < h2nbins; kin++ )
            {
                histogram2[ kin ].bin_low = histogram[kout].bin_low + kin*h2binwidth;
                histogram2[ kin ].bin_high = histogram2[ kin ].bin_low + h2binwidth;
                histogram2[ kin ].nbin = 0;
                histogram2[ kin ].nodes = NULL; 
                /*INFO_message("Hist2 bin %d [%3.3f, %3.3f) [%d, %p]\n",
                    kin, histogram2[ kin ].bin_low, histogram2[ kin ].bin_high,
                    histogram2[ kin ].nbin, histogram2[ kin ].nodes );*/
            }

            /* move correlations from histogram to histgram2 */
            INFO_message ("Adding %d nodes from histogram to histogram2",histogram[kout].nbin);
            while ( histogram[kout].nodes != NULL )
            {
                hptr = histogram[kout].nodes;
                h2ndx = (int)floor((double)(hptr->corr - histogram[kout].bin_low)/(double)h2binwidth);
                if(( h2ndx < h2nbins ) && ( h2ndx >= 0 ))
                {
                    histogram[kout].nodes = hptr->next;
                    hptr->next = histogram2[h2ndx].nodes;
                    histogram2[h2ndx].nodes = hptr; 
                    histogram2[h2ndx].nbin++;
                    histogram[kout].nbin--;
                }
                else
                {
                    WARNING_message("h2ndx %d is not in range [0,%d) :: %.10f,%.10f\n",h2ndx,h2nbins,hptr->corr, histogram[kout].bin_low);
                }
               
            }

            /* free the remainder of histogram */
            {
                int nbins_rem = 0;
                for(ii = 0; ii < nhistnodes; ii++) nbins_rem+=histogram[ii].nbin;
                histogram = free_histogram(histogram, nhistnodes);
                PRINT_MEM_STATS( "free remainder of histogram1" );
            }

            kin = h2nbins - 1;
            while (( nretain > 0 ) && ( kin >= 0 ))
            {
                hptr = pptr = histogram2[kin].nodes;
                while( hptr != NULL )
                {
     
                    /* determine the indices corresponding to this node */
                    if ( imap != NULL )
                    {
                        ii = imap[hptr->i] ;  
                    }
                    else
                    {
                        ii = hptr->i ;
                    }
                    if ( imap != NULL )
                    {
                        jj = imap[hptr->j] ; 
                    }
                    else
                    {
                        jj = hptr->j ;
                    }

                    /* add in the values */
                    if(( ii >= DSET_NVOX(cset) ) || ( jj >= DSET_NVOX(cset)))
                    {
                        if( ii >= DSET_NVOX(cset))
                        {
                            WARNING_message("Avoiding bodset, wodset overflow (ii) %d > %d\n (%s,%d)\n",
                                ii,DSET_NVOX(cset),__FILE__,__LINE__ );
                        }
                        if( jj >= DSET_NVOX(cset))
                        {
                            WARNING_message("Avoiding bodset, wodset overflow (jj) %d > %d\n (%s,%d)\n",
                                jj,DSET_NVOX(cset),__FILE__,__LINE__ );
                        }
                    }
                    else
                    {
                        bodset[ ii ] += 1.0 ;
                        wodset[ ii ] += (float)(hptr->corr);
                        bodset[ jj ] += 1.0 ;
                        wodset[ jj ] += (float)(hptr->corr);
                    }
                    if( fout1D != NULL )
                    {
                        /* add source, dest, correlation to 1D file */
                        ix1 = DSET_index_to_ix(cset,ii) ;
                        jy1 = DSET_index_to_jy(cset,ii) ;
                        kz1 = DSET_index_to_kz(cset,ii) ;
                        ix2 = DSET_index_to_ix(cset,jj) ;
                        jy2 = DSET_index_to_jy(cset,jj) ;
                        kz2 = DSET_index_to_kz(cset,jj) ;
                        fprintf(fout1D, "%d %d %d %d %d %d %d %d %.6f\n",
                            ii, jj, ix1, jy1, kz1, ix2, jy2, kz2, (float)(hptr->corr));
                    }

                    /* increment node pointers */
                    pptr = hptr;
                    hptr = hptr->next;

                    /* delete the node */
                    if(pptr)
                    {
                        free(pptr);
                        DEC_MEM_STATS(( sizeof(hist_node) ), "hist nodes");
                        pptr=NULL;
                    }
                }
 
                /* decrement the number of correlations we wish to retain */
                nretain -= histogram2[kin].nbin;
                histogram2[kin].nodes = NULL;

                /* go on to the next bin */
                kin--;
            }
            PRINT_MEM_STATS("hist2 nodes free - incorporated into output");

            /* we are finished with histogram2 */
            {
                histogram2 = free_histogram(histogram2, h2nbins);
                /* -- update running memory estimate to reflect memory allocation */ 
                PRINT_MEM_STATS( "free hist2" );
            }

            if (nretain < 0 )
            {
                WARNING_message( "Went over sparsity goal %d by %d, with a resolution of %f",
                      ngoal, -1*nretain, h2binwidth);
            }
        }
        if (nretain > 0 )
        {
            WARNING_message( "Was not able to meet goal of %d (%3.2f%%) correlations, %d (%3.2f%%) correlations passed the threshold of %3.2f, maybe you need to change the threshold or the desired sparsity?",
                  ngoal, 100.0*((float)ngoal)/((float)totPosCor), totNumCor, 100.0*((float)totNumCor)/((float)totPosCor),  thresh);
        }
   }

   INFO_message("Done..\n") ;

   /* update running memory statistics to reflect freeing the vectim */
   DEC_MEM_STATS(((xvectim->nvec*sizeof(int)) +
                       ((xvectim->nvec)*(xvectim->nvals))*sizeof(float) +
                       sizeof(MRI_vectim)), "vectim");

   /* toss some trash */
   VECTIM_destroy(xvectim) ;
   DSET_delete(xset) ;
   if(fout1D!=NULL)fclose(fout1D);

   PRINT_MEM_STATS( "vectim unload" );

   if (weightedDC) free(weightedDC) ; weightedDC = NULL;
   if (binaryDC) free(binaryDC) ; binaryDC = NULL;
   
   /* finito */
   INFO_message("Writing output dataset to disk [%s bytes]",
                commaized_integer_string(cset->dblk->total_bytes)) ;

   /* write the dataset */
   DSET_write(cset) ;
   WROTE_DSET(cset) ;

   /* increment our memory stats, since we are relying on the header for this
      information, we update the stats before actually freeing the memory */
   DEC_MEM_STATS( (DSET_NVOX(cset)*DSET_NVALS(cset)*sizeof(float)), "output dset");

   /* free up the output dataset memory */
   DSET_unload(cset) ;
   DSET_delete(cset) ;

   /* force a print */
   MEM_STAT = 1;
   PRINT_MEM_STATS( "Fin" );

   exit(0) ;
}
THD_3dim_dataset * THD_localhistog( int nsar , THD_3dim_dataset **insar ,
                                    int numval , int *rlist , MCW_cluster *nbhd ,
                                    int do_prob , int verb )
{
   THD_3dim_dataset *outset=NULL , *inset ;
   int nvox=DSET_NVOX(insar[0]) ;
   int ids, iv, bb, nnpt=nbhd->num_pt ;
   MRI_IMAGE *bbim ; int btyp ;
   float **outar , **listar ;

ENTRY("THD_localhistog") ;

   /*---- create output dataset ----*/

   outset = EDIT_empty_copy(insar[0]) ;
   EDIT_dset_items( outset ,
                      ADN_nvals     , numval    ,
                      ADN_datum_all , MRI_float ,
                      ADN_nsl       , 0         ,
                      ADN_brick_fac , NULL      ,
                    ADN_none ) ;
   outar = (float **)malloc(sizeof(float *)*numval) ;
   for( bb=0 ; bb < numval ; bb++ ){
     EDIT_substitute_brick( outset , bb , MRI_float , NULL ) ;
     outar[bb] = DSET_BRICK_ARRAY(outset,bb) ;
   }

   /*---- make mapping between values and arrays to get those values ----*/

   listar = (float **)malloc(sizeof(float *)*TWO16) ;
   for( bb=0 ; bb < TWO16 ; bb++ ) listar[bb] = outar[0] ;
   for( bb=1 ; bb < numval ; bb++ ){
     listar[ rlist[bb] + TWO15 ] = outar[bb] ;
   }

   /*----------- loop over datasets, add in counts for all voxels -----------*/

   for( ids=0 ; ids < nsar ; ids++ ){              /* dataset loop */
     inset = insar[ids] ; DSET_load(inset) ;
     for( iv=0 ; iv < DSET_NVALS(inset) ; iv++ ){  /* sub-brick loop */
       if( verb ) fprintf(stderr,".") ;
       bbim = DSET_BRICK(inset,iv) ; btyp = bbim->kind ;
       if( nnpt == 1 ){                            /* only 1 voxel in nbhd */
         int qq,ii,jj,kk,ib,nb ;
         switch( bbim->kind ){
           case MRI_short:{
             short *sar = MRI_SHORT_PTR(bbim) ;
             for( qq=0 ; qq < nvox ; qq++ ) listar[sar[qq]+TWO15][qq]++ ;
           }
           break ;
           case MRI_byte:{
             byte *bar = MRI_BYTE_PTR(bbim) ;
             for( qq=0 ; qq < nvox ; qq++ ) listar[bar[qq]+TWO15][qq]++ ;
           }
           break ;
           case MRI_float:{
             float *far = MRI_FLOAT_PTR(bbim) ; short ss ;
             for( qq=0 ; qq < nvox ; qq++ ){ ss = SHORTIZE(far[qq]); listar[ss+TWO15][qq]++; }
           }
           break ;
         }
       } else {                                    /* multiple voxels in nbhd */
 AFNI_OMP_START ;
#pragma omp parallel
 { int qq,ii,jj,kk,ib,nb ; void *nar ; short *sar,ss ; byte *bar ; float *far ;
   nar = malloc(sizeof(float)*nnpt) ;
   sar = (short *)nar ; bar = (byte *)nar ; far = (float *)nar ;
#pragma omp for
         for( qq=0 ; qq < nvox ; qq++ ){           /* qq=voxel index */
           ii = DSET_index_to_ix(inset,qq) ;
           jj = DSET_index_to_jy(inset,qq) ;
           kk = DSET_index_to_kz(inset,qq) ;
           nb = mri_get_nbhd_array( bbim , NULL , ii,jj,kk , nbhd , nar ) ;
           if( nb == 0 ) continue ;
           switch( btyp ){
             case MRI_short:
               for( ib=0 ; ib < nb ; ib++ ) listar[sar[ib]+TWO15][qq]++ ;
             break ;
             case MRI_byte:
               for( ib=0 ; ib < nb ; ib++ ) listar[bar[ib]+TWO15][qq]++ ;
             break ;
             case MRI_float:
               for( ib=0 ; ib < nb ; ib++ ){ ss = SHORTIZE(far[ib]); listar[ss+TWO15][qq]++; }
             break ;
           }
         } /* end of voxel loop */
   free(nar) ;
 } /* end of OpenMP */
 AFNI_OMP_END ;
       }
     } /* end of sub-brick loop */
     DSET_unload(inset) ;
   } /* end of dataset loop */

   if( verb ) fprintf(stderr,"\n") ;

   free(listar) ;

   /*---- post-process output ---*/

   if( do_prob ){
     byte **bbar ; int pp ;
 
     if( verb ) INFO_message("Conversion to probabilities") ;

 AFNI_OMP_START ;
#pragma omp parallel
 { int qq , ib ; float pfac , val ; byte **bbar ;
#pragma omp for
     for( qq=0 ; qq < nvox ; qq++ ){
       pfac = 0.0001f ;
       for( ib=0 ; ib < numval ; ib++ ) pfac += outar[ib][qq] ;
       pfac = 250.0f / pfac ;
       for( ib=0 ; ib < numval ; ib++ ){
         val = outar[ib][qq]*pfac ; outar[ib][qq] = BYTEIZE(val) ;
       }
     }
 } /* end OpenMP */
 AFNI_OMP_END ;

     bbar = (byte **)malloc(sizeof(byte *)*numval) ;
     for( bb=0 ; bb < numval ; bb++ ){
       bbar[bb] = (byte *)malloc(sizeof(byte)*nvox) ;
       for( pp=0 ; pp < nvox ; pp++ ) bbar[bb][pp] = (byte)outar[bb][pp] ;
       EDIT_substitute_brick(outset,bb,MRI_byte,bbar[bb]) ;
       EDIT_BRICK_FACTOR(outset,bb,0.004f) ;
     }
     free(bbar) ;

   } /* end of do_prob */

   free(outar) ;
   RETURN(outset) ;
}
Beispiel #3
0
int main( int argc , char *argv[] )
{
   THD_3dim_dataset *dset , *oset=NULL , *tset=NULL ;
   int nvals , iv , nxyz , ii,jj,kk , iarg , kz,kzold ;
   float cut1=2.5,cut2=4.0 , sq2p,sfac , fq ;
   MRI_IMAGE *flim ;
   char *prefix="despike" , *tprefix=NULL ;

   int corder=-1 , nref , ignore=0 , polort=2 , nuse , nomask=0 ;
   int nspike, nbig, nproc ;
   float **ref ;
   float  c21,ic21 , pspike,pbig ;
   short  *sar , *qar ;
   byte   *tar , *mask=NULL ;
   float  *zar , *yar ;
   int     datum ;
   int     localedit=0 ;  /* 04 Apr 2007 */
   int     verb=1 ;

   int     do_NEW = 0 ;   /* 29 Nov 2013 */
   MRI_IMAGE *NEW_psinv=NULL ;
   int     dilate = 4 ;   /* 04 Dec 2013 */
   int     ctim   = 0 ;

   /*----- Read command line -----*/

   AFNI_SETUP_OMP(0) ;  /* 24 Jun 2013 */

   if( argc < 2 || strcmp(argv[1],"-help") == 0 ){
      printf("Usage: 3dDespike [options] dataset\n"
             "Removes 'spikes' from the 3D+time input dataset and writes\n"
             "a new dataset with the spike values replaced by something\n"
             "more pleasing to the eye.\n"
             "\n"
             "Method:\n"
             " * L1 fit a smooth-ish curve to each voxel time series\n"
             "    [see -corder option for description of the curve]\n"
             "    [see -NEW option for a different & faster fitting method]\n"
             " * Compute the MAD of the difference between the curve and\n"
             "    the data time series (the residuals).\n"
             " * Estimate the standard deviation 'sigma' of the residuals\n"
             "    as sqrt(PI/2)*MAD.\n"
             " * For each voxel value, define s = (value-curve)/sigma.\n"
             " * Values with s > c1 are replaced with a value that yields\n"
             "    a modified s' = c1+(c2-c1)*tanh((s-c1)/(c2-c1)).\n"
             " * c1 is the threshold value of s for a 'spike' [default c1=2.5].\n"
             " * c2 is the upper range of the allowed deviation from the curve:\n"
             "    s=[c1..infinity) is mapped to s'=[c1..c2)   [default c2=4].\n"
             "\n"
             "Options:\n"
             " -ignore I  = Ignore the first I points in the time series:\n"
             "               these values will just be copied to the\n"
             "               output dataset [default I=0].\n"
             " -corder L  = Set the curve fit order to L:\n"
             "               the curve that is fit to voxel data v(t) is\n"
             "\n"
             "                       k=L [        (2*PI*k*t)          (2*PI*k*t) ]\n"
             " f(t) = a+b*t+c*t*t + SUM  [ d * sin(--------) + e * cos(--------) ]\n"
             "                       k=1 [  k     (    T   )    k     (    T   ) ]\n"
             "\n"
             "               where T = duration of time series;\n"
             "               the a,b,c,d,e parameters are chosen to minimize\n"
             "               the sum over t of |v(t)-f(t)| (L1 regression);\n"
             "               this type of fitting is is insensitive to large\n"
             "               spikes in the data.  The default value of L is\n"
             "               NT/30, where NT = number of time points.\n"
             "\n"
             " -cut c1 c2 = Alter default values for the spike cut values\n"
             "               [default c1=2.5, c2=4.0].\n"
             " -prefix pp = Save de-spiked dataset with prefix 'pp'\n"
             "               [default pp='despike']\n"
             " -ssave ttt = Save 'spikiness' measure s for each voxel into a\n"
             "               3D+time dataset with prefix 'ttt' [default=no save]\n"
             " -nomask    = Process all voxels\n"
             "               [default=use a mask of high-intensity voxels, ]\n"
             "               [as created via '3dAutomask -dilate 4 dataset'].\n"
             " -dilate nd = Dilate 'nd' times (as in 3dAutomask).  The default\n"
             "               value of 'nd' is 4.\n"
             " -q[uiet]   = Don't print '++' informational messages.\n"
             "\n"
             " -localedit = Change the editing process to the following:\n"
             "                If a voxel |s| value is >= c2, then replace\n"
             "                the voxel value with the average of the two\n"
             "                nearest non-spike (|s| < c2) values; the first\n"
             "                one previous and the first one after.\n"
             "                Note that the c1 cut value is not used here.\n"
             "\n"
             " -NEW       = Use the 'new' method for computing the fit, which\n"
             "              should be faster than the L1 method for long time\n"
             "              series (200+ time points); however, the results\n"
             "              are similar but NOT identical. [29 Nov 2013]\n"
             "              * You can also make the program use the 'new'\n"
             "                method by setting the environment variable\n"
             "                  AFNI_3dDespike_NEW\n"
             "                to the value YES; as in\n"
             "                  setenv AFNI_3dDespike_NEW YES  (csh)\n"
             "                  export AFNI_3dDespike_NEW=YES  (bash)\n"
             "              * If this variable is set to YES, you can turn off\n"
             "                the '-NEW' processing by using the '-OLD' option.\n"
             "          -->>* For time series more than 500 points long, the\n"
             "                '-OLD' algorithm is tremendously slow.  You should\n"
             "                use the '-NEW' algorith in such cases.\n"
             "             ** At some indeterminate point in the future, the '-NEW'\n"
             "                method will become the default!\n"
             "          -->>* As of 29 Sep 2016, '-NEW' is the default if there\n"
             "                is more than 500 points in the time series dataset.\n"
             "\n"
             " -NEW25     = A slightly more aggressive despiking approach than\n"
             "              the '-NEW' method.\n"
             "\n"
             "Caveats:\n"
             "* Despiking may interfere with image registration, since head\n"
             "   movement may produce 'spikes' at the edge of the brain, and\n"
             "   this information would be used in the registration process.\n"
             "   This possibility has not been explored or calibrated.\n"
             "* [LATER] Actually, it seems like the registration problem\n"
             "   does NOT happen, and in fact, despiking seems to help!\n"
             "* Check your data visually before and after despiking and\n"
             "   registration!\n"
             "   [Hint: open 2 AFNI controllers, and turn Time Lock on.]\n"
            ) ;

      PRINT_AFNI_OMP_USAGE("3dDespike",NULL) ;
      PRINT_COMPILE_DATE ; exit(0) ;
   }

   /** AFNI package setup and logging **/

   mainENTRY("3dDespike main"); machdep(); AFNI_logger("3dDespike",argc,argv);
   PRINT_VERSION("3dDespike") ; AUTHOR("RW Cox") ;

   /** parse options **/

   if( AFNI_yesenv("AFNI_3dDespike_NEW") ) do_NEW = 1 ;  /* 29 Nov 2013 */

   iarg = 1 ;
   while( iarg < argc && argv[iarg][0] == '-' ){

      if( strncmp(argv[iarg],"-q",2) == 0 ){       /* 04 Apr 2007 */
        verb = 0 ; iarg++ ; continue ;
      }
      if( strncmp(argv[iarg],"-v",2) == 0 ){
        verb++ ; iarg++ ; continue ;
      }

      if( strcmp(argv[iarg],"-NEW") == 0 ){       /* 29 Nov 2013 */
        do_NEW = 1 ; iarg++ ; continue ;
      }
      if( strcmp(argv[iarg],"-NEW25") == 0 ){     /* 29 Sep 2016 */
        do_NEW = 1 ; use_des25 = 1 ; cut1 = 2.5f ; cut2 = 3.2f ; iarg++ ; continue ;
      }
      if( strcmp(argv[iarg],"-OLD") == 0 ){
        do_NEW = 0 ; iarg++ ; continue ;
      }

      /** -localedit **/

      if( strcmp(argv[iarg],"-localedit") == 0 ){  /* 04 Apr 2007 */
        localedit = 1 ; iarg++ ; continue ;
      }

      /** don't use masking **/

      if( strcmp(argv[iarg],"-nomask") == 0 ){
        nomask = 1 ; iarg++ ; continue ;
      }

      /** dilation count [04 Dec 2013] **/

      if( strcmp(argv[iarg],"-dilate") == 0 ){
        dilate = (int)strtod(argv[++iarg],NULL) ;
             if( dilate <=  0 ) dilate = 1 ;
        else if( dilate >  99 ) dilate = 99 ;
        iarg++ ; continue ;
      }

      /** output dataset prefix **/

      if( strcmp(argv[iarg],"-prefix") == 0 ){
        prefix = argv[++iarg] ;
        if( !THD_filename_ok(prefix) ) ERROR_exit("-prefix is not good");
        iarg++ ; continue ;
      }

      /** ratio dataset prefix **/

      if( strcmp(argv[iarg],"-ssave") == 0 ){
        tprefix = argv[++iarg] ;
        if( !THD_filename_ok(tprefix) ) ERROR_exit("-ssave prefix is not good");
        iarg++ ; continue ;
      }

      /** trigonometric polynomial order **/

      if( strcmp(argv[iarg],"-corder") == 0 ){
        corder = strtol( argv[++iarg] , NULL , 10 ) ;
        if( corder < 0 ) ERROR_exit("Illegal value of -corder");
        iarg++ ; continue ;
      }

      /** how much to ignore at start **/

      if( strcmp(argv[iarg],"-ignore") == 0 ){
        ignore = strtol( argv[++iarg] , NULL , 10 ) ;
        if( ignore < 0 ) ERROR_exit("Illegal value of -ignore");
        iarg++ ; continue ;
      }

      /** thresholds for s ratio **/

      if( strcmp(argv[iarg],"-cut") == 0 ){
        cut1 = strtod( argv[++iarg] , NULL ) ;
        cut2 = strtod( argv[++iarg] , NULL ) ;
        if( cut1 < 1.0 || cut2 < cut1+0.5 )
          ERROR_exit("Illegal values after -cut");
        iarg++ ; continue ;
      }

      ERROR_exit("Unknown option: %s",argv[iarg]) ;
   }

   c21 = cut2-cut1 ; ic21 = 1.0/c21 ;

   /*----- read input dataset -----*/

   if( iarg >= argc ) ERROR_exit("No input dataset!!??");

   dset = THD_open_dataset( argv[iarg] ) ;
   CHECK_OPEN_ERROR(dset,argv[iarg]) ;
   datum = DSET_BRICK_TYPE(dset,0) ;
   if( (datum != MRI_short && datum != MRI_float) || !DSET_datum_constant(dset) )
     ERROR_exit("Can't process non-short, non-float dataset!") ;

   if( verb ) INFO_message("Input data type = %s\n",MRI_TYPE_name[datum]) ;
   nvals = DSET_NUM_TIMES(dset) ; nuse = nvals - ignore ;
   if( nuse < 15 )
     ERROR_exit("Can't use dataset with < 15 time points per voxel!") ;

   if( nuse > 500 && !do_NEW ){
     INFO_message("Switching to '-NEW' method since number of time points = %d > 500",nuse) ;
     do_NEW = 1 ;
   }
   if( use_des25 && nuse < 99 ) use_des25 = 0 ;

   if( verb ) INFO_message("ignoring first %d time points, using last %d",ignore,nuse);
   if( corder > 0 && 4*corder+2 > nuse ){
     ERROR_exit("-corder %d is too big for NT=%d",corder,nvals) ;
   } else if( corder < 0 ){
     corder = rint(nuse/30.0) ; if( corder > 50 && !do_NEW ) corder = 50 ;
     if( verb ) INFO_message("using %d time points => -corder %d",nuse,corder) ;
   } else {
     if( verb ) INFO_message("-corder %d set from command line",corder) ;
   }
   nxyz = DSET_NVOX(dset) ;
   if( verb ) INFO_message("Loading dataset %s",argv[iarg]) ;
   DSET_load(dset) ; CHECK_LOAD_ERROR(dset) ;

   /*-- create automask --*/

   if( !nomask ){
     mask = THD_automask( dset ) ;
     if( verb ){
       ii = THD_countmask( DSET_NVOX(dset) , mask ) ;
       INFO_message("%d voxels in the automask [out of %d in dataset]",ii,DSET_NVOX(dset)) ;
     }
     for( ii=0 ; ii < dilate ; ii++ )
       THD_mask_dilate( DSET_NX(dset), DSET_NY(dset), DSET_NZ(dset), mask, 3 ) ;
     if( verb ){
       ii = THD_countmask( DSET_NVOX(dset) , mask ) ;
       INFO_message("%d voxels in the dilated automask [out of %d in dataset]",ii,DSET_NVOX(dset)) ;
     }
   } else {
     if( verb ) INFO_message("processing all %d voxels in dataset",DSET_NVOX(dset)) ;
   }

   /*-- create empty despiked dataset --*/

   oset = EDIT_empty_copy( dset ) ;
   EDIT_dset_items( oset ,
                      ADN_prefix    , prefix ,
                      ADN_brick_fac , NULL ,
                      ADN_datum_all , datum ,
                    ADN_none ) ;

   if( THD_deathcon() && THD_is_file(DSET_HEADNAME(oset)) )
     ERROR_exit("output dataset already exists: %s",DSET_HEADNAME(oset));

   tross_Copy_History( oset , dset ) ;
   tross_Make_History( "3dDespike" , argc , argv , oset ) ;

   /* create bricks (will be filled with zeros) */

   for( iv=0 ; iv < nvals ; iv++ )
     EDIT_substitute_brick( oset , iv , datum , NULL ) ;

   /* copy the ignored bricks */

   switch( datum ){
     case MRI_short:
       for( iv=0 ; iv < ignore ; iv++ ){
         sar = DSET_ARRAY(oset,iv) ;
         qar = DSET_ARRAY(dset,iv) ;
         memcpy( sar , qar , DSET_BRICK_BYTES(dset,iv) ) ;
         DSET_unload_one(dset,iv) ;
       }
     break ;
     case MRI_float:
       for( iv=0 ; iv < ignore ; iv++ ){
         zar = DSET_ARRAY(oset,iv) ;
         yar = DSET_ARRAY(dset,iv) ;
         memcpy( zar , yar , DSET_BRICK_BYTES(dset,iv) ) ;
         DSET_unload_one(dset,iv) ;
       }
     break ;
   }

   /*-- setup to save a threshold statistic dataset, if desired --*/

   if( tprefix != NULL ){
     float *fac ;
     tset = EDIT_empty_copy( dset ) ;
     fac  = (float *) malloc( sizeof(float) * nvals ) ;
     for( ii=0 ; ii < nvals ; ii++ ) fac[ii] = TFAC ;
     EDIT_dset_items( tset ,
                        ADN_prefix    , tprefix ,
                        ADN_brick_fac , fac ,
                        ADN_datum_all , MRI_byte ,
                        ADN_func_type , FUNC_FIM_TYPE ,
                      ADN_none ) ;
     free(fac) ;

     tross_Copy_History( tset , dset ) ;
     tross_Make_History( "3dDespike" , argc , argv , tset ) ;

#if 0
     if( THD_is_file(DSET_HEADNAME(tset)) )
       ERROR_exit("-ssave dataset already exists");
#endif

     tross_Copy_History( tset , dset ) ;
     tross_Make_History( "3dDespike" , argc , argv , tset ) ;

     for( iv=0 ; iv < nvals ; iv++ )
       EDIT_substitute_brick( tset , iv , MRI_byte , NULL ) ;
   }

   /*-- setup to find spikes --*/

   sq2p  = sqrt(0.5*PI) ;
   sfac  = sq2p / 1.4826f ;

   /* make ref functions */

   nref = 2*corder+3 ;
   ref  = (float **) malloc( sizeof(float *) * nref ) ;
   for( jj=0 ; jj < nref ; jj++ )
     ref[jj] = (float *) malloc( sizeof(float) * nuse ) ;

   /* r(t) = 1 */

   for( iv=0 ; iv < nuse ; iv++ ) ref[0][iv] = 1.0 ;
   jj = 1 ;

   /* r(t) = t - tmid */

   { float tm = 0.5 * (nuse-1.0) ; float fac = 2.0 / nuse ;
     for( iv=0 ; iv < nuse ; iv++ ) ref[1][iv] = (iv-tm)*fac ;
     jj = 2 ;

     /* r(t) = (t-tmid)**jj */

     for( ; jj <= polort ; jj++ )
       for( iv=0 ; iv < nuse ; iv++ )
         ref[jj][iv] = pow( (iv-tm)*fac , (double)jj ) ;
   }

   for( kk=1 ; kk <= corder ; kk++ ){
     fq = (2.0*PI*kk)/nuse ;

     /* r(t) = sin(2*PI*k*t/N) */

     for( iv=0 ; iv < nuse ; iv++ )
       ref[jj][iv] = sin(fq*iv) ;
     jj++ ;

     /* r(t) = cos(2*PI*k*t/N) */

     for( iv=0 ; iv < nuse ; iv++ )
       ref[jj][iv] = cos(fq*iv) ;
     jj++ ;
   }

   /****** setup for the NEW solution method [29 Nov 2013] ******/

   if( do_NEW ){
     NEW_psinv = DES_get_psinv(nuse,nref,ref) ;
     INFO_message("Procesing time series with NEW model fit algorithm") ;
   } else {
     INFO_message("Procesing time series with OLD model fit algorithm") ;
   }

   /*--- loop over voxels and do work ---*/

#define Laplace_t2p(val) ( 1.0 - nifti_stat2cdf( (val), 15, 0.0, 1.4427 , 0.0 ) )

   if( verb ){
    if( !localedit ){
      INFO_message("smash edit thresholds: %.1f .. %.1f MADs",cut1*sq2p,cut2*sq2p) ;
      ININFO_message("  [ %.3f%% .. %.3f%% of normal distribution]",
                     200.0*qg(cut1*sfac) , 200.0*qg(cut2*sfac) ) ;
      ININFO_message("  [ %.3f%% .. %.3f%% of Laplace distribution]" ,
                   100.0*Laplace_t2p(cut1) , 100.0*Laplace_t2p(cut2) ) ;
    } else {
      INFO_message("local edit threshold:  %.1f MADS",cut2*sq2p) ;
      ININFO_message("  [ %.3f%% of normal distribution]",
                    200.0*qg(cut2*sfac) ) ;
      ININFO_message("  [ %.3f%% of Laplace distribution]",
                   100.0*Laplace_t2p(cut1) ) ;
    }
    INFO_message("%d slices to process",DSET_NZ(dset)) ;
   }
   kzold  = -1 ;
   nspike =  0 ; nbig = 0 ; nproc = 0 ; ctim = NI_clock_time() ;

 AFNI_OMP_START ;
#pragma omp parallel if( nxyz > 6666 )
 { int ii , iv , iu , id , jj ;
   float *far , *dar , *var , *fitar , *ssp , *fit , *zar ;
   short *sar , *qar ; byte *tar ;
   float fsig , fq , cls , snew , val ;
   float *NEW_wks=NULL ;

#pragma omp critical (DESPIKE_malloc)
  { far   = (float *) malloc( sizeof(float) * nvals ) ;
    dar   = (float *) malloc( sizeof(float) * nvals ) ;
    var   = (float *) malloc( sizeof(float) * nvals ) ;
    fitar = (float *) malloc( sizeof(float) * nvals ) ;
    ssp   = (float *) malloc( sizeof(float) * nvals ) ;
    fit   = (float *) malloc( sizeof(float) * nref  ) ;
    if( do_NEW ) NEW_wks = (float *)malloc(sizeof(float)*DES_workspace_size(nuse,nref)) ;
  }

#ifdef USE_OMP
   INFO_message("start OpenMP thread #%d",omp_get_thread_num()) ;
#endif

#pragma omp for
   for( ii=0 ; ii < nxyz ; ii++ ){   /* ii = voxel index */

      if( mask != NULL && mask[ii] == 0 ) continue ;   /* skip this voxel */

#ifndef USE_OMP
      kz = DSET_index_to_kz(dset,ii) ;       /* starting a new slice */
      if( kz != kzold ){
        if( verb ){
          fprintf(stderr, "++ start slice %2d",kz ) ;
          if( nproc > 0 ){
            pspike = (100.0*nspike)/nproc ;
            pbig   = (100.0*nbig  )/nproc ;
            fprintf(stderr,
                    "; so far %d data points, %d edits [%.3f%%], %d big edits [%.3f%%]",
                    nproc,nspike,pspike,nbig,pbig ) ;
          }
          fprintf(stderr,"\n") ;
        }
        kzold = kz ;
      }
#else
      if( verb && ii % 2345 == 1234 ) fprintf(stderr,".") ;
#endif

      /*** extract ii-th time series into far[] ***/

      switch( datum ){
        case MRI_short:
          for( iv=0 ; iv < nuse ; iv++ ){
            qar = DSET_ARRAY(dset,iv+ignore) ;   /* skip ignored data */
            far[iv] = (float)qar[ii] ;
          }
        break ;
        case MRI_float:
          for( iv=0 ; iv < nuse ; iv++ ){
            zar = DSET_ARRAY(dset,iv+ignore) ;
            far[iv] = zar[ii] ;
          }
        break ;
      }

      AAmemcpy(dar,far,sizeof(float)*nuse) ;   /* copy time series into dar[] */

      /*** solve for L1 fit ***/

      if( do_NEW )
        cls = DES_solve( NEW_psinv , far , fit , NEW_wks ) ; /* 29 Nov 2013 */
      else
        cls = cl1_solve( nuse , nref , far , ref , fit,0 ) ; /* the slow part */

      if( cls < 0.0f ){                      /* fit failed! */
#if 0
        fprintf(stderr,"curve fit fails at voxel %d %d %d\n",
                DSET_index_to_ix(dset,ii) ,
                DSET_index_to_jy(dset,ii) ,
                DSET_index_to_kz(dset,ii)  ) ;
#endif
        continue ;                           /* skip this voxel */
      }

      for( iv=0 ; iv < nuse ; iv++ ){        /* detrend */
        val =  fit[0]
             + fit[1]*ref[1][iv]             /* quadratic part of curve fit */
             + fit[2]*ref[2][iv] ;
        for( jj=3 ; jj < nref ; jj++ )       /* rest of curve fit */
          val += fit[jj] * ref[jj][iv] ;

        fitar[iv] = val ;                    /* save curve fit value */
        var[iv]   = dar[iv]-val ;            /* remove fitted value = resid */
        far[iv]   = fabsf(var[iv]) ;         /* abs value of resid */
      }

      /*** compute estimate standard deviation of detrended data ***/

      fsig = sq2p * qmed_float(nuse,far) ;   /* also mangles far array */

      /*** process time series for spikes, editing data in dar[] ***/

      if( fsig > 0.0f ){                     /* data wasn't fit perfectly */

        /* find spikiness for each point in time */

        fq = 1.0f / fsig ;
        for( iv=0 ; iv < nuse ; iv++ ){
          ssp[iv] = fq * var[iv] ;           /* spikiness s = how many sigma out */
        }

        /* save spikiness in -ssave datset */

        if( tset != NULL ){
          for( iv=0 ; iv < nuse ; iv++ ){
            tar     = DSET_ARRAY(tset,iv+ignore) ;
            snew    = ITFAC*fabsf(ssp[iv]) ;  /* scale for byte storage */
            tar[ii] = BYTEIZE(snew) ;         /* cf. mrilib.h */
          }
        }

        /* process values of |s| > cut1, editing dar[] */

        for( iv=0 ; iv < nuse ; iv++ ){ /* loop over time points */
          if( !localedit ){             /** classic 'smash' edit **/
            if( ssp[iv] > cut1 ){
              snew = cut1 + c21*mytanh((ssp[iv]-cut1)*ic21) ;   /* edit s down */
              dar[iv] = fitar[iv] + snew*fsig ;
#pragma omp critical (DESPIKE_counter)
              { nspike++ ; if( ssp[iv] > cut2 ) nbig++ ; }
            } else if( ssp[iv] < -cut1 ){
              snew = -cut1 + c21*mytanh((ssp[iv]+cut1)*ic21) ;  /* edit s up */
              dar[iv] = fitar[iv] + snew*fsig ;
#pragma omp critical (DESPIKE_counter)
              { nspike++ ; if( ssp[iv] < -cut2 ) nbig++ ; }
            }
          } else {                      /** local edit: 04 Apr 2007 **/
            if( ssp[iv] >= cut2 || ssp[iv] <= -cut2 ){
              for( iu=iv+1 ; iu < nuse ; iu++ )  /* find non-spike above */
                if( ssp[iu] < cut2 && ssp[iu] > -cut2 ) break ;
              for( id=iv-1 ; id >= 0   ; id-- )  /* find non-spike below */
                if( ssp[id] < cut2 && ssp[id] > -cut2 ) break ;
              switch( (id>=0) + 2*(iu<nuse) ){   /* compute replacement val */
                case 3: val = 0.5*(dar[iu]+dar[id]); break; /* iu and id OK */
                case 2: val =      dar[iu]         ; break; /* only iu OK   */
                case 1: val =              dar[id] ; break; /* only id OK   */
               default: val = fitar[iv]            ; break; /* shouldn't be */
              }
              dar[iv] = val ;
#pragma omp critical (DESPIKE_counter)
              { nspike++ ; nbig++ ; }
            }
          }
        } /* end of loop over time points */
#pragma omp atomic
        nproc += nuse ;  /* number data points processed */

      } /* end of processing time series when fsig is positive */

      /* put dar[] time series (possibly edited above) into output bricks */

      switch( datum ){
        case MRI_short:
          for( iv=0 ; iv < nuse ; iv++ ){
            sar = DSET_ARRAY(oset,iv+ignore) ; /* output brick */
            sar[ii] = (short)dar[iv] ;         /* original or mutated data */
          }
        break ;
        case MRI_float:
          for( iv=0 ; iv < nuse ; iv++ ){
            zar = DSET_ARRAY(oset,iv+ignore) ; /* output brick */
            zar[ii] = dar[iv] ;                /* original or mutated data */
          }
        break ;
      }

   } /* end of loop over voxels #ii */

#pragma omp critical (DESPIKE_malloc)
   { free(fit); free(ssp); free(fitar); free(var); free(dar); free(far);
     if( do_NEW ) free(NEW_wks) ; }

 } /* end OpenMP */
 AFNI_OMP_END ;

#ifdef USE_OMP
   if( verb ) fprintf(stderr,"\n") ;
#endif
   ctim = NI_clock_time() - ctim ;
   INFO_message( "Elapsed despike time = %s" , nice_time_string(ctim) ) ;
   if( ctim > 345678 && !do_NEW )
     ININFO_message("That was SLOW -- try the '-NEW' option for a speedup") ;

#ifdef USE_OMP
   if( verb ) fprintf(stderr,"\n") ;
#endif

   /*--- finish up ---*/

   if( do_NEW ) mri_free(NEW_psinv) ;

   DSET_delete(dset) ; /* delete input dataset */

   if( verb ){
     if( nproc > 0 ){
       pspike = (100.0*nspike)/nproc ;
       pbig   = (100.0*nbig  )/nproc ;
       INFO_message("FINAL: %d data points, %d edits [%.3f%%], %d big edits [%.3f%%]",
               nproc,nspike,pspike,nbig,pbig ) ;
     } else {
       INFO_message("FINAL: no good voxels found to process!!??") ;
     }
   }

   /* write results */

   DSET_write(oset) ;
   if( verb ) WROTE_DSET(oset) ;
   DSET_delete(oset) ;

   if( tset != NULL ){
     DSET_write(tset) ;
     if( verb ) WROTE_DSET(tset) ;
     DSET_delete(tset) ;
   }

   exit( THD_get_write_error_count() ) ;
}