Beispiel #1
0
static int openssl_ec_group_parse(lua_State*L)
{
  const EC_GROUP* group = CHECK_OBJECT(1, EC_GROUP, "openssl.ec_group");
  const EC_POINT *generator = EC_GROUP_get0_generator(group);
  BN_CTX* ctx = BN_CTX_new();
  BIGNUM *a, *b, *p, *order, *cofactor;

  lua_newtable(L);
  if (generator)
  {
    generator = EC_POINT_dup(generator, group);
    AUXILIAR_SETOBJECT(L, generator, "openssl.ec_point", -1, "generator");
  }

  order = BN_new();
  EC_GROUP_get_order(group, order, ctx);
  AUXILIAR_SETOBJECT(L, order, "openssl.bn", -1, "order");

  cofactor = BN_new();
  EC_GROUP_get_cofactor(group, cofactor, ctx);
  AUXILIAR_SETOBJECT(L, cofactor, "openssl.bn", -1, "cofactor");

  AUXILIAR_SET(L, -1, "asn1_flag", EC_GROUP_get_asn1_flag(group), integer);
  AUXILIAR_SET(L, -1, "degree", EC_GROUP_get_degree(group), integer);
  AUXILIAR_SET(L, -1, "curve_name", EC_GROUP_get_curve_name(group), integer);
  AUXILIAR_SET(L, -1, "conversion_form", EC_GROUP_get_point_conversion_form(group), integer);

  AUXILIAR_SETLSTR(L, -1, "seed", EC_GROUP_get0_seed(group), EC_GROUP_get_seed_len(group));

  a = BN_new();
  b = BN_new();
  p = BN_new();
  EC_GROUP_get_curve_GFp(group, p, a, b, ctx);
  lua_newtable(L);
  {
    AUXILIAR_SETOBJECT(L, p, "openssl.bn", -1, "p");
    AUXILIAR_SETOBJECT(L, a, "openssl.bn", -1, "a");
    AUXILIAR_SETOBJECT(L, b, "openssl.bn", -1, "b");
  }
  lua_setfield(L, -2, "curve");
  BN_CTX_free(ctx);

  return 1;
}
static void
eap_pwd_perform_commit_exchange(struct eap_sm *sm, struct eap_pwd_data *data,
				struct eap_method_ret *ret,
				const struct wpabuf *reqData,
				const u8 *payload, size_t payload_len)
{
	EC_POINT *K = NULL, *point = NULL;
	BIGNUM *mask = NULL, *x = NULL, *y = NULL, *cofactor = NULL;
	u16 offset;
	u8 *ptr, *scalar = NULL, *element = NULL;

	if (((data->private_value = BN_new()) == NULL) ||
	    ((data->my_element = EC_POINT_new(data->grp->group)) == NULL) ||
	    ((cofactor = BN_new()) == NULL) ||
	    ((data->my_scalar = BN_new()) == NULL) ||
	    ((mask = BN_new()) == NULL)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): scalar allocation fail");
		goto fin;
	}

	if (!EC_GROUP_get_cofactor(data->grp->group, cofactor, NULL)) {
		wpa_printf(MSG_INFO, "EAP-pwd (peer): unable to get cofactor "
			   "for curve");
		goto fin;
	}

	BN_rand_range(data->private_value, data->grp->order);
	BN_rand_range(mask, data->grp->order);
	BN_add(data->my_scalar, data->private_value, mask);
	BN_mod(data->my_scalar, data->my_scalar, data->grp->order,
	       data->bnctx);

	if (!EC_POINT_mul(data->grp->group, data->my_element, NULL,
			  data->grp->pwe, mask, data->bnctx)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): element allocation "
			   "fail");
		eap_pwd_state(data, FAILURE);
		goto fin;
	}

	if (!EC_POINT_invert(data->grp->group, data->my_element, data->bnctx))
	{
		wpa_printf(MSG_INFO, "EAP-PWD (peer): element inversion fail");
		goto fin;
	}
	BN_free(mask);

	if (((x = BN_new()) == NULL) ||
	    ((y = BN_new()) == NULL)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): point allocation fail");
		goto fin;
	}

	/* process the request */
	if (((data->server_scalar = BN_new()) == NULL) ||
	    ((data->k = BN_new()) == NULL) ||
	    ((K = EC_POINT_new(data->grp->group)) == NULL) ||
	    ((point = EC_POINT_new(data->grp->group)) == NULL) ||
	    ((data->server_element = EC_POINT_new(data->grp->group)) == NULL))
	{
		wpa_printf(MSG_INFO, "EAP-PWD (peer): peer data allocation "
			   "fail");
		goto fin;
	}

	/* element, x then y, followed by scalar */
	ptr = (u8 *) payload;
	BN_bin2bn(ptr, BN_num_bytes(data->grp->prime), x);
	ptr += BN_num_bytes(data->grp->prime);
	BN_bin2bn(ptr, BN_num_bytes(data->grp->prime), y);
	ptr += BN_num_bytes(data->grp->prime);
	BN_bin2bn(ptr, BN_num_bytes(data->grp->order), data->server_scalar);
	if (!EC_POINT_set_affine_coordinates_GFp(data->grp->group,
						 data->server_element, x, y,
						 data->bnctx)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): setting peer element "
			   "fail");
		goto fin;
	}

	/* check to ensure server's element is not in a small sub-group */
	if (BN_cmp(cofactor, BN_value_one())) {
		if (!EC_POINT_mul(data->grp->group, point, NULL,
				  data->server_element, cofactor, NULL)) {
			wpa_printf(MSG_INFO, "EAP-PWD (peer): cannot multiply "
				   "server element by order!\n");
			goto fin;
		}
		if (EC_POINT_is_at_infinity(data->grp->group, point)) {
			wpa_printf(MSG_INFO, "EAP-PWD (peer): server element "
				   "is at infinity!\n");
			goto fin;
		}
	}

	/* compute the shared key, k */
	if ((!EC_POINT_mul(data->grp->group, K, NULL, data->grp->pwe,
			   data->server_scalar, data->bnctx)) ||
	    (!EC_POINT_add(data->grp->group, K, K, data->server_element,
			   data->bnctx)) ||
	    (!EC_POINT_mul(data->grp->group, K, NULL, K, data->private_value,
			   data->bnctx))) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): computing shared key "
			   "fail");
		goto fin;
	}

	/* ensure that the shared key isn't in a small sub-group */
	if (BN_cmp(cofactor, BN_value_one())) {
		if (!EC_POINT_mul(data->grp->group, K, NULL, K, cofactor,
				  NULL)) {
			wpa_printf(MSG_INFO, "EAP-PWD (peer): cannot multiply "
				   "shared key point by order");
			goto fin;
		}
	}

	/*
	 * This check is strictly speaking just for the case above where
	 * co-factor > 1 but it was suggested that even though this is probably
	 * never going to happen it is a simple and safe check "just to be
	 * sure" so let's be safe.
	 */
	if (EC_POINT_is_at_infinity(data->grp->group, K)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): shared key point is at "
			   "infinity!\n");
		goto fin;
	}

	if (!EC_POINT_get_affine_coordinates_GFp(data->grp->group, K, data->k,
						 NULL, data->bnctx)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): unable to extract "
			   "shared secret from point");
		goto fin;
	}

	/* now do the response */
	if (!EC_POINT_get_affine_coordinates_GFp(data->grp->group,
						 data->my_element, x, y,
						 data->bnctx)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): point assignment fail");
		goto fin;
	}

	if (((scalar = os_malloc(BN_num_bytes(data->grp->order))) == NULL) ||
	    ((element = os_malloc(BN_num_bytes(data->grp->prime) * 2)) ==
	     NULL)) {
		wpa_printf(MSG_INFO, "EAP-PWD (peer): data allocation fail");
		goto fin;
	}

	/*
	 * bignums occupy as little memory as possible so one that is
	 * sufficiently smaller than the prime or order might need pre-pending
	 * with zeros.
	 */
	os_memset(scalar, 0, BN_num_bytes(data->grp->order));
	os_memset(element, 0, BN_num_bytes(data->grp->prime) * 2);
	offset = BN_num_bytes(data->grp->order) -
		BN_num_bytes(data->my_scalar);
	BN_bn2bin(data->my_scalar, scalar + offset);

	offset = BN_num_bytes(data->grp->prime) - BN_num_bytes(x);
	BN_bn2bin(x, element + offset);
	offset = BN_num_bytes(data->grp->prime) - BN_num_bytes(y);
	BN_bn2bin(y, element + BN_num_bytes(data->grp->prime) + offset);

	data->outbuf = wpabuf_alloc(BN_num_bytes(data->grp->order) +
				    2 * BN_num_bytes(data->grp->prime));
	if (data->outbuf == NULL)
		goto fin;

	/* we send the element as (x,y) follwed by the scalar */
	wpabuf_put_data(data->outbuf, element,
			2 * BN_num_bytes(data->grp->prime));
	wpabuf_put_data(data->outbuf, scalar, BN_num_bytes(data->grp->order));

fin:
	os_free(scalar);
	os_free(element);
	BN_free(x);
	BN_free(y);
	BN_free(cofactor);
	EC_POINT_free(K);
	EC_POINT_free(point);
	if (data->outbuf == NULL)
		eap_pwd_state(data, FAILURE);
	else
		eap_pwd_state(data, PWD_Confirm_Req);
}
Beispiel #3
0
int 
ecparam_main(int argc, char **argv)
{
	EC_GROUP *group = NULL;
	point_conversion_form_t form = POINT_CONVERSION_UNCOMPRESSED;
	int new_form = 0;
	int asn1_flag = OPENSSL_EC_NAMED_CURVE;
	int new_asn1_flag = 0;
	char *curve_name = NULL, *inrand = NULL;
	int list_curves = 0, no_seed = 0, check = 0, badops = 0, text = 0,
	 i, genkey = 0;
	char *infile = NULL, *outfile = NULL, *prog;
	BIO *in = NULL, *out = NULL;
	int informat, outformat, noout = 0, C = 0, ret = 1;
	char *engine = NULL;

	BIGNUM *ec_p = NULL, *ec_a = NULL, *ec_b = NULL, *ec_gen = NULL,
	*ec_order = NULL, *ec_cofactor = NULL;
	unsigned char *buffer = NULL;

	if (!load_config(bio_err, NULL))
		goto end;

	informat = FORMAT_PEM;
	outformat = FORMAT_PEM;

	prog = argv[0];
	argc--;
	argv++;
	while (argc >= 1) {
		if (strcmp(*argv, "-inform") == 0) {
			if (--argc < 1)
				goto bad;
			informat = str2fmt(*(++argv));
		} else if (strcmp(*argv, "-outform") == 0) {
			if (--argc < 1)
				goto bad;
			outformat = str2fmt(*(++argv));
		} else if (strcmp(*argv, "-in") == 0) {
			if (--argc < 1)
				goto bad;
			infile = *(++argv);
		} else if (strcmp(*argv, "-out") == 0) {
			if (--argc < 1)
				goto bad;
			outfile = *(++argv);
		} else if (strcmp(*argv, "-text") == 0)
			text = 1;
		else if (strcmp(*argv, "-C") == 0)
			C = 1;
		else if (strcmp(*argv, "-check") == 0)
			check = 1;
		else if (strcmp(*argv, "-name") == 0) {
			if (--argc < 1)
				goto bad;
			curve_name = *(++argv);
		} else if (strcmp(*argv, "-list_curves") == 0)
			list_curves = 1;
		else if (strcmp(*argv, "-conv_form") == 0) {
			if (--argc < 1)
				goto bad;
			++argv;
			new_form = 1;
			if (strcmp(*argv, "compressed") == 0)
				form = POINT_CONVERSION_COMPRESSED;
			else if (strcmp(*argv, "uncompressed") == 0)
				form = POINT_CONVERSION_UNCOMPRESSED;
			else if (strcmp(*argv, "hybrid") == 0)
				form = POINT_CONVERSION_HYBRID;
			else
				goto bad;
		} else if (strcmp(*argv, "-param_enc") == 0) {
			if (--argc < 1)
				goto bad;
			++argv;
			new_asn1_flag = 1;
			if (strcmp(*argv, "named_curve") == 0)
				asn1_flag = OPENSSL_EC_NAMED_CURVE;
			else if (strcmp(*argv, "explicit") == 0)
				asn1_flag = 0;
			else
				goto bad;
		} else if (strcmp(*argv, "-no_seed") == 0)
			no_seed = 1;
		else if (strcmp(*argv, "-noout") == 0)
			noout = 1;
		else if (strcmp(*argv, "-genkey") == 0) {
			genkey = 1;
		} else if (strcmp(*argv, "-rand") == 0) {
			if (--argc < 1)
				goto bad;
			inrand = *(++argv);
		} else if (strcmp(*argv, "-engine") == 0) {
			if (--argc < 1)
				goto bad;
			engine = *(++argv);
		} else {
			BIO_printf(bio_err, "unknown option %s\n", *argv);
			badops = 1;
			break;
		}
		argc--;
		argv++;
	}

	if (badops) {
bad:
		BIO_printf(bio_err, "%s [options] <infile >outfile\n", prog);
		BIO_printf(bio_err, "where options are\n");
		BIO_printf(bio_err, " -inform arg       input format - "
		    "default PEM (DER or PEM)\n");
		BIO_printf(bio_err, " -outform arg      output format - "
		    "default PEM\n");
		BIO_printf(bio_err, " -in  arg          input file  - "
		    "default stdin\n");
		BIO_printf(bio_err, " -out arg          output file - "
		    "default stdout\n");
		BIO_printf(bio_err, " -noout            do not print the "
		    "ec parameter\n");
		BIO_printf(bio_err, " -text             print the ec "
		    "parameters in text form\n");
		BIO_printf(bio_err, " -check            validate the ec "
		    "parameters\n");
		BIO_printf(bio_err, " -C                print a 'C' "
		    "function creating the parameters\n");
		BIO_printf(bio_err, " -name arg         use the "
		    "ec parameters with 'short name' name\n");
		BIO_printf(bio_err, " -list_curves      prints a list of "
		    "all currently available curve 'short names'\n");
		BIO_printf(bio_err, " -conv_form arg    specifies the "
		    "point conversion form \n");
		BIO_printf(bio_err, "                   possible values:"
		    " compressed\n");
		BIO_printf(bio_err, "                                   "
		    " uncompressed (default)\n");
		BIO_printf(bio_err, "                                   "
		    " hybrid\n");
		BIO_printf(bio_err, " -param_enc arg    specifies the way"
		    " the ec parameters are encoded\n");
		BIO_printf(bio_err, "                   in the asn1 der "
		    "encoding\n");
		BIO_printf(bio_err, "                   possible values:"
		    " named_curve (default)\n");
		BIO_printf(bio_err, "                                   "
		    " explicit\n");
		BIO_printf(bio_err, " -no_seed          if 'explicit'"
		    " parameters are chosen do not"
		    " use the seed\n");
		BIO_printf(bio_err, " -genkey           generate ec"
		    " key\n");
		BIO_printf(bio_err, " -rand file        files to use for"
		    " random number input\n");
		BIO_printf(bio_err, " -engine e         use engine e, "
		    "possibly a hardware device\n");
		goto end;
	}
	ERR_load_crypto_strings();

	in = BIO_new(BIO_s_file());
	out = BIO_new(BIO_s_file());
	if ((in == NULL) || (out == NULL)) {
		ERR_print_errors(bio_err);
		goto end;
	}
	if (infile == NULL)
		BIO_set_fp(in, stdin, BIO_NOCLOSE);
	else {
		if (BIO_read_filename(in, infile) <= 0) {
			perror(infile);
			goto end;
		}
	}
	if (outfile == NULL) {
		BIO_set_fp(out, stdout, BIO_NOCLOSE);
	} else {
		if (BIO_write_filename(out, outfile) <= 0) {
			perror(outfile);
			goto end;
		}
	}

#ifndef OPENSSL_NO_ENGINE
	setup_engine(bio_err, engine, 0);
#endif

	if (list_curves) {
		EC_builtin_curve *curves = NULL;
		size_t crv_len = 0;
		size_t n = 0;

		crv_len = EC_get_builtin_curves(NULL, 0);

		curves = reallocarray(NULL, crv_len, sizeof(EC_builtin_curve));

		if (curves == NULL)
			goto end;

		if (!EC_get_builtin_curves(curves, crv_len)) {
			free(curves);
			goto end;
		}
		for (n = 0; n < crv_len; n++) {
			const char *comment;
			const char *sname;
			comment = curves[n].comment;
			sname = OBJ_nid2sn(curves[n].nid);
			if (comment == NULL)
				comment = "CURVE DESCRIPTION NOT AVAILABLE";
			if (sname == NULL)
				sname = "";

			BIO_printf(out, "  %-10s: ", sname);
			BIO_printf(out, "%s\n", comment);
		}

		free(curves);
		ret = 0;
		goto end;
	}
	if (curve_name != NULL) {
		int nid;

		/*
		 * workaround for the SECG curve names secp192r1 and
		 * secp256r1 (which are the same as the curves prime192v1 and
		 * prime256v1 defined in X9.62)
		 */
		if (!strcmp(curve_name, "secp192r1")) {
			BIO_printf(bio_err, "using curve name prime192v1 "
			    "instead of secp192r1\n");
			nid = NID_X9_62_prime192v1;
		} else if (!strcmp(curve_name, "secp256r1")) {
			BIO_printf(bio_err, "using curve name prime256v1 "
			    "instead of secp256r1\n");
			nid = NID_X9_62_prime256v1;
		} else
			nid = OBJ_sn2nid(curve_name);

		if (nid == 0) {
			BIO_printf(bio_err, "unknown curve name (%s)\n",
			    curve_name);
			goto end;
		}
		group = EC_GROUP_new_by_curve_name(nid);
		if (group == NULL) {
			BIO_printf(bio_err, "unable to create curve (%s)\n",
			    curve_name);
			goto end;
		}
		EC_GROUP_set_asn1_flag(group, asn1_flag);
		EC_GROUP_set_point_conversion_form(group, form);
	} else if (informat == FORMAT_ASN1) {
		group = d2i_ECPKParameters_bio(in, NULL);
	} else if (informat == FORMAT_PEM) {
		group = PEM_read_bio_ECPKParameters(in, NULL, NULL, NULL);
	} else {
		BIO_printf(bio_err, "bad input format specified\n");
		goto end;
	}

	if (group == NULL) {
		BIO_printf(bio_err,
		    "unable to load elliptic curve parameters\n");
		ERR_print_errors(bio_err);
		goto end;
	}
	if (new_form)
		EC_GROUP_set_point_conversion_form(group, form);

	if (new_asn1_flag)
		EC_GROUP_set_asn1_flag(group, asn1_flag);

	if (no_seed) {
		EC_GROUP_set_seed(group, NULL, 0);
	}
	if (text) {
		if (!ECPKParameters_print(out, group, 0))
			goto end;
	}
	if (check) {
		if (group == NULL)
			BIO_printf(bio_err, "no elliptic curve parameters\n");
		BIO_printf(bio_err, "checking elliptic curve parameters: ");
		if (!EC_GROUP_check(group, NULL)) {
			BIO_printf(bio_err, "failed\n");
			ERR_print_errors(bio_err);
		} else
			BIO_printf(bio_err, "ok\n");

	}
	if (C) {
		size_t buf_len = 0, tmp_len = 0;
		const EC_POINT *point;
		int is_prime, len = 0;
		const EC_METHOD *meth = EC_GROUP_method_of(group);

		if ((ec_p = BN_new()) == NULL || (ec_a = BN_new()) == NULL ||
		    (ec_b = BN_new()) == NULL || (ec_gen = BN_new()) == NULL ||
		    (ec_order = BN_new()) == NULL ||
		    (ec_cofactor = BN_new()) == NULL) {
			perror("malloc");
			goto end;
		}
		is_prime = (EC_METHOD_get_field_type(meth) ==
		    NID_X9_62_prime_field);

		if (is_prime) {
			if (!EC_GROUP_get_curve_GFp(group, ec_p, ec_a,
				ec_b, NULL))
				goto end;
		} else {
			/* TODO */
			goto end;
		}

		if ((point = EC_GROUP_get0_generator(group)) == NULL)
			goto end;
		if (!EC_POINT_point2bn(group, point,
			EC_GROUP_get_point_conversion_form(group), ec_gen,
			NULL))
			goto end;
		if (!EC_GROUP_get_order(group, ec_order, NULL))
			goto end;
		if (!EC_GROUP_get_cofactor(group, ec_cofactor, NULL))
			goto end;

		if (!ec_p || !ec_a || !ec_b || !ec_gen ||
		    !ec_order || !ec_cofactor)
			goto end;

		len = BN_num_bits(ec_order);

		if ((tmp_len = (size_t) BN_num_bytes(ec_p)) > buf_len)
			buf_len = tmp_len;
		if ((tmp_len = (size_t) BN_num_bytes(ec_a)) > buf_len)
			buf_len = tmp_len;
		if ((tmp_len = (size_t) BN_num_bytes(ec_b)) > buf_len)
			buf_len = tmp_len;
		if ((tmp_len = (size_t) BN_num_bytes(ec_gen)) > buf_len)
			buf_len = tmp_len;
		if ((tmp_len = (size_t) BN_num_bytes(ec_order)) > buf_len)
			buf_len = tmp_len;
		if ((tmp_len = (size_t) BN_num_bytes(ec_cofactor)) > buf_len)
			buf_len = tmp_len;

		buffer = (unsigned char *) malloc(buf_len);

		if (buffer == NULL) {
			perror("malloc");
			goto end;
		}
		ecparam_print_var(out, ec_p, "ec_p", len, buffer);
		ecparam_print_var(out, ec_a, "ec_a", len, buffer);
		ecparam_print_var(out, ec_b, "ec_b", len, buffer);
		ecparam_print_var(out, ec_gen, "ec_gen", len, buffer);
		ecparam_print_var(out, ec_order, "ec_order", len, buffer);
		ecparam_print_var(out, ec_cofactor, "ec_cofactor", len,
		    buffer);

		BIO_printf(out, "\n\n");

		BIO_printf(out, "EC_GROUP *get_ec_group_%d(void)\n\t{\n", len);
		BIO_printf(out, "\tint ok=0;\n");
		BIO_printf(out, "\tEC_GROUP *group = NULL;\n");
		BIO_printf(out, "\tEC_POINT *point = NULL;\n");
		BIO_printf(out, "\tBIGNUM   *tmp_1 = NULL, *tmp_2 = NULL, "
		    "*tmp_3 = NULL;\n\n");
		BIO_printf(out, "\tif ((tmp_1 = BN_bin2bn(ec_p_%d, "
		    "sizeof(ec_p_%d), NULL)) == NULL)\n\t\t"
		    "goto err;\n", len, len);
		BIO_printf(out, "\tif ((tmp_2 = BN_bin2bn(ec_a_%d, "
		    "sizeof(ec_a_%d), NULL)) == NULL)\n\t\t"
		    "goto err;\n", len, len);
		BIO_printf(out, "\tif ((tmp_3 = BN_bin2bn(ec_b_%d, "
		    "sizeof(ec_b_%d), NULL)) == NULL)\n\t\t"
		    "goto err;\n", len, len);
		if (is_prime) {
			BIO_printf(out, "\tif ((group = EC_GROUP_new_curve_"
			    "GFp(tmp_1, tmp_2, tmp_3, NULL)) == NULL)"
			    "\n\t\tgoto err;\n\n");
		} else {
			/* TODO */
			goto end;
		}
		BIO_printf(out, "\t/* build generator */\n");
		BIO_printf(out, "\tif ((tmp_1 = BN_bin2bn(ec_gen_%d, "
		    "sizeof(ec_gen_%d), tmp_1)) == NULL)"
		    "\n\t\tgoto err;\n", len, len);
		BIO_printf(out, "\tpoint = EC_POINT_bn2point(group, tmp_1, "
		    "NULL, NULL);\n");
		BIO_printf(out, "\tif (point == NULL)\n\t\tgoto err;\n");
		BIO_printf(out, "\tif ((tmp_2 = BN_bin2bn(ec_order_%d, "
		    "sizeof(ec_order_%d), tmp_2)) == NULL)"
		    "\n\t\tgoto err;\n", len, len);
		BIO_printf(out, "\tif ((tmp_3 = BN_bin2bn(ec_cofactor_%d, "
		    "sizeof(ec_cofactor_%d), tmp_3)) == NULL)"
		    "\n\t\tgoto err;\n", len, len);
		BIO_printf(out, "\tif (!EC_GROUP_set_generator(group, point,"
		    " tmp_2, tmp_3))\n\t\tgoto err;\n");
		BIO_printf(out, "\n\tok=1;\n");
		BIO_printf(out, "err:\n");
		BIO_printf(out, "\tif (tmp_1)\n\t\tBN_free(tmp_1);\n");
		BIO_printf(out, "\tif (tmp_2)\n\t\tBN_free(tmp_2);\n");
		BIO_printf(out, "\tif (tmp_3)\n\t\tBN_free(tmp_3);\n");
		BIO_printf(out, "\tif (point)\n\t\tEC_POINT_free(point);\n");
		BIO_printf(out, "\tif (!ok)\n");
		BIO_printf(out, "\t\t{\n");
		BIO_printf(out, "\t\tEC_GROUP_free(group);\n");
		BIO_printf(out, "\t\tgroup = NULL;\n");
		BIO_printf(out, "\t\t}\n");
		BIO_printf(out, "\treturn(group);\n\t}\n");
	}
	if (!noout) {
		if (outformat == FORMAT_ASN1)
			i = i2d_ECPKParameters_bio(out, group);
		else if (outformat == FORMAT_PEM)
			i = PEM_write_bio_ECPKParameters(out, group);
		else {
			BIO_printf(bio_err, "bad output format specified for"
			    " outfile\n");
			goto end;
		}
		if (!i) {
			BIO_printf(bio_err, "unable to write elliptic "
			    "curve parameters\n");
			ERR_print_errors(bio_err);
			goto end;
		}
	}
	if (genkey) {
		EC_KEY *eckey = EC_KEY_new();

		if (eckey == NULL)
			goto end;

		if (EC_KEY_set_group(eckey, group) == 0)
			goto end;

		if (!EC_KEY_generate_key(eckey)) {
			EC_KEY_free(eckey);
			goto end;
		}
		if (outformat == FORMAT_ASN1)
			i = i2d_ECPrivateKey_bio(out, eckey);
		else if (outformat == FORMAT_PEM)
			i = PEM_write_bio_ECPrivateKey(out, eckey, NULL,
			    NULL, 0, NULL, NULL);
		else {
			BIO_printf(bio_err, "bad output format specified "
			    "for outfile\n");
			EC_KEY_free(eckey);
			goto end;
		}
		EC_KEY_free(eckey);
	}
	ret = 0;
end:
	if (ec_p)
		BN_free(ec_p);
	if (ec_a)
		BN_free(ec_a);
	if (ec_b)
		BN_free(ec_b);
	if (ec_gen)
		BN_free(ec_gen);
	if (ec_order)
		BN_free(ec_order);
	if (ec_cofactor)
		BN_free(ec_cofactor);
	free(buffer);
	if (in != NULL)
		BIO_free(in);
	if (out != NULL)
		BIO_free_all(out);
	if (group != NULL)
		EC_GROUP_free(group);
	
	return (ret);
}
Beispiel #4
0
/*-
 * This implementation is based on the following primitives in the IEEE 1363 standard:
 *  - ECKAS-DH1
 *  - ECSVDP-DH
 * Finally an optional KDF is applied.
 */
static int ecdh_compute_key(void *out, size_t outlen, const EC_POINT *pub_key,
                            EC_KEY *ecdh,
                            void *(*KDF) (const void *in, size_t inlen,
                                          void *out, size_t *outlen))
{
    BN_CTX *ctx;
    EC_POINT *tmp = NULL;
    BIGNUM *x = NULL, *y = NULL;
    const BIGNUM *priv_key;
    const EC_GROUP *group;
    int ret = -1;
    size_t buflen, len;
    unsigned char *buf = NULL;

    if (outlen > INT_MAX) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE); /* sort of,
                                                                 * anyway */
        return -1;
    }

    if ((ctx = BN_CTX_new()) == NULL)
        goto err;
    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);

    priv_key = EC_KEY_get0_private_key(ecdh);
    if (priv_key == NULL) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_NO_PRIVATE_VALUE);
        goto err;
    }

    group = EC_KEY_get0_group(ecdh);

    if (EC_KEY_get_flags(ecdh) & EC_FLAG_COFACTOR_ECDH) {
        if (!EC_GROUP_get_cofactor(group, x, ctx) ||
            !BN_mul(x, x, priv_key, ctx)) {
            ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
            goto err;
        }
        priv_key = x;
    }

    if ((tmp = EC_POINT_new(group)) == NULL) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_POINT_mul(group, tmp, NULL, pub_key, priv_key, ctx)) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_POINT_ARITHMETIC_FAILURE);
        goto err;
    }

    if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) ==
        NID_X9_62_prime_field) {
        if (!EC_POINT_get_affine_coordinates_GFp(group, tmp, x, y, ctx)) {
            ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_POINT_ARITHMETIC_FAILURE);
            goto err;
        }
    }
#ifndef OPENSSL_NO_EC2M
    else {
        if (!EC_POINT_get_affine_coordinates_GF2m(group, tmp, x, y, ctx)) {
            ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_POINT_ARITHMETIC_FAILURE);
            goto err;
        }
    }
#endif

    buflen = (EC_GROUP_get_degree(group) + 7) / 8;
    len = BN_num_bytes(x);
    if (len > buflen) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_INTERNAL_ERROR);
        goto err;
    }
    if ((buf = OPENSSL_malloc(buflen)) == NULL) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    memset(buf, 0, buflen - len);
    if (len != (size_t)BN_bn2bin(x, buf + buflen - len)) {
        ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ERR_R_BN_LIB);
        goto err;
    }

    if (KDF != 0) {
        if (KDF(buf, buflen, out, &outlen) == NULL) {
            ECDHerr(ECDH_F_ECDH_COMPUTE_KEY, ECDH_R_KDF_FAILED);
            goto err;
        }
        ret = outlen;
    } else {
        /* no KDF, just copy as much as we can */
        if (outlen > buflen)
            outlen = buflen;
        memcpy(out, buf, outlen);
        ret = outlen;
    }

 err:
    EC_POINT_free(tmp);
    if (ctx)
        BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    OPENSSL_free(buf);
    return (ret);
}
Beispiel #5
0
int 
ECPKParameters_print(BIO * bp, const EC_GROUP * x, int off)
{
	unsigned char *buffer = NULL;
	size_t buf_len = 0, i;
	int ret = 0, reason = ERR_R_BIO_LIB;
	BN_CTX *ctx = NULL;
	const EC_POINT *point = NULL;
	BIGNUM *p = NULL, *a = NULL, *b = NULL, *gen = NULL, *order = NULL,
	*cofactor = NULL;
	const unsigned char *seed;
	size_t seed_len = 0;
	const char *nname;

	static const char *gen_compressed = "Generator (compressed):";
	static const char *gen_uncompressed = "Generator (uncompressed):";
	static const char *gen_hybrid = "Generator (hybrid):";

	if (!x) {
		reason = ERR_R_PASSED_NULL_PARAMETER;
		goto err;
	}
	ctx = BN_CTX_new();
	if (ctx == NULL) {
		reason = ERR_R_MALLOC_FAILURE;
		goto err;
	}
	if (EC_GROUP_get_asn1_flag(x)) {
		/* the curve parameter are given by an asn1 OID */
		int nid;

		if (!BIO_indent(bp, off, 128))
			goto err;

		nid = EC_GROUP_get_curve_name(x);
		if (nid == 0)
			goto err;

		if (BIO_printf(bp, "ASN1 OID: %s", OBJ_nid2sn(nid)) <= 0)
			goto err;
		if (BIO_printf(bp, "\n") <= 0)
			goto err;

		nname = EC_curve_nid2nist(nid);
		if (nname) {
			if (!BIO_indent(bp, off, 128))
				goto err;
			if (BIO_printf(bp, "NIST CURVE: %s\n", nname) <= 0)
				goto err;
		}
	} else {
		/* explicit parameters */
		int is_char_two = 0;
		point_conversion_form_t form;
		int tmp_nid = EC_METHOD_get_field_type(EC_GROUP_method_of(x));

		if (tmp_nid == NID_X9_62_characteristic_two_field)
			is_char_two = 1;

		if ((p = BN_new()) == NULL || (a = BN_new()) == NULL ||
		    (b = BN_new()) == NULL || (order = BN_new()) == NULL ||
		    (cofactor = BN_new()) == NULL) {
			reason = ERR_R_MALLOC_FAILURE;
			goto err;
		}
#ifndef OPENSSL_NO_EC2M
		if (is_char_two) {
			if (!EC_GROUP_get_curve_GF2m(x, p, a, b, ctx)) {
				reason = ERR_R_EC_LIB;
				goto err;
			}
		} else		/* prime field */
#endif
		{
			if (!EC_GROUP_get_curve_GFp(x, p, a, b, ctx)) {
				reason = ERR_R_EC_LIB;
				goto err;
			}
		}

		if ((point = EC_GROUP_get0_generator(x)) == NULL) {
			reason = ERR_R_EC_LIB;
			goto err;
		}
		if (!EC_GROUP_get_order(x, order, NULL) ||
		    !EC_GROUP_get_cofactor(x, cofactor, NULL)) {
			reason = ERR_R_EC_LIB;
			goto err;
		}
		form = EC_GROUP_get_point_conversion_form(x);

		if ((gen = EC_POINT_point2bn(x, point,
			    form, NULL, ctx)) == NULL) {
			reason = ERR_R_EC_LIB;
			goto err;
		}
		buf_len = (size_t) BN_num_bytes(p);
		if (buf_len < (i = (size_t) BN_num_bytes(a)))
			buf_len = i;
		if (buf_len < (i = (size_t) BN_num_bytes(b)))
			buf_len = i;
		if (buf_len < (i = (size_t) BN_num_bytes(gen)))
			buf_len = i;
		if (buf_len < (i = (size_t) BN_num_bytes(order)))
			buf_len = i;
		if (buf_len < (i = (size_t) BN_num_bytes(cofactor)))
			buf_len = i;

		if ((seed = EC_GROUP_get0_seed(x)) != NULL)
			seed_len = EC_GROUP_get_seed_len(x);

		buf_len += 10;
		if ((buffer = malloc(buf_len)) == NULL) {
			reason = ERR_R_MALLOC_FAILURE;
			goto err;
		}
		if (!BIO_indent(bp, off, 128))
			goto err;

		/* print the 'short name' of the field type */
		if (BIO_printf(bp, "Field Type: %s\n", OBJ_nid2sn(tmp_nid))
		    <= 0)
			goto err;

		if (is_char_two) {
			/* print the 'short name' of the base type OID */
			int basis_type = EC_GROUP_get_basis_type(x);
			if (basis_type == 0)
				goto err;

			if (!BIO_indent(bp, off, 128))
				goto err;

			if (BIO_printf(bp, "Basis Type: %s\n",
				OBJ_nid2sn(basis_type)) <= 0)
				goto err;

			/* print the polynomial */
			if ((p != NULL) && !ASN1_bn_print(bp, "Polynomial:", p, buffer,
				off))
				goto err;
		} else {
			if ((p != NULL) && !ASN1_bn_print(bp, "Prime:", p, buffer, off))
				goto err;
		}
		if ((a != NULL) && !ASN1_bn_print(bp, "A:   ", a, buffer, off))
			goto err;
		if ((b != NULL) && !ASN1_bn_print(bp, "B:   ", b, buffer, off))
			goto err;
		if (form == POINT_CONVERSION_COMPRESSED) {
			if ((gen != NULL) && !ASN1_bn_print(bp, gen_compressed, gen,
				buffer, off))
				goto err;
		} else if (form == POINT_CONVERSION_UNCOMPRESSED) {
			if ((gen != NULL) && !ASN1_bn_print(bp, gen_uncompressed, gen,
				buffer, off))
				goto err;
		} else {	/* form == POINT_CONVERSION_HYBRID */
			if ((gen != NULL) && !ASN1_bn_print(bp, gen_hybrid, gen,
				buffer, off))
				goto err;
		}
		if ((order != NULL) && !ASN1_bn_print(bp, "Order: ", order,
			buffer, off))
			goto err;
		if ((cofactor != NULL) && !ASN1_bn_print(bp, "Cofactor: ", cofactor,
			buffer, off))
			goto err;
		if (seed && !print_bin(bp, "Seed:", seed, seed_len, off))
			goto err;
	}
	ret = 1;
err:
	if (!ret)
		ECerror(reason);
	BN_free(p);
	BN_free(a);
	BN_free(b);
	BN_free(gen);
	BN_free(order);
	BN_free(cofactor);
	BN_CTX_free(ctx);
	free(buffer);
	return (ret);
}
// unsigned char *pM      输出,明文
// unsigned char *pPDKey  私钥
// unsigned char *pC      密文
// unsigned long Clen     密文长度
unsigned char eccDecrypt(unsigned char *pM, unsigned char *pPDKey, unsigned char *pC, unsigned long Clen)
{
	EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_sm2p256v1);
	EC_GROUP *ec_group = EC_GROUP_new_by_curve_name(NID_sm2p256v1);

	KDF_FUNC kdf = KDF_get_x9_63(EVP_sm3());

	// 设置私钥
	BIGNUM *pri_key = BN_new();
	BN_bin2bn(pPDKey, 32, pri_key);
	EC_KEY_set_private_key(ec_key, pri_key);

	int ret = 1;
	EC_POINT *point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	unsigned char mac[EVP_MAX_MD_SIZE];
	unsigned int maclen;
	int nbytes;
	size_t size;
	size_t i;

	if (!ec_group || !pri_key) {
		goto end;
	}
	if (!kdf) {
		goto end;
	}

	EC_POINT *ephem_point = EC_POINT_new(ec_group);
	EC_POINT_oct2point(ec_group, ephem_point, pC, 65, NULL);

	/* init vars */
	point = EC_POINT_new(ec_group);
	n = BN_new();
	h = BN_new();
	bn_ctx = BN_CTX_new();
	md_ctx = EVP_MD_CTX_create();
	if (!point || !n || !h || !bn_ctx || !md_ctx) {
		goto end;
	}

	/* init ec domain parameters */
	if (!EC_GROUP_get_order(ec_group, n, bn_ctx)) {
		goto end;
	}
	if (!EC_GROUP_get_cofactor(ec_group, h, bn_ctx)) {
		goto end;
	}
	nbytes = (EC_GROUP_get_degree(ec_group) + 7) / 8;

	/* B2: check [h]C1 != O */
	if (!EC_POINT_mul(ec_group, point, NULL, ephem_point, h, bn_ctx)) {
		goto end;
	}
	if (EC_POINT_is_at_infinity(ec_group, point)) {
		goto end;
	}

	/* B3: compute ECDH [d]C1 = (x2, y2) */	
	if (!EC_POINT_mul(ec_group, point, NULL, ephem_point, pri_key, bn_ctx)) {
		goto end;
	}
	if (!(size = EC_POINT_point2oct(ec_group, point,
		POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
			goto end;
	}
	OPENSSL_assert(size == 1 + nbytes * 2);

	/* B4: compute t = KDF(x2 || y2, clen) */

	size_t len = 0;
	size_t *outlen = &len;
	*outlen = Clen - 97; //FIXME: duplicated code
	unsigned char *out = (unsigned char *)OPENSSL_malloc(*outlen);
	kdf(buf + 1, size - 1, out, outlen);

	unsigned char *ciphertext = pC + 65;

	/* B5: compute M = C2 xor t */
	for (i = 0; i < len; i++) {
		out[i] ^= ciphertext[i];
	}
	*outlen = len;

	if (1) {

		/* B6: check Hash(x2 || M || y2) == C3 */
		if (!EVP_DigestInit_ex(md_ctx, EVP_sm3(), NULL)) {
			goto end;
		}
		if (!EVP_DigestUpdate(md_ctx, buf + 1, nbytes)) {
			goto end;
		}
		if (!EVP_DigestUpdate(md_ctx, out, *outlen)) {
			goto end;
		}
		if (!EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)) {
			goto end;
		}
		if (!EVP_DigestFinal_ex(md_ctx, mac, &maclen)) {
			goto end;
		}

		/* GmSSL specific */
		if (memcmp(mac, pC + 129, 32)) {
			goto end;
		}
	}

	for (i = 0; i < len; i++) {
		pM[i] = out[i] ;
	}

	ret = 0;
end:
	if (point) EC_POINT_free(point);
	if (n) BN_free(n);	
	if (h) BN_free(h);
	if (bn_ctx) BN_CTX_free(bn_ctx);
	if (md_ctx) EVP_MD_CTX_destroy(md_ctx);

	return ret;
}
Beispiel #7
0
int
compute_password_element (pwd_session_t *sess, uint16_t grp_num,
			  char *password, int password_len,
			  char *id_server, int id_server_len,
			  char *id_peer, int id_peer_len,
			  uint32_t *token)
{
    BIGNUM *x_candidate = NULL, *rnd = NULL, *cofactor = NULL;
    HMAC_CTX ctx;
    uint8_t pwe_digest[SHA256_DIGEST_LENGTH], *prfbuf = NULL, ctr;
    int nid, is_odd, primebitlen, primebytelen, ret = 0;

    switch (grp_num) { /* from IANA registry for IKE D-H groups */
	case 19:
	    nid = NID_X9_62_prime256v1;
	    break;
	case 20:
	    nid = NID_secp384r1;
	    break;
	case 21:
	    nid = NID_secp521r1;
	    break;
	case 25:
	    nid = NID_X9_62_prime192v1;
	    break;
	case 26:
	    nid = NID_secp224r1;
	    break;
	default:
	    DEBUG("unknown group %d", grp_num);
	    goto fail;
    }

    sess->pwe = NULL;
    sess->order = NULL;
    sess->prime = NULL;

    if ((sess->group = EC_GROUP_new_by_curve_name(nid)) == NULL) {
	DEBUG("unable to create EC_GROUP");
	goto fail;
    }

    if (((rnd = BN_new()) == NULL) ||
	((cofactor = BN_new()) == NULL) ||
	((sess->pwe = EC_POINT_new(sess->group)) == NULL) ||
	((sess->order = BN_new()) == NULL) ||
	((sess->prime = BN_new()) == NULL) ||
	((x_candidate = BN_new()) == NULL)) {
	DEBUG("unable to create bignums");
	goto fail;
    }

    if (!EC_GROUP_get_curve_GFp(sess->group, sess->prime, NULL, NULL, NULL))
    {
	DEBUG("unable to get prime for GFp curve");
	goto fail;
    }
    if (!EC_GROUP_get_order(sess->group, sess->order, NULL)) {
	DEBUG("unable to get order for curve");
	goto fail;
    }
    if (!EC_GROUP_get_cofactor(sess->group, cofactor, NULL)) {
	DEBUG("unable to get cofactor for curve");
	goto fail;
    }
    primebitlen = BN_num_bits(sess->prime);
    primebytelen = BN_num_bytes(sess->prime);
    if ((prfbuf = talloc_zero_array(sess, uint8_t, primebytelen)) == NULL) {
	DEBUG("unable to alloc space for prf buffer");
	goto fail;
    }
    ctr = 0;
    while (1) {
	if (ctr > 10) {
	    DEBUG("unable to find random point on curve for group %d, something's fishy", grp_num);
	    goto fail;
	}
	ctr++;

	/*
	 * compute counter-mode password value and stretch to prime
	 *    pwd-seed = H(token | peer-id | server-id | password |
	 *		   counter)
	 */
	H_Init(&ctx);
	H_Update(&ctx, (uint8_t *)token, sizeof(*token));
	H_Update(&ctx, (uint8_t *)id_peer, id_peer_len);
	H_Update(&ctx, (uint8_t *)id_server, id_server_len);
	H_Update(&ctx, (uint8_t *)password, password_len);
	H_Update(&ctx, (uint8_t *)&ctr, sizeof(ctr));
	H_Final(&ctx, pwe_digest);

	BN_bin2bn(pwe_digest, SHA256_DIGEST_LENGTH, rnd);
	eap_pwd_kdf(pwe_digest, SHA256_DIGEST_LENGTH,
		    "EAP-pwd Hunting And Pecking",
		    strlen("EAP-pwd Hunting And Pecking"),
		    prfbuf, primebitlen);

	BN_bin2bn(prfbuf, primebytelen, x_candidate);
	/*
	 * eap_pwd_kdf() returns a string of bits 0..primebitlen but
	 * BN_bin2bn will treat that string of bits as a big endian
	 * number. If the primebitlen is not an even multiple of 8
	 * then excessive bits-- those _after_ primebitlen-- so now
	 * we have to shift right the amount we masked off.
	 */
	if (primebitlen % 8) {
	    BN_rshift(x_candidate, x_candidate, (8 - (primebitlen % 8)));
	}
	if (BN_ucmp(x_candidate, sess->prime) >= 0) {
	    continue;
	}
	/*
	 * need to unambiguously identify the solution, if there is
	 * one...
	 */
	if (BN_is_odd(rnd)) {
	    is_odd = 1;
	} else {
	    is_odd = 0;
	}
	/*
	 * solve the quadratic equation, if it's not solvable then we
	 * don't have a point
	 */
	if (!EC_POINT_set_compressed_coordinates_GFp(sess->group,
						     sess->pwe,
						     x_candidate,
						     is_odd, NULL)) {
	    continue;
	}
	/*
	 * If there's a solution to the equation then the point must be
	 * on the curve so why check again explicitly? OpenSSL code
	 * says this is required by X9.62. We're not X9.62 but it can't
	 * hurt just to be sure.
	 */
	if (!EC_POINT_is_on_curve(sess->group, sess->pwe, NULL)) {
	    DEBUG("EAP-pwd: point is not on curve");
	    continue;
	}

	if (BN_cmp(cofactor, BN_value_one())) {
	    /* make sure the point is not in a small sub-group */
	    if (!EC_POINT_mul(sess->group, sess->pwe, NULL, sess->pwe,
			      cofactor, NULL)) {
		DEBUG("EAP-pwd: cannot multiply generator by order");
		continue;
	    }
	    if (EC_POINT_is_at_infinity(sess->group, sess->pwe)) {
		DEBUG("EAP-pwd: point is at infinity");
		continue;
	    }
	}
	/* if we got here then we have a new generator. */
	break;
    }
    sess->group_num = grp_num;
    if (0) {
fail:				/* DON'T free sess, it's in handler->opaque */
	ret = -1;
    }
    /* cleanliness and order.... */
    BN_free(cofactor);
    BN_free(x_candidate);
    BN_free(rnd);
    talloc_free(prfbuf);

    return ret;
}
Beispiel #8
0
SM2_CIPHERTEXT_VALUE *SM2_do_encrypt(const EVP_MD *kdf_md, const EVP_MD *mac_md,
	const unsigned char *in, size_t inlen, EC_KEY *ec_key)
{
	int ok = 0;
	SM2_CIPHERTEXT_VALUE *cv = NULL;
	const EC_GROUP *ec_group = EC_KEY_get0_group(ec_key);
	const EC_POINT *pub_key = EC_KEY_get0_public_key(ec_key);
	KDF_FUNC kdf = KDF_get_x9_63(kdf_md);
	EC_POINT *point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BIGNUM *k = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	int nbytes;
	size_t len;
	int i;

	if (!ec_group || !pub_key) {
		goto end;
	}
	if (!kdf) {
		goto end;
	}

	/* init ciphertext_value */
	if (!(cv = OPENSSL_malloc(sizeof(SM2_CIPHERTEXT_VALUE)))) {
		goto end;
	}
	bzero(cv, sizeof(SM2_CIPHERTEXT_VALUE));
	cv->ephem_point = EC_POINT_new(ec_group);
	cv->ciphertext = OPENSSL_malloc(inlen);
	cv->ciphertext_size = inlen;
	if (!cv->ephem_point || !cv->ciphertext) {
		goto end;
	}

	point = EC_POINT_new(ec_group);
	n = BN_new();
	h = BN_new();
	k = BN_new();
	bn_ctx = BN_CTX_new();
	md_ctx = EVP_MD_CTX_create();
	if (!point || !n || !h || !k || !bn_ctx || !md_ctx) {
		goto end;
	}

	/* init ec domain parameters */
	if (!EC_GROUP_get_order(ec_group, n, bn_ctx)) {
		goto end;
	}
	if (!EC_GROUP_get_cofactor(ec_group, h, bn_ctx)) {
		goto end;
	}
	nbytes = (EC_GROUP_get_degree(ec_group) + 7) / 8;
	OPENSSL_assert(nbytes == BN_num_bytes(n));

#if 0
	/* check sm2 curve and md is 256 bits */
	OPENSSL_assert(nbytes == 32);
	OPENSSL_assert(EVP_MD_size(kdf_md) == 32);
	OPENSSL_assert(EVP_MD_size(mac_md) == 32);
#endif

	do
	{
		/* A1: rand k in [1, n-1] */
		do {
			BN_rand_range(k, n);
		} while (BN_is_zero(k));
	
		/* A2: C1 = [k]G = (x1, y1) */
		if (!EC_POINT_mul(ec_group, cv->ephem_point, k, NULL, NULL, bn_ctx)) {
			goto end;
		}
		
		/* A3: check [h]P_B != O */
		if (!EC_POINT_mul(ec_group, point, NULL, pub_key, h, bn_ctx)) {
			goto end;
		}
		if (EC_POINT_is_at_infinity(ec_group, point)) {
			goto end;
		}
		
		/* A4: compute ECDH [k]P_B = (x2, y2) */
		if (!EC_POINT_mul(ec_group, point, NULL, pub_key, k, bn_ctx)) {
			goto end;
		}
		if (!(len = EC_POINT_point2oct(ec_group, point,
			POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
			goto end;
		}
		OPENSSL_assert(len == nbytes * 2 + 1);

		/* A5: t = KDF(x2 || y2, klen) */
		kdf(buf + 1, len - 1, cv->ciphertext, &cv->ciphertext_size);


		for (i = 0; i < cv->ciphertext_size; i++) {
			if (cv->ciphertext[i]) {
				break;
			}
		}
		if (i == cv->ciphertext_size) {
			continue;
		}

		break;

	} while (1);


	/* A6: C2 = M xor t */
	for (i = 0; i < inlen; i++) {
		cv->ciphertext[i] ^= in[i];
	}

	/* A7: C3 = Hash(x2 || M || y2) */
	if (!EVP_DigestInit_ex(md_ctx, mac_md, NULL)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1, nbytes)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, in, inlen)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)) {
		goto end;
	}
	if (!EVP_DigestFinal_ex(md_ctx, cv->mactag, &cv->mactag_size)) {
		goto end;
	}

	ok = 1;

end:
	if (!ok && cv) {
		SM2_CIPHERTEXT_VALUE_free(cv);
		cv = NULL;
	}

	if (point) EC_POINT_free(point);
	if (n) BN_free(n);
	if (h) BN_free(h);
	if (k) BN_free(k);
	if (bn_ctx) BN_CTX_free(bn_ctx);
	if (md_ctx) EVP_MD_CTX_destroy(md_ctx);

	return cv;
}
/*
 * compute a "random" secret point on an elliptic curve based
 * on the password and identities.
 */
int compute_password_element(EAP_PWD_group *grp, u16 num,
			     u8 *password, int password_len,
			     u8 *id_server, int id_server_len,
			     u8 *id_peer, int id_peer_len, u8 *token)
{
	BIGNUM *x_candidate = NULL, *rnd = NULL, *cofactor = NULL;
	struct crypto_hash *hash;
	unsigned char pwe_digest[SHA256_MAC_LEN], *prfbuf = NULL, ctr;
	int nid, is_odd, ret = 0;
	size_t primebytelen, primebitlen;

	switch (num) { /* from IANA registry for IKE D-H groups */
        case 19:
		nid = NID_X9_62_prime256v1;
		break;
        case 20:
		nid = NID_secp384r1;
		break;
        case 21:
		nid = NID_secp521r1;
		break;
        case 25:
		nid = NID_X9_62_prime192v1;
		break;
        case 26:
		nid = NID_secp224r1;
		break;
        default:
		wpa_printf(MSG_INFO, "EAP-pwd: unsupported group %d", num);
		return -1;
	}

	grp->pwe = NULL;
	grp->order = NULL;
	grp->prime = NULL;

	if ((grp->group = EC_GROUP_new_by_curve_name(nid)) == NULL) {
		wpa_printf(MSG_INFO, "EAP-pwd: unable to create EC_GROUP");
		goto fail;
	}

	if (((rnd = BN_new()) == NULL) ||
	    ((cofactor = BN_new()) == NULL) ||
	    ((grp->pwe = EC_POINT_new(grp->group)) == NULL) ||
	    ((grp->order = BN_new()) == NULL) ||
	    ((grp->prime = BN_new()) == NULL) ||
	    ((x_candidate = BN_new()) == NULL)) {
		wpa_printf(MSG_INFO, "EAP-pwd: unable to create bignums");
		goto fail;
	}

	if (!EC_GROUP_get_curve_GFp(grp->group, grp->prime, NULL, NULL, NULL))
	{
		wpa_printf(MSG_INFO, "EAP-pwd: unable to get prime for GFp "
			   "curve");
		goto fail;
	}
	if (!EC_GROUP_get_order(grp->group, grp->order, NULL)) {
		wpa_printf(MSG_INFO, "EAP-pwd: unable to get order for curve");
		goto fail;
	}
	if (!EC_GROUP_get_cofactor(grp->group, cofactor, NULL)) {
		wpa_printf(MSG_INFO, "EAP-pwd: unable to get cofactor for "
			   "curve");
		goto fail;
	}
	primebitlen = BN_num_bits(grp->prime);
	primebytelen = BN_num_bytes(grp->prime);
	if ((prfbuf = os_malloc(primebytelen)) == NULL) {
		wpa_printf(MSG_INFO, "EAP-pwd: unable to malloc space for prf "
			   "buffer");
		goto fail;
	}
	os_memset(prfbuf, 0, primebytelen);
	ctr = 0;
	while (1) {
		if (ctr > 30) {
			wpa_printf(MSG_INFO, "EAP-pwd: unable to find random "
				   "point on curve for group %d, something's "
				   "fishy", num);
			goto fail;
		}
		ctr++;

		/*
		 * compute counter-mode password value and stretch to prime
		 *    pwd-seed = H(token | peer-id | server-id | password |
		 *		   counter)
		 */
		hash = eap_pwd_h_init();
		if (hash == NULL)
			goto fail;
		eap_pwd_h_update(hash, token, sizeof(u32));
		eap_pwd_h_update(hash, id_peer, id_peer_len);
		eap_pwd_h_update(hash, id_server, id_server_len);
		eap_pwd_h_update(hash, password, password_len);
		eap_pwd_h_update(hash, &ctr, sizeof(ctr));
		eap_pwd_h_final(hash, pwe_digest);

		BN_bin2bn(pwe_digest, SHA256_MAC_LEN, rnd);

		if (eap_pwd_kdf(pwe_digest, SHA256_MAC_LEN,
				(u8 *) "EAP-pwd Hunting And Pecking",
				os_strlen("EAP-pwd Hunting And Pecking"),
				prfbuf, primebitlen) < 0)
			goto fail;

		BN_bin2bn(prfbuf, primebytelen, x_candidate);

		/*
		 * eap_pwd_kdf() returns a string of bits 0..primebitlen but
		 * BN_bin2bn will treat that string of bits as a big endian
		 * number. If the primebitlen is not an even multiple of 8
		 * then excessive bits-- those _after_ primebitlen-- so now
		 * we have to shift right the amount we masked off.
		 */
		if (primebitlen % 8)
			BN_rshift(x_candidate, x_candidate,
				  (8 - (primebitlen % 8)));

		if (BN_ucmp(x_candidate, grp->prime) >= 0)
			continue;

		wpa_hexdump(MSG_DEBUG, "EAP-pwd: x_candidate",
			    prfbuf, primebytelen);

		/*
		 * need to unambiguously identify the solution, if there is
		 * one...
		 */
		if (BN_is_odd(rnd))
			is_odd = 1;
		else
			is_odd = 0;

		/*
		 * solve the quadratic equation, if it's not solvable then we
		 * don't have a point
		 */
		if (!EC_POINT_set_compressed_coordinates_GFp(grp->group,
							     grp->pwe,
							     x_candidate,
							     is_odd, NULL))
			continue;
		/*
		 * If there's a solution to the equation then the point must be
		 * on the curve so why check again explicitly? OpenSSL code
		 * says this is required by X9.62. We're not X9.62 but it can't
		 * hurt just to be sure.
		 */
		if (!EC_POINT_is_on_curve(grp->group, grp->pwe, NULL)) {
			wpa_printf(MSG_INFO, "EAP-pwd: point is not on curve");
			continue;
		}

		if (BN_cmp(cofactor, BN_value_one())) {
			/* make sure the point is not in a small sub-group */
			if (!EC_POINT_mul(grp->group, grp->pwe, NULL, grp->pwe,
					  cofactor, NULL)) {
				wpa_printf(MSG_INFO, "EAP-pwd: cannot "
					   "multiply generator by order");
				continue;
			}
			if (EC_POINT_is_at_infinity(grp->group, grp->pwe)) {
				wpa_printf(MSG_INFO, "EAP-pwd: point is at "
					   "infinity");
				continue;
			}
		}
		/* if we got here then we have a new generator. */
		break;
	}
	wpa_printf(MSG_DEBUG, "EAP-pwd: found a PWE in %d tries", ctr);
	grp->group_num = num;
	if (0) {
 fail:
		EC_GROUP_free(grp->group);
		grp->group = NULL;
		EC_POINT_free(grp->pwe);
		grp->pwe = NULL;
		BN_free(grp->order);
		grp->order = NULL;
		BN_free(grp->prime);
		grp->prime = NULL;
		ret = 1;
	}
	/* cleanliness and order.... */
	BN_free(cofactor);
	BN_free(x_candidate);
	BN_free(rnd);
	os_free(prfbuf);

	return ret;
}
Beispiel #10
0
int process_peer_commit(REQUEST *request, pwd_session_t *session, uint8_t *in, size_t in_len, BN_CTX *bn_ctx)
{
	uint8_t		*ptr;
	size_t		data_len;
	BIGNUM		*x = NULL, *y = NULL, *cofactor = NULL;
	EC_POINT	*K = NULL, *point = NULL;
	int		ret = 1;

	MEM(session->peer_scalar = BN_new());
	MEM(session->k = BN_new());
	MEM(session->peer_element = EC_POINT_new(session->group));
	MEM(point = EC_POINT_new(session->group));
	MEM(K = EC_POINT_new(session->group));

	MEM(cofactor = BN_new());
	MEM(x = BN_new());
	MEM(y = BN_new());

	if (!EC_GROUP_get_cofactor(session->group, cofactor, NULL)) {
		REDEBUG("Unable to get group co-factor");
		goto finish;
	}

	/* element, x then y, followed by scalar */
	ptr = (uint8_t *)in;
	data_len = BN_num_bytes(session->prime);

	/*
	 *	Did the peer send enough data?
	 */
	if (in_len < (2 * data_len + BN_num_bytes(session->order))) {
		REDEBUG("Invalid commit packet");
		goto finish;
	}

	BN_bin2bn(ptr, data_len, x);
	ptr += data_len;
	BN_bin2bn(ptr, data_len, y);
	ptr += data_len;

	data_len = BN_num_bytes(session->order);
	BN_bin2bn(ptr, data_len, session->peer_scalar);

	/* validate received scalar */
	if (BN_is_zero(session->peer_scalar) ||
	    BN_is_one(session->peer_scalar) ||
	    BN_cmp(session->peer_scalar, session->order) >= 0) {
		REDEBUG("Peer's scalar is not within the allowed range");
		goto finish;
	}

	if (!EC_POINT_set_affine_coordinates_GFp(session->group, session->peer_element, x, y, bn_ctx)) {
		REDEBUG("Unable to get coordinates of peer's element");
		goto finish;
	}

	/* validate received element */
	if (!EC_POINT_is_on_curve(session->group, session->peer_element, bn_ctx) ||
	    EC_POINT_is_at_infinity(session->group, session->peer_element)) {
		REDEBUG("Peer's element is not a point on the elliptic curve");
		goto finish;
	}

	/* check to ensure peer's element is not in a small sub-group */
	if (BN_cmp(cofactor, BN_value_one())) {
		if (!EC_POINT_mul(session->group, point, NULL, session->peer_element, cofactor, NULL)) {
			REDEBUG("Unable to multiply element by co-factor");
			goto finish;
		}

		if (EC_POINT_is_at_infinity(session->group, point)) {
			REDEBUG("Peer's element is in small sub-group");
			goto finish;
		}
	}

	/* detect reflection attacks */
	if (BN_cmp(session->peer_scalar, session->my_scalar) == 0 ||
	    EC_POINT_cmp(session->group, session->peer_element, session->my_element, bn_ctx) == 0) {
		REDEBUG("Reflection attack detected");
		goto finish;
	}

	/* compute the shared key, k */
	if ((!EC_POINT_mul(session->group, K, NULL, session->pwe, session->peer_scalar, bn_ctx)) ||
	    (!EC_POINT_add(session->group, K, K, session->peer_element, bn_ctx)) ||
	    (!EC_POINT_mul(session->group, K, NULL, K, session->private_value, bn_ctx))) {
		REDEBUG("Unable to compute shared key, k");
		goto finish;
	}

	/* ensure that the shared key isn't in a small sub-group */
	if (BN_cmp(cofactor, BN_value_one())) {
		if (!EC_POINT_mul(session->group, K, NULL, K, cofactor, NULL)) {
			REDEBUG("Unable to multiply k by co-factor");
			goto finish;
		}
	}

	/*
	 * This check is strictly speaking just for the case above where
	 * co-factor > 1 but it was suggested that even though this is probably
	 * never going to happen it is a simple and safe check "just to be
	 * sure" so let's be safe.
	 */
	if (EC_POINT_is_at_infinity(session->group, K)) {
		REDEBUG("K is point-at-infinity");
		goto finish;
	}

	if (!EC_POINT_get_affine_coordinates_GFp(session->group, K, session->k, NULL, bn_ctx)) {
		REDEBUG("Unable to get shared secret from K");
		goto finish;
	}
	ret = 0;

finish:
	EC_POINT_clear_free(K);
	EC_POINT_clear_free(point);
	BN_clear_free(cofactor);
	BN_clear_free(x);
	BN_clear_free(y);

	return ret;
}
Beispiel #11
0
int
ecdh_gm_compute_key(PACE_CTX * ctx, const BUF_MEM * s, const BUF_MEM * in,
        BN_CTX *bn_ctx)
{
    int ret = 0;
    BUF_MEM * mem_h = NULL;
    BIGNUM * bn_s = NULL, *order = NULL, *cofactor = NULL;
    EC_POINT * ecp_h = NULL, *ecp_g = NULL;
    const ECDH_METHOD *default_method;
    EC_GROUP *group = NULL;
    EC_KEY *static_key = NULL, *ephemeral_key = NULL;

    BN_CTX_start(bn_ctx);

    check((ctx && ctx->static_key && s && ctx->ka_ctx), "Invalid arguments");

    static_key = EVP_PKEY_get1_EC_KEY(ctx->static_key);
    check(static_key, "could not get key object");

    /* Extract group parameters */
    group = EC_GROUP_dup(EC_KEY_get0_group(static_key));
    order = BN_CTX_get(bn_ctx);
    cofactor = BN_CTX_get(bn_ctx);
    check(group && cofactor, "internal error");
    if (!EC_GROUP_get_order(group, order, bn_ctx)
            || !EC_GROUP_get_cofactor(group, cofactor, bn_ctx))
        goto err;

    /* Convert nonce to BIGNUM */
    bn_s = BN_bin2bn((unsigned char *) s->data, s->length, bn_s);
    if (!bn_s)
        goto err;

    default_method = ECDH_get_default_method();
    ECDH_set_default_method(ECDH_OpenSSL_Point());
    /* complete the ECDH and get the resulting point h */
    mem_h = ecdh_compute_key(ctx->static_key, in, bn_ctx);
    ECDH_set_default_method(default_method);
    ecp_h = EC_POINT_new(group);
    if (!mem_h || !ecp_h || !EC_POINT_oct2point(group, ecp_h,
            (unsigned char *) mem_h->data, mem_h->length, bn_ctx))
        goto err;

    /* map to new generator */
    ecp_g = EC_POINT_new(group);
    /* g' = g*s + h*1 */
    if (!EC_POINT_mul(group, ecp_g, bn_s, ecp_h, BN_value_one(), bn_ctx))
        goto err;

    /* Initialize ephemeral parameters with parameters from the static key */
    ephemeral_key = EC_KEY_dup(static_key);
    if (!ephemeral_key)
        goto err;
    EVP_PKEY_set1_EC_KEY(ctx->ka_ctx->key, ephemeral_key);

    /* configure the new EC_KEY */
    if (!EC_GROUP_set_generator(group, ecp_g, order, cofactor)
            || !EC_GROUP_check(group, bn_ctx)
            || !EC_KEY_set_group(ephemeral_key, group))
        goto err;

    ret = 1;

err:
    if (ecp_g)
        EC_POINT_clear_free(ecp_g);
    if (ecp_h)
        EC_POINT_clear_free(ecp_h);
    if (mem_h)
        BUF_MEM_free(mem_h);
    if (bn_s)
        BN_clear_free(bn_s);
    BN_CTX_end(bn_ctx);
    /* Decrement reference count, keys are still available via PACE_CTX */
    if (static_key)
        EC_KEY_free(static_key);
    if (ephemeral_key)
        EC_KEY_free(ephemeral_key);
    if (group)
        EC_GROUP_clear_free(group);

    return ret;
}
Beispiel #12
0
int main(int argc, const char *argv[])
{
	int r;
	int ok = 0;
	char *prog = "ecc";

	
	// libpopt var
	poptContext popt_ctx;
	const char **rest;
	int command = 0;
	char *curve_name = "secp192k1";
	int point_compressed = 0;
	point_conversion_form_t point_form;

	struct poptOption options[] = {
		{"curve-name",		'c', POPT_ARG_STRING, &curve_name, 0,		"elliptic curve name", "NAME"},
		{"point-compressed",	'z', POPT_ARG_NONE, &point_compressed, 0,	"point format, compress or uncompress", NULL},
		{"print-curve",		'p', POPT_ARG_VAL, &command, ECC_PRINT,		"print elliptic curve parameters", NULL},
		{"random-private-key",	 0,  POPT_ARG_VAL, &command, ECC_RAND_SKEY,	"random generate a private key\n", NULL},
		{"random-keypair",	 0,  POPT_ARG_VAL, &command, ECC_RAND_KEYPAIR,	"generate a random key pair\n", NULL},
		{"check-point",		'e', POPT_ARG_VAL, &command, ECC_CHECK_POINT,	"check if point is valid\n", NULL},
		{"point-add",		'a', POPT_ARG_VAL, &command, ECC_ADD,		"elliptic curve point addition", NULL},
		{"point-double",	'b', POPT_ARG_VAL, &command, ECC_DOUBLE,	"elliptic curve point double", NULL},
		{"point-mul",		'x', POPT_ARG_VAL, &command, ECC_MUL,		"k*G", NULL},
		{"point-mul-generator",	'X', POPT_ARG_VAL, &command, ECC_MUL_G,		"elliptic curve point scalar multiply", NULL},
		{"point-invert",	'i', POPT_ARG_VAL, &command, ECC_INVERT,	"elliptic curve point inverse", NULL},
		{"ecdsa-sign",		's', POPT_ARG_VAL, &command, ECC_SIGN,		"ecdsa sign", NULL},
		{"ecdsa-verify",	'v', POPT_ARG_VAL, &command, ECC_VERIFY,	"ecdsa verify", NULL},
		POPT_AUTOHELP
		POPT_TABLEEND
	};

	// openssl var
	EC_GROUP *ec_group = NULL;
	EC_POINT *P = NULL;
	EC_POINT *Q = NULL;
	EC_POINT *R = NULL;
	BIGNUM *k = BN_new();
	BN_CTX *bn_ctx = BN_CTX_new();


	// argument parsing
	popt_ctx = poptGetContext(argv[0], argc, argv, options, 0);
	if ((r = poptGetNextOpt(popt_ctx)) < -1) {
		fprintf(stderr, "%s: bad argument %s: %s\n", argv[0], 
			poptBadOption(popt_ctx, POPT_BADOPTION_NOALIAS), 
			poptStrerror(r));
		goto exit;
	}
	rest = poptGetArgs(popt_ctx);


	// check arguments
	ec_group = EC_GROUP_new_by_curve_name(OBJ_txt2nid(curve_name));
	if (ec_group == NULL) {
		fprintf(stderr, "%s: unknown curve name\n", prog);
		goto exit;
	}

	P = EC_POINT_new(ec_group);
	Q = EC_POINT_new(ec_group);
	R = EC_POINT_new(ec_group);

	point_form = point_compressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED;

	switch (command) {
	case ECC_PRINT:
		{
		BIGNUM *p = BN_new();
		BIGNUM *a = BN_new();
		BIGNUM *b = BN_new();
		char *generator;
		BIGNUM *order = BN_new();
		BIGNUM *cofactor = BN_new();

		EC_GROUP_get_curve_GFp(ec_group, p, a, b, bn_ctx);
		generator = EC_POINT_point2hex(ec_group, EC_GROUP_get0_generator(ec_group), point_form, bn_ctx);
		EC_GROUP_get_order(ec_group, order, bn_ctx);
		EC_GROUP_get_cofactor(ec_group, cofactor, bn_ctx);
		
		fprintf(stdout, "Name      : %s\n", OBJ_nid2sn(EC_GROUP_get_curve_name(ec_group)));
		fprintf(stdout, "FieldType : %s\n", "PrimeField");
		fprintf(stdout, "Prime     : %s\n", BN_bn2hex(p));
		fprintf(stdout, "A         : %s\n", BN_bn2hex(a));
		fprintf(stdout, "B         : %s\n", BN_bn2hex(b));
		fprintf(stdout, "Generator : %s\n", generator);
		fprintf(stdout, "Order     : %s\n", BN_bn2hex(order));
		fprintf(stdout, "Cofactor  : %s\n", BN_bn2hex(cofactor));

		BN_free(p);
		BN_free(a);
		BN_free(b);
		BN_free(order);
		BN_free(cofactor);

		break;
		}
	case ECC_CHECK_POINT:
		{
		if (!rest) {
			fprintf(stderr, "%s: short of point\n", prog);
			goto exit;
		}
		if (!rest[0]) {
			fprintf(stderr, "%s: short of point\n", prog);
			goto exit;
		}
		if (EC_POINT_hex2point(ec_group, rest[0], P, bn_ctx))
			fprintf(stdout, "ture\n");
		else
			fprintf(stdout, "false\n");
		break;
		}
	case ECC_RAND_SKEY:
		{
		EC_KEY *ec_key = EC_KEY_new();
		EC_KEY_set_group(ec_key, ec_group);
		EC_KEY_generate_key(ec_key);
		fprintf(stdout, "%s\n", BN_bn2hex(EC_KEY_get0_private_key(ec_key)));
		EC_KEY_free(ec_key);
		break;
		}
	case ECC_RAND_KEYPAIR:
		{
		EC_KEY *ec_key = EC_KEY_new();
		EC_KEY_set_group(ec_key, ec_group);
		EC_KEY_generate_key(ec_key);
		fprintf(stdout, "%s\n", BN_bn2hex(EC_KEY_get0_private_key(ec_key)));
		fprintf(stdout, "%s\n", EC_POINT_point2hex(ec_group, EC_KEY_get0_public_key(ec_key), point_form, bn_ctx));
		EC_KEY_free(ec_key);
		break;
		}
	case ECC_ADD:
		{
		if (!rest) {
			fprintf(stderr, "%s: short of point\n", prog);
			goto exit;
		}
		if (!rest[0] || !rest[1]) {
			fprintf(stderr, "%s: short of point\n", prog);
			goto exit;
		}			
		if (!EC_POINT_hex2point(ec_group, rest[1], P, bn_ctx)) {
			fprintf(stderr, "%s: first point invalid\n", prog);
			goto exit;
		}
		if (!EC_POINT_hex2point(ec_group, rest[1], Q, bn_ctx)) {
			fprintf(stderr, "%s: second point invalid\n", prog);
			goto exit;
		}
		EC_POINT_add(ec_group, R, P, Q, bn_ctx);
		fprintf(stdout, "%s\n", EC_POINT_point2hex(ec_group, R, point_form, bn_ctx));
		break;
		}
	case ECC_DOUBLE:
		{
		EC_POINT_dbl(ec_group, R, P, bn_ctx);
		fprintf(stdout, "%s\n", EC_POINT_point2hex(ec_group, R, point_form, bn_ctx));
		break;
		}
	case ECC_MUL:
		{
		BIGNUM *order = NULL;

		if (!BN_hex2bn(&k, rest[0])) {
			fprintf(stderr, "%s: integer invalid\n", prog);
			goto exit;
		}
		
		order = BN_new();
		EC_GROUP_get_order(ec_group, order, bn_ctx);
		if (BN_cmp(k, order) >= 0) {
			fprintf(stderr, "%s: integer value invalid\n", prog);
			BN_free(order);
			goto exit;
		}
		BN_free(order);

		if (!EC_POINT_hex2point(ec_group, rest[1], P, bn_ctx)) {
			fprintf(stderr, "%s: point invalid\n", prog);
			goto exit;
		}

		EC_POINT_mul(ec_group, R, k, P, NULL, bn_ctx);
		fprintf(stdout, "%s\n", EC_POINT_point2hex(ec_group, R, point_form, bn_ctx));

		break;
		}
	case ECC_MUL_G:
		{
		BIGNUM *order = NULL;
		if (!BN_hex2bn(&k, rest[0])) {
			fprintf(stderr, "%s: integer format invalid\n", prog);
			goto exit;
		}
		
		order = BN_new();
		EC_GROUP_get_order(ec_group, order, bn_ctx);
		if (BN_cmp(k, order) >= 0) {
			fprintf(stderr, "%s: integer value invalid\n", prog);
			BN_free(order);
			goto exit;
		}
		BN_free(order);
		
		EC_POINT_mul(ec_group, R, k, EC_GROUP_get0_generator(ec_group), NULL, bn_ctx);
		fprintf(stdout, "%s\n", EC_POINT_point2hex(ec_group, R, point_form, bn_ctx));
		break;
		}
	default:
		fprintf(stderr, "%s: command is required\n", prog);
		break;
	}
	ok = 1;

exit:
	if (ec_group) EC_GROUP_free(ec_group);
	if (P) EC_POINT_free(P);
	if (k) BN_free(k);
	if (bn_ctx) BN_CTX_free(bn_ctx);

	return ok ? 0 : -1;
}
Beispiel #13
0
int initialiseRingSigs()
{
    if (fDebugRingSig)
        LogPrintf("initialiseRingSigs()\n");

    if (!(ecGrp = EC_GROUP_new_by_curve_name(NID_secp256k1)))
        return errorN(1, "initialiseRingSigs(): EC_GROUP_new_by_curve_name failed.");

    if (!(bnCtx = BN_CTX_new()))
        return errorN(1, "initialiseRingSigs(): BN_CTX_new failed.");

    BN_CTX_start(bnCtx);

    //Create a new EC group for the keyImage with all of the characteristics of ecGrp.
    if(!(ecGrpKi = EC_GROUP_dup(ecGrp))){
	return errorN(1, "initialiseRingSigs(): EC_GROUP_dup failed.");
    }

    // get order and cofactor
    bnOrder = BN_new();
    if(!EC_GROUP_get_order(ecGrp, bnOrder, bnCtx)){
        return errorN(1, "initialiseRingSigs(): EC_GROUP_get_order failed.");
    }

    BIGNUM *bnCofactor = BN_CTX_get(bnCtx);
    if(!EC_GROUP_get_cofactor(ecGrp, bnCofactor, bnCtx)){
    	return errorN(1, "initialiseRingSigs(): EC_GROUP_get_cofactor failed.");
    }

    // get the original generator
    EC_POINT *ptBase = const_cast<EC_POINT*>(EC_GROUP_get0_generator(ecGrp)); //PS: never clear this point

    // create key image basepoint variable
    EC_POINT *ptBaseKi = EC_POINT_new(ecGrpKi);
    BIGNUM *bnBaseKi = BN_CTX_get(bnCtx);

    // get original basepoint in BIG NUMS.
    EC_POINT_point2bn(ecGrp, ptBase, POINT_CONVERSION_COMPRESSED, bnBaseKi, bnCtx);

    //create "1" in BIG NUMS
    BIGNUM *bnBaseKiAdd = BN_CTX_get(bnCtx);
    std::string num_str = "1";
    BN_dec2bn(&bnBaseKiAdd, num_str.c_str());

    // add 1 to original base point and store in key image basepoint (BIG NUMS)
    BN_add(bnBaseKi, bnBaseKi, bnBaseKiAdd);

    // key image basepoint from bignum to point in ptBaseKi
    if(!EC_POINT_bn2point(ecGrp, bnBaseKi, ptBaseKi, bnCtx))
       return errorN(1, "initialiseRingSigs(): EC_POINT_bn2point failed.");

    // set generator of ecGrpKi
    if(!EC_GROUP_set_generator(ecGrpKi, ptBaseKi, bnOrder, bnCofactor)){
	 return errorN(1, "initialiseRingSigs(): EC_GROUP_set_generator failed.");
    }

    if (fDebugRingSig)
    {
        // Debugging...
        const EC_POINT *generator = EC_GROUP_get0_generator(ecGrp);
        const EC_POINT *generatorKi = EC_GROUP_get0_generator(ecGrpKi);
        char *genPoint = EC_POINT_point2hex(ecGrp, generator, POINT_CONVERSION_UNCOMPRESSED, bnCtx);
        char *genPointKi = EC_POINT_point2hex(ecGrpKi, generatorKi, POINT_CONVERSION_UNCOMPRESSED, bnCtx);

        LogPrintf("generator ecGrp:   %s\ngenerator ecGrpKi: %s\n", genPoint, genPointKi);
    }

    EC_POINT_free(ptBaseKi);
    BN_CTX_end(bnCtx);
    return 0;
};
Beispiel #14
0
SM2CiphertextValue *SM2_do_encrypt(const EVP_MD *md,
	const unsigned char *in, size_t inlen, EC_KEY *ec_key)
{
	SM2CiphertextValue *ret = NULL;
	SM2CiphertextValue *cv = NULL;
	const EC_GROUP *group;
	const EC_POINT *pub_key;
	KDF_FUNC kdf;
	EC_POINT *ephem_point = NULL;
	EC_POINT *share_point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BIGNUM *k = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;

	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	int nbytes;
	size_t len;
	size_t i;
	unsigned int hashlen;

	/* check arguments */
	if (!md || !in || !ec_key) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_PASSED_NULL_PARAMETER);
		return 0;
	}

	if (inlen < SM2_MIN_PLAINTEXT_LENGTH || inlen > SM2_MAX_PLAINTEXT_LENGTH) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, SM2_R_INVALID_PLAINTEXT_LENGTH);
		return 0;
	}

	if (!(kdf = KDF_get_x9_63(md))) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, SM2_R_INVALID_DIGEST_ALGOR);
		return 0;
	}

	if (!(group = EC_KEY_get0_group(ec_key))
		|| !(pub_key = EC_KEY_get0_public_key(ec_key))) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, SM2_R_INVALID_EC_KEY);
		return 0;
	}

	/* malloc */
	if (!(cv = SM2CiphertextValue_new())
		|| !(ephem_point = EC_POINT_new(group))
		|| !(share_point = EC_POINT_new(group))
		|| !(n = BN_new())
		|| !(h = BN_new())
		|| !(k = BN_new())
		|| !(bn_ctx = BN_CTX_new())
		|| !(md_ctx = EVP_MD_CTX_new())) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_MALLOC_FAILURE);
		goto end;
	}

	if (!ASN1_OCTET_STRING_set(cv->ciphertext, NULL, (int)inlen)
		|| !ASN1_OCTET_STRING_set(cv->hash, NULL, EVP_MD_size(md))) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_ASN1_LIB);
		goto end;
	}

	/* init ec domain parameters */
	if (!EC_GROUP_get_order(group, n, bn_ctx)) {
		ECerr(EC_F_SM2_DO_ENCRYPT, EC_R_ERROR);
		goto end;
	}

	if (!EC_GROUP_get_cofactor(group, h, bn_ctx)) {
		ECerr(EC_F_SM2_DO_ENCRYPT, EC_R_ERROR);
		goto end;
	}

	nbytes = (EC_GROUP_get_degree(group) + 7) / 8;

	/* check [h]P_B != O */
	if (!EC_POINT_mul(group, share_point, NULL, pub_key, h, bn_ctx)) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EC_LIB);
		goto end;
	}

	if (EC_POINT_is_at_infinity(group, share_point)) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, SM2_R_INVALID_PUBLIC_KEY);
		goto end;
	}

	do
	{
		size_t size;

		/* rand k in [1, n-1] */
		do {
			BN_rand_range(k, n);
		} while (BN_is_zero(k));

		/* compute ephem_point [k]G = (x1, y1) */
		if (!EC_POINT_mul(group, ephem_point, k, NULL, NULL, bn_ctx)) {
			SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EC_LIB);
			goto end;
		}

		/* compute ECDH share_point [k]P_B = (x2, y2) */
		if (!EC_POINT_mul(group, share_point, NULL, pub_key, k, bn_ctx)) {
			SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EC_LIB);
			goto end;
		}

		/* compute t = KDF(x2 || y2, klen) */
		if (!(len = EC_POINT_point2oct(group, share_point,
			POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
			SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EC_LIB);
			goto end;
		}

		size = cv->ciphertext->length;
		kdf(buf + 1, len - 1, cv->ciphertext->data, &size);
		if (size != inlen) {
			SM2err(SM2_F_SM2_DO_ENCRYPT, SM2_R_KDF_FAILURE);
			goto end;
		}

		/* ASN1_OCTET_STRING_is_zero in asn1.h and a_octet.c */
	} while (ASN1_OCTET_STRING_is_zero(cv->ciphertext));

	/* set x/yCoordinates as (x1, y1) */
	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == NID_X9_62_prime_field) {
		if (!EC_POINT_get_affine_coordinates_GFp(group, ephem_point,
			cv->xCoordinate, cv->yCoordinate, bn_ctx)) {
			SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EC_LIB);
			goto end;
		}
	} else {
		if (!EC_POINT_get_affine_coordinates_GF2m(group, ephem_point,
			cv->xCoordinate, cv->yCoordinate, bn_ctx)) {
			SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EC_LIB);
			goto end;
		}
	}

	/* ciphertext = t xor in */
	for (i = 0; i < inlen; i++) {
		cv->ciphertext->data[i] ^= in[i];
	}

	/* generate hash = Hash(x2 || M || y2) */
	hashlen = cv->hash->length;
	if (!EVP_DigestInit_ex(md_ctx, md, NULL)
		|| !EVP_DigestUpdate(md_ctx, buf + 1, nbytes)
		|| !EVP_DigestUpdate(md_ctx, in, inlen)
		|| !EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)
		|| !EVP_DigestFinal_ex(md_ctx, cv->hash->data, &hashlen)) {
		SM2err(SM2_F_SM2_DO_ENCRYPT, ERR_R_EVP_LIB);
		goto end;
	}

	ret = cv;
	cv = NULL;

end:
	SM2CiphertextValue_free(cv);
	EC_POINT_free(share_point);
	EC_POINT_free(ephem_point);
	BN_free(n);
	BN_free(h);
	BN_clear_free(k);
	BN_CTX_free(bn_ctx);
	EVP_MD_CTX_free(md_ctx);
	return ret;
}
Beispiel #15
0
int SM2_do_decrypt(const EVP_MD *md, const SM2CiphertextValue *cv,
	unsigned char *out, size_t *outlen, EC_KEY *ec_key)
{
	int ret = 0;
	const EC_GROUP *group;
	const BIGNUM *pri_key;
	KDF_FUNC kdf;
	EC_POINT *point = NULL;
	EC_POINT *tmp_point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	unsigned char mac[EVP_MAX_MD_SIZE];
	unsigned int maclen = sizeof(mac);
	int nbytes, len, i;

	/* check arguments */
	if (!md || !cv || !outlen || !ec_key) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_PASSED_NULL_PARAMETER);
		return 0;
	}

	if (!(kdf = KDF_get_x9_63(md))) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_DIGEST_ALGOR);
		return 0;
	}

	if (!cv->xCoordinate || !cv->yCoordinate || !cv->hash || !cv->ciphertext) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
		return 0;
	}

	if (cv->hash->length != EVP_MD_size(md)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
		return 0;
	}

	if (cv->ciphertext->length < SM2_MIN_PLAINTEXT_LENGTH
		|| cv->ciphertext->length > SM2_MAX_PLAINTEXT_LENGTH) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
		return 0;
	}

	if (!(group = EC_KEY_get0_group(ec_key))
		|| !(pri_key = EC_KEY_get0_private_key(ec_key))) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_EC_KEY);
		return 0;
	}

	if (!out) {
		*outlen = cv->ciphertext->length;
		return 1;
	}
	if (*outlen < cv->ciphertext->length) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_BUFFER_TOO_SMALL);
		return 0;
	}

	/* malloc */
	point = EC_POINT_new(group);
	tmp_point = EC_POINT_new(group);
	n = BN_new();
	h = BN_new();
	bn_ctx = BN_CTX_new();
	md_ctx = EVP_MD_CTX_new();
	if (!point || !n || !h || !bn_ctx || !md_ctx) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_MALLOC_FAILURE);
		goto end;
	}

	/* init ec domain parameters */
	if (!EC_GROUP_get_order(group, n, bn_ctx)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_EC_LIB);
		goto end;
	}

	if (!EC_GROUP_get_cofactor(group, h, bn_ctx)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_EC_LIB);
		goto end;
	}

	nbytes = (EC_GROUP_get_degree(group) + 7) / 8;

	/* get x/yCoordinates as C1 = (x1, y1) */
	if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) == NID_X9_62_prime_field) {
		if (!EC_POINT_set_affine_coordinates_GFp(group, point,
			cv->xCoordinate, cv->yCoordinate, bn_ctx)) {
			SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
			goto end;
		}
	} else {
		if (!EC_POINT_set_affine_coordinates_GF2m(group, point,
			cv->xCoordinate, cv->yCoordinate, bn_ctx)) {
			SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
			goto end;
		}
	}

	/* check [h]C1 != O */
	if (!EC_POINT_mul(group, tmp_point, NULL, point, h, bn_ctx)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_EC_LIB);
		goto end;
	}

	if (EC_POINT_is_at_infinity(group, tmp_point)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
		goto end;
	}

	/* compute ECDH [d]C1 = (x2, y2) */
	if (!EC_POINT_mul(group, point, NULL, point, pri_key, bn_ctx)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_EC_LIB);
		goto end;
	}

	if (!(len = EC_POINT_point2oct(group, point,
		POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_EC_LIB);
		goto end;
	}

	/* compute t = KDF(x2 || y2, clen) */
	*outlen = cv->ciphertext->length;
	kdf(buf + 1, len - 1, out, outlen);


	/* compute M = C2 xor t */
	for (i = 0; i < cv->ciphertext->length; i++) {
		out[i] ^= cv->ciphertext->data[i];
	}

	/* check hash == Hash(x2 || M || y2) */
	if (!EVP_DigestInit_ex(md_ctx, md, NULL)
		|| !EVP_DigestUpdate(md_ctx, buf + 1, nbytes)
		|| !EVP_DigestUpdate(md_ctx, out, *outlen)
		|| !EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)
		|| !EVP_DigestFinal_ex(md_ctx, mac, &maclen)) {
		SM2err(SM2_F_SM2_DO_DECRYPT, ERR_R_EVP_LIB);
		goto end;
	}

	if (OPENSSL_memcmp(cv->hash->data, mac, maclen) != 0) {
		SM2err(SM2_F_SM2_DO_DECRYPT, SM2_R_INVALID_CIPHERTEXT);
		goto end;
	}

	ret = 1;
end:
	EC_POINT_free(point);
	EC_POINT_free(tmp_point);
	BN_free(n);
	BN_free(h);
	BN_CTX_free(bn_ctx);
	EVP_MD_CTX_free(md_ctx);
	return ret;
}
Beispiel #16
0
static void
eap_pwd_process_commit_resp(struct eap_sm *sm, struct eap_pwd_data *data,
			    const u8 *payload, size_t payload_len)
{
	u8 *ptr;
	BIGNUM *x = NULL, *y = NULL, *cofactor = NULL;
	EC_POINT *K = NULL, *point = NULL;
	int res = 0;

	wpa_printf(MSG_DEBUG, "EAP-pwd: Received commit response");

	if (((data->peer_scalar = BN_new()) == NULL) ||
	    ((data->k = BN_new()) == NULL) ||
	    ((cofactor = BN_new()) == NULL) ||
	    ((x = BN_new()) == NULL) ||
	    ((y = BN_new()) == NULL) ||
	    ((point = EC_POINT_new(data->grp->group)) == NULL) ||
	    ((K = EC_POINT_new(data->grp->group)) == NULL) ||
	    ((data->peer_element = EC_POINT_new(data->grp->group)) == NULL)) {
		wpa_printf(MSG_INFO, "EAP-PWD (server): peer data allocation "
			   "fail");
		goto fin;
	}

	if (!EC_GROUP_get_cofactor(data->grp->group, cofactor, NULL)) {
		wpa_printf(MSG_INFO, "EAP-PWD (server): unable to get "
			   "cofactor for curve");
		goto fin;
	}

	/* element, x then y, followed by scalar */
	ptr = (u8 *) payload;
	BN_bin2bn(ptr, BN_num_bytes(data->grp->prime), x);
	ptr += BN_num_bytes(data->grp->prime);
	BN_bin2bn(ptr, BN_num_bytes(data->grp->prime), y);
	ptr += BN_num_bytes(data->grp->prime);
	BN_bin2bn(ptr, BN_num_bytes(data->grp->order), data->peer_scalar);
	if (!EC_POINT_set_affine_coordinates_GFp(data->grp->group,
						 data->peer_element, x, y,
						 data->bnctx)) {
		wpa_printf(MSG_INFO, "EAP-PWD (server): setting peer element "
			   "fail");
		goto fin;
	}

	/* check to ensure peer's element is not in a small sub-group */
	if (BN_cmp(cofactor, BN_value_one())) {
		if (!EC_POINT_mul(data->grp->group, point, NULL,
				  data->peer_element, cofactor, NULL)) {
			wpa_printf(MSG_INFO, "EAP-PWD (server): cannot "
				   "multiply peer element by order");
			goto fin;
		}
		if (EC_POINT_is_at_infinity(data->grp->group, point)) {
			wpa_printf(MSG_INFO, "EAP-PWD (server): peer element "
				   "is at infinity!\n");
			goto fin;
		}
	}

	/* compute the shared key, k */
	if ((!EC_POINT_mul(data->grp->group, K, NULL, data->grp->pwe,
			   data->peer_scalar, data->bnctx)) ||
	    (!EC_POINT_add(data->grp->group, K, K, data->peer_element,
			   data->bnctx)) ||
	    (!EC_POINT_mul(data->grp->group, K, NULL, K, data->private_value,
			   data->bnctx))) {
		wpa_printf(MSG_INFO, "EAP-PWD (server): computing shared key "
			   "fail");
		goto fin;
	}

	/* ensure that the shared key isn't in a small sub-group */
	if (BN_cmp(cofactor, BN_value_one())) {
		if (!EC_POINT_mul(data->grp->group, K, NULL, K, cofactor,
				  NULL)) {
			wpa_printf(MSG_INFO, "EAP-PWD (server): cannot "
				   "multiply shared key point by order!\n");
			goto fin;
		}
	}

	/*
	 * This check is strictly speaking just for the case above where
	 * co-factor > 1 but it was suggested that even though this is probably
	 * never going to happen it is a simple and safe check "just to be
	 * sure" so let's be safe.
	 */
	if (EC_POINT_is_at_infinity(data->grp->group, K)) {
		wpa_printf(MSG_INFO, "EAP-PWD (server): shared key point is "
			   "at infinity");
		goto fin;
	}
	if (!EC_POINT_get_affine_coordinates_GFp(data->grp->group, K, data->k,
						 NULL, data->bnctx)) {
		wpa_printf(MSG_INFO, "EAP-PWD (server): unable to extract "
			   "shared secret from secret point");
		goto fin;
	}
	res = 1;

fin:
	EC_POINT_free(K);
	EC_POINT_free(point);
	BN_free(cofactor);
	BN_free(x);
	BN_free(y);

	if (res)
		eap_pwd_state(data, PWD_Confirm_Req);
	else
		eap_pwd_state(data, FAILURE);
}
Beispiel #17
0
int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx)
	{
	int    r = 0;
	BIGNUM *a1, *a2, *a3, *b1, *b2, *b3;
	BN_CTX *ctx_new = NULL;

	/* compare the field types*/
	if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) !=
	    EC_METHOD_get_field_type(EC_GROUP_method_of(b)))
		return 1;
	/* compare the curve name (if present) */
	if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) &&
	    EC_GROUP_get_curve_name(a) == EC_GROUP_get_curve_name(b))
		return 0;

	if (!ctx)
		ctx_new = ctx = BN_CTX_new();
	if (!ctx)
		return -1;
	
	BN_CTX_start(ctx);
	a1 = BN_CTX_get(ctx);
	a2 = BN_CTX_get(ctx);
	a3 = BN_CTX_get(ctx);
	b1 = BN_CTX_get(ctx);
	b2 = BN_CTX_get(ctx);
	b3 = BN_CTX_get(ctx);
	if (!b3)
		{
		BN_CTX_end(ctx);
		if (ctx_new)
			BN_CTX_free(ctx);
		return -1;
		}

	/* XXX This approach assumes that the external representation
	 * of curves over the same field type is the same.
	 */
	if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) ||
	    !b->meth->group_get_curve(b, b1, b2, b3, ctx))
		r = 1;

	if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3))
		r = 1;

	/* XXX EC_POINT_cmp() assumes that the methods are equal */
	if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a),
	    EC_GROUP_get0_generator(b), ctx))
		r = 1;

	if (!r)
		{
		/* compare the order and cofactor */
		if (!EC_GROUP_get_order(a, a1, ctx) ||
		    !EC_GROUP_get_order(b, b1, ctx) ||
		    !EC_GROUP_get_cofactor(a, a2, ctx) ||
		    !EC_GROUP_get_cofactor(b, b2, ctx))
			{
			BN_CTX_end(ctx);
			if (ctx_new)
				BN_CTX_free(ctx);
			return -1;
			}
		if (BN_cmp(a1, b1) || BN_cmp(a2, b2))
			r = 1;
		}

	BN_CTX_end(ctx);
	if (ctx_new)
		BN_CTX_free(ctx);

	return r;
	}
Beispiel #18
0
int ecparam_main(int argc, char **argv)
{
    BIGNUM *ec_gen = NULL, *ec_order = NULL, *ec_cofactor = NULL;
    BIGNUM *ec_p = NULL, *ec_a = NULL, *ec_b = NULL;
    BIO *in = NULL, *out = NULL;
    EC_GROUP *group = NULL;
    point_conversion_form_t form = POINT_CONVERSION_UNCOMPRESSED;
    char *curve_name = NULL, *inrand = NULL;
    char *infile = NULL, *outfile = NULL, *prog;
    unsigned char *buffer = NULL;
    OPTION_CHOICE o;
    int asn1_flag = OPENSSL_EC_NAMED_CURVE, new_asn1_flag = 0;
    int informat = FORMAT_PEM, outformat = FORMAT_PEM, noout = 0, C = 0, ret =
        1;
    int list_curves = 0, no_seed = 0, check = 0, new_form = 0;
    int text = 0, i, need_rand = 0, genkey = 0;

    prog = opt_init(argc, argv, ecparam_options);
    while ((o = opt_next()) != OPT_EOF) {
        switch (o) {
        case OPT_EOF:
        case OPT_ERR:
 opthelp:
            BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
            goto end;
        case OPT_HELP:
            opt_help(ecparam_options);
            ret = 0;
            goto end;
        case OPT_INFORM:
            if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &informat))
                goto opthelp;
            break;
        case OPT_IN:
            infile = opt_arg();
            break;
        case OPT_OUTFORM:
            if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &outformat))
                goto opthelp;
            break;
        case OPT_OUT:
            outfile = opt_arg();
            break;
        case OPT_TEXT:
            text = 1;
            break;
        case OPT_C:
            C = 1;
            break;
        case OPT_CHECK:
            check = 1;
            break;
        case OPT_LIST_CURVES:
            list_curves = 1;
            break;
        case OPT_NO_SEED:
            no_seed = 1;
            break;
        case OPT_NOOUT:
            noout = 1;
            break;
        case OPT_NAME:
            curve_name = opt_arg();
            break;
        case OPT_CONV_FORM:
            if (!opt_pair(opt_arg(), forms, &new_form))
                goto opthelp;
            form = new_form;
            new_form = 1;
            break;
        case OPT_PARAM_ENC:
            if (!opt_pair(opt_arg(), encodings, &asn1_flag))
                goto opthelp;
            new_asn1_flag = 1;
            break;
        case OPT_GENKEY:
            genkey = need_rand = 1;
            break;
        case OPT_RAND:
            inrand = opt_arg();
            need_rand = 1;
            break;
        case OPT_ENGINE:
            (void)setup_engine(opt_arg(), 0);
            break;
        }
    }
    argc = opt_num_rest();
    argv = opt_rest();

    in = bio_open_default(infile, RB(informat));
    if (in == NULL)
        goto end;
    out = bio_open_default(outfile, WB(outformat));
    if (out == NULL)
        goto end;

    if (list_curves) {
        EC_builtin_curve *curves = NULL;
        size_t crv_len = EC_get_builtin_curves(NULL, 0);
        size_t n;

        curves = app_malloc((int)sizeof(*curves) * crv_len, "list curves");
        if (!EC_get_builtin_curves(curves, crv_len)) {
            OPENSSL_free(curves);
            goto end;
        }

        for (n = 0; n < crv_len; n++) {
            const char *comment;
            const char *sname;
            comment = curves[n].comment;
            sname = OBJ_nid2sn(curves[n].nid);
            if (comment == NULL)
                comment = "CURVE DESCRIPTION NOT AVAILABLE";
            if (sname == NULL)
                sname = "";

            BIO_printf(out, "  %-10s: ", sname);
            BIO_printf(out, "%s\n", comment);
        }

        OPENSSL_free(curves);
        ret = 0;
        goto end;
    }

    if (curve_name != NULL) {
        int nid;

        /*
         * workaround for the SECG curve names secp192r1 and secp256r1 (which
         * are the same as the curves prime192v1 and prime256v1 defined in
         * X9.62)
         */
        if (strcmp(curve_name, "secp192r1") == 0) {
            BIO_printf(bio_err, "using curve name prime192v1 "
                       "instead of secp192r1\n");
            nid = NID_X9_62_prime192v1;
        } else if (strcmp(curve_name, "secp256r1") == 0) {
            BIO_printf(bio_err, "using curve name prime256v1 "
                       "instead of secp256r1\n");
            nid = NID_X9_62_prime256v1;
        } else
            nid = OBJ_sn2nid(curve_name);

        if (nid == 0)
            nid = EC_curve_nist2nid(curve_name);

        if (nid == 0) {
            BIO_printf(bio_err, "unknown curve name (%s)\n", curve_name);
            goto end;
        }

        group = EC_GROUP_new_by_curve_name(nid);
        if (group == NULL) {
            BIO_printf(bio_err, "unable to create curve (%s)\n", curve_name);
            goto end;
        }
        EC_GROUP_set_asn1_flag(group, asn1_flag);
        EC_GROUP_set_point_conversion_form(group, form);
    } else if (informat == FORMAT_ASN1)
        group = d2i_ECPKParameters_bio(in, NULL);
    else
        group = PEM_read_bio_ECPKParameters(in, NULL, NULL, NULL);
    if (group == NULL) {
        BIO_printf(bio_err, "unable to load elliptic curve parameters\n");
        ERR_print_errors(bio_err);
        goto end;
    }

    if (new_form)
        EC_GROUP_set_point_conversion_form(group, form);

    if (new_asn1_flag)
        EC_GROUP_set_asn1_flag(group, asn1_flag);

    if (no_seed) {
        EC_GROUP_set_seed(group, NULL, 0);
    }

    if (text) {
        if (!ECPKParameters_print(out, group, 0))
            goto end;
    }

    if (check) {
        if (group == NULL)
            BIO_printf(bio_err, "no elliptic curve parameters\n");
        BIO_printf(bio_err, "checking elliptic curve parameters: ");
        if (!EC_GROUP_check(group, NULL)) {
            BIO_printf(bio_err, "failed\n");
            ERR_print_errors(bio_err);
        } else
            BIO_printf(bio_err, "ok\n");

    }

    if (C) {
        size_t buf_len = 0, tmp_len = 0;
        const EC_POINT *point;
        int is_prime, len = 0;
        const EC_METHOD *meth = EC_GROUP_method_of(group);

        if ((ec_p = BN_new()) == NULL
                || (ec_a = BN_new()) == NULL
                || (ec_b = BN_new()) == NULL
                || (ec_gen = BN_new()) == NULL
                || (ec_order = BN_new()) == NULL
                || (ec_cofactor = BN_new()) == NULL) {
            perror("Can't allocate BN");
            goto end;
        }

        is_prime = (EC_METHOD_get_field_type(meth) == NID_X9_62_prime_field);
        if (!is_prime) {
            BIO_printf(bio_err, "Can only handle X9.62 prime fields\n");
            goto end;
        }

        if (!EC_GROUP_get_curve_GFp(group, ec_p, ec_a, ec_b, NULL))
            goto end;

        if ((point = EC_GROUP_get0_generator(group)) == NULL)
            goto end;
        if (!EC_POINT_point2bn(group, point,
                               EC_GROUP_get_point_conversion_form(group),
                               ec_gen, NULL))
            goto end;
        if (!EC_GROUP_get_order(group, ec_order, NULL))
            goto end;
        if (!EC_GROUP_get_cofactor(group, ec_cofactor, NULL))
            goto end;

        if (!ec_p || !ec_a || !ec_b || !ec_gen || !ec_order || !ec_cofactor)
            goto end;

        len = BN_num_bits(ec_order);

        if ((tmp_len = (size_t)BN_num_bytes(ec_p)) > buf_len)
            buf_len = tmp_len;
        if ((tmp_len = (size_t)BN_num_bytes(ec_a)) > buf_len)
            buf_len = tmp_len;
        if ((tmp_len = (size_t)BN_num_bytes(ec_b)) > buf_len)
            buf_len = tmp_len;
        if ((tmp_len = (size_t)BN_num_bytes(ec_gen)) > buf_len)
            buf_len = tmp_len;
        if ((tmp_len = (size_t)BN_num_bytes(ec_order)) > buf_len)
            buf_len = tmp_len;
        if ((tmp_len = (size_t)BN_num_bytes(ec_cofactor)) > buf_len)
            buf_len = tmp_len;

        buffer = app_malloc(buf_len, "BN buffer");

        BIO_printf(out, "EC_GROUP *get_ec_group_%d(void)\n{\n", len);
        print_bignum_var(out, ec_p, "ec_p", len, buffer);
        print_bignum_var(out, ec_a, "ec_a", len, buffer);
        print_bignum_var(out, ec_b, "ec_b", len, buffer);
        print_bignum_var(out, ec_gen, "ec_gen", len, buffer);
        print_bignum_var(out, ec_order, "ec_order", len, buffer);
        print_bignum_var(out, ec_cofactor, "ec_cofactor", len, buffer);
        BIO_printf(out, "    int ok = 0;\n"
                        "    EC_GROUP *group = NULL;\n"
                        "    EC_POINT *point = NULL;\n"
                        "    BIGNUM *tmp_1 = NULL;\n"
                        "    BIGNUM *tmp_2 = NULL;\n"
                        "    BIGNUM *tmp_3 = NULL;\n"
                        "\n");

        BIO_printf(out, "    if ((tmp_1 = BN_bin2bn(ec_p_%d, sizeof (ec_p_%d), NULL)) == NULL)\n"
                        "        goto err;\n", len, len);
        BIO_printf(out, "    if ((tmp_2 = BN_bin2bn(ec_a_%d, sizeof (ec_a_%d), NULL)) == NULL)\n"
                        "        goto err;\n", len, len);
        BIO_printf(out, "    if ((tmp_3 = BN_bin2bn(ec_b_%d, sizeof (ec_b_%d), NULL)) == NULL)\n"
                        "        goto err;\n", len, len);
        BIO_printf(out, "    if ((group = EC_GROUP_new_curve_GFp(tmp_1, tmp_2, tmp_3, NULL)) == NULL)\n"
                        "        goto err;\n"
                        "\n");
        BIO_printf(out, "    /* build generator */\n");
        BIO_printf(out, "    if ((tmp_1 = BN_bin2bn(ec_gen_%d, sizeof (ec_gen_%d), tmp_1)) == NULL)\n"
                        "        goto err;\n", len, len);
        BIO_printf(out, "    point = EC_POINT_bn2point(group, tmp_1, NULL, NULL);\n");
        BIO_printf(out, "    if (point == NULL)\n"
                        "        goto err;\n");
        BIO_printf(out, "    if ((tmp_2 = BN_bin2bn(ec_order_%d, sizeof (ec_order_%d), tmp_2)) == NULL)\n"
                        "        goto err;\n", len, len);
        BIO_printf(out, "    if ((tmp_3 = BN_bin2bn(ec_cofactor_%d, sizeof (ec_cofactor_%d), tmp_3)) == NULL)\n"
                        "        goto err;\n", len, len);
        BIO_printf(out, "    if (!EC_GROUP_set_generator(group, point, tmp_2, tmp_3))\n"
                        "        goto err;\n"
                        "ok = 1;"
                        "\n");
        BIO_printf(out, "err:\n"
                        "    BN_free(tmp_1);\n"
                        "    BN_free(tmp_2);\n"
                        "    BN_free(tmp_3);\n"
                        "    EC_POINT_free(point);\n"
                        "    if (!ok) {\n"
                        "        EC_GROUP_free(group);\n"
                        "        return NULL;\n"
                        "    }\n"
                        "    return (group);\n"
                        "}\n");
    }

    if (!noout) {
        if (outformat == FORMAT_ASN1)
            i = i2d_ECPKParameters_bio(out, group);
        else
            i = PEM_write_bio_ECPKParameters(out, group);
        if (!i) {
            BIO_printf(bio_err, "unable to write elliptic "
                       "curve parameters\n");
            ERR_print_errors(bio_err);
            goto end;
        }
    }

    if (need_rand) {
        app_RAND_load_file(NULL, (inrand != NULL));
        if (inrand != NULL)
            BIO_printf(bio_err, "%ld semi-random bytes loaded\n",
                       app_RAND_load_files(inrand));
    }

    if (genkey) {
        EC_KEY *eckey = EC_KEY_new();

        if (eckey == NULL)
            goto end;

        assert(need_rand);

        if (EC_KEY_set_group(eckey, group) == 0)
            goto end;

        if (!EC_KEY_generate_key(eckey)) {
            EC_KEY_free(eckey);
            goto end;
        }
        if (outformat == FORMAT_ASN1)
            i = i2d_ECPrivateKey_bio(out, eckey);
        else
            i = PEM_write_bio_ECPrivateKey(out, eckey, NULL,
                                           NULL, 0, NULL, NULL);
        EC_KEY_free(eckey);
    }

    if (need_rand)
        app_RAND_write_file(NULL);

    ret = 0;
 end:
    BN_free(ec_p);
    BN_free(ec_a);
    BN_free(ec_b);
    BN_free(ec_gen);
    BN_free(ec_order);
    BN_free(ec_cofactor);
    OPENSSL_free(buffer);
    BIO_free(in);
    BIO_free_all(out);
    EC_GROUP_free(group);
    return (ret);
}
Beispiel #19
0
int SM2_do_decrypt(const EVP_MD *kdf_md, const EVP_MD *mac_md,
	const SM2_CIPHERTEXT_VALUE *cv, unsigned char *out, size_t *outlen,
	EC_KEY *ec_key)
{
	int ret = 0;
	const EC_GROUP *ec_group = EC_KEY_get0_group(ec_key);
	const BIGNUM *pri_key = EC_KEY_get0_private_key(ec_key);
	KDF_FUNC kdf = KDF_get_x9_63(kdf_md);
	EC_POINT *point = NULL;
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BN_CTX *bn_ctx = NULL;
	EVP_MD_CTX *md_ctx = NULL;
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	unsigned char mac[EVP_MAX_MD_SIZE];
	unsigned int maclen;
	int nbytes;
	size_t size;
	int i;

	OPENSSL_assert(kdf_md && mac_md && cv && ec_key);
	OPENSSL_assert(cv->ephem_point && cv->ciphertext);

	if (!ec_group || !pri_key) {
		goto end;
	}
	if (!kdf) {
		goto end;
	}

	if (!out) {
		*outlen = cv->ciphertext_size;
		return 1;
	}
	if (*outlen < cv->ciphertext_size) {
		goto end;
	}

	/* init vars */
	point = EC_POINT_new(ec_group);
	n = BN_new();
	h = BN_new();
	bn_ctx = BN_CTX_new();
	md_ctx = EVP_MD_CTX_create();
	if (!point || !n || !h || !bn_ctx || !md_ctx) {
		goto end;
	}
	
	/* init ec domain parameters */
	if (!EC_GROUP_get_order(ec_group, n, bn_ctx)) {
		goto end;
	}
	if (!EC_GROUP_get_cofactor(ec_group, h, bn_ctx)) {
		goto end;
	}
	nbytes = (EC_GROUP_get_degree(ec_group) + 7) / 8;
	OPENSSL_assert(nbytes == BN_num_bytes(n));

#if 0
	/* check sm2 curve and md is 256 bits */
	OPENSSL_assert(nbytes == 32);
	OPENSSL_assert(EVP_MD_size(kdf_md) == 32);
	OPENSSL_assert(EVP_MD_size(mac_md) == 32);
#endif

	/* B2: check [h]C1 != O */
	if (!EC_POINT_mul(ec_group, point, NULL, cv->ephem_point, h, bn_ctx)) {
		goto end;
	}
	if (EC_POINT_is_at_infinity(ec_group, point)) {
		goto end;
	}

	/* B3: compute ECDH [d]C1 = (x2, y2) */	
	if (!EC_POINT_mul(ec_group, point, NULL, cv->ephem_point, pri_key, bn_ctx)) {
		goto end;
	}
	if (!(size = EC_POINT_point2oct(ec_group, point,
		POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
		goto end;
	}
	OPENSSL_assert(size == 1 + nbytes * 2);

	/* B4: compute t = KDF(x2 || y2, clen) */

	*outlen = cv->ciphertext_size; //FIXME: duplicated code
	kdf(buf + 1, size - 1, out, outlen);


	/* B5: compute M = C2 xor t */
	for (i = 0; i < cv->ciphertext_size; i++) {
		out[i] ^= cv->ciphertext[i];
	}
	*outlen = cv->ciphertext_size;

	/* B6: check Hash(x2 || M || y2) == C3 */
	if (!EVP_DigestInit_ex(md_ctx, mac_md, NULL)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1, nbytes)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, out, *outlen)) {
		goto end;
	}
	if (!EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)) {
		goto end;
	}
	if (!EVP_DigestFinal_ex(md_ctx, mac, &maclen)) {
		goto end;
	}
	if (cv->mactag_size != maclen ||
		memcmp(cv->mactag, mac, maclen)) {
		goto end;
	}

	ret = 1;
end:
	if (point) EC_POINT_free(point);
	if (n) BN_free(n);	
	if (h) BN_free(h);
	if (bn_ctx) BN_CTX_free(bn_ctx);
	if (md_ctx) EVP_MD_CTX_destroy(md_ctx);

	return ret;
}
Beispiel #20
0
/*-
 * This implementation is based on the following primitives in the IEEE 1363 standard:
 *  - ECKAS-DH1
 *  - ECSVDP-DH
 */
int ecdh_simple_compute_key(unsigned char **pout, size_t *poutlen,
                            const EC_POINT *pub_key, const EC_KEY *ecdh)
{
    BN_CTX *ctx;
    EC_POINT *tmp = NULL;
    BIGNUM *x = NULL, *y = NULL;
    const BIGNUM *priv_key;
    const EC_GROUP *group;
    int ret = 0;
    size_t buflen, len;
    unsigned char *buf = NULL;

    if ((ctx = BN_CTX_new()) == NULL)
        goto err;
    BN_CTX_start(ctx);
    x = BN_CTX_get(ctx);
    y = BN_CTX_get(ctx);

    priv_key = EC_KEY_get0_private_key(ecdh);
    if (priv_key == NULL) {
        ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_NO_PRIVATE_VALUE);
        goto err;
    }

    group = EC_KEY_get0_group(ecdh);

    if (EC_KEY_get_flags(ecdh) & EC_FLAG_COFACTOR_ECDH) {
        if (!EC_GROUP_get_cofactor(group, x, NULL) ||
            !BN_mul(x, x, priv_key, ctx)) {
            ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
            goto err;
        }
        priv_key = x;
    }

    if ((tmp = EC_POINT_new(group)) == NULL) {
        ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (!EC_POINT_mul(group, tmp, NULL, pub_key, priv_key, ctx)) {
        ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_POINT_ARITHMETIC_FAILURE);
        goto err;
    }

    if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) ==
        NID_X9_62_prime_field) {
        if (!EC_POINT_get_affine_coordinates_GFp(group, tmp, x, y, ctx)) {
            ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_POINT_ARITHMETIC_FAILURE);
            goto err;
        }
    }
#ifndef OPENSSL_NO_EC2M
    else {
        if (!EC_POINT_get_affine_coordinates_GF2m(group, tmp, x, y, ctx)) {
            ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, EC_R_POINT_ARITHMETIC_FAILURE);
            goto err;
        }
    }
#endif

    buflen = (EC_GROUP_get_degree(group) + 7) / 8;
    len = BN_num_bytes(x);
    if (len > buflen) {
        ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_INTERNAL_ERROR);
        goto err;
    }
    if ((buf = OPENSSL_malloc(buflen)) == NULL) {
        ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    memset(buf, 0, buflen - len);
    if (len != (size_t)BN_bn2bin(x, buf + buflen - len)) {
        ECerr(EC_F_ECDH_SIMPLE_COMPUTE_KEY, ERR_R_BN_LIB);
        goto err;
    }

    *pout = buf;
    *poutlen = buflen;
    buf = NULL;

    ret = 1;

 err:
    EC_POINT_free(tmp);
    if (ctx)
        BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    OPENSSL_free(buf);
    return ret;
}
Beispiel #21
0
int
process_peer_commit (pwd_session_t *sess, uint8_t *commit, BN_CTX *bnctx)
{
    uint8_t *ptr;
    BIGNUM *x = NULL, *y = NULL, *cofactor = NULL;
    EC_POINT *K = NULL, *point = NULL;
    int res = 1;

    if (((sess->peer_scalar = BN_new()) == NULL) ||
	((sess->k = BN_new()) == NULL) ||
	((cofactor = BN_new()) == NULL) ||
	((x = BN_new()) == NULL) ||
	((y = BN_new()) == NULL) ||
	((point = EC_POINT_new(sess->group)) == NULL) ||
	((K = EC_POINT_new(sess->group)) == NULL) ||
	((sess->peer_element = EC_POINT_new(sess->group)) == NULL)) {
	DEBUG2("pwd: failed to allocate room to process peer's commit");
	goto fin;
    }

    if (!EC_GROUP_get_cofactor(sess->group, cofactor, NULL)) {
	DEBUG2("pwd: unable to get group co-factor");
	goto fin;
    }

    /* element, x then y, followed by scalar */
    ptr = (uint8_t *)commit;
    BN_bin2bn(ptr, BN_num_bytes(sess->prime), x);
    ptr += BN_num_bytes(sess->prime);
    BN_bin2bn(ptr, BN_num_bytes(sess->prime), y);
    ptr += BN_num_bytes(sess->prime);
    BN_bin2bn(ptr, BN_num_bytes(sess->order), sess->peer_scalar);
    if (!EC_POINT_set_affine_coordinates_GFp(sess->group,
					     sess->peer_element, x, y,
					     bnctx)) {
	DEBUG2("pwd: unable to get coordinates of peer's element");
	goto fin;
    }

    /* check to ensure peer's element is not in a small sub-group */
    if (BN_cmp(cofactor, BN_value_one())) {
	if (!EC_POINT_mul(sess->group, point, NULL,
			  sess->peer_element, cofactor, NULL)) {
	    DEBUG2("pwd: unable to multiply element by co-factor");
	    goto fin;
	}
	if (EC_POINT_is_at_infinity(sess->group, point)) {
	    DEBUG2("pwd: peer's element is in small sub-group");
	    goto fin;
	}
    }

    /* compute the shared key, k */
    if ((!EC_POINT_mul(sess->group, K, NULL, sess->pwe,
		       sess->peer_scalar, bnctx)) ||
	(!EC_POINT_add(sess->group, K, K, sess->peer_element,
		       bnctx)) ||
	(!EC_POINT_mul(sess->group, K, NULL, K, sess->private_value,
		       bnctx))) {
	DEBUG2("pwd: unable to compute shared key, k");
	goto fin;
    }

    /* ensure that the shared key isn't in a small sub-group */
    if (BN_cmp(cofactor, BN_value_one())) {
	if (!EC_POINT_mul(sess->group, K, NULL, K, cofactor,
			  NULL)) {
	    DEBUG2("pwd: unable to multiply k by co-factor");
	    goto fin;
	}
    }

    /*
     * This check is strictly speaking just for the case above where
     * co-factor > 1 but it was suggested that even though this is probably
     * never going to happen it is a simple and safe check "just to be
     * sure" so let's be safe.
     */
    if (EC_POINT_is_at_infinity(sess->group, K)) {
	DEBUG2("pwd: k is point-at-infinity!");
	goto fin;
    }
    if (!EC_POINT_get_affine_coordinates_GFp(sess->group, K, sess->k,
					     NULL, bnctx)) {
	DEBUG2("pwd: unable to get shared secret from K");
	goto fin;
    }
    res = 0;

  fin:
    EC_POINT_free(K);
    EC_POINT_free(point);
    BN_free(cofactor);
    BN_free(x);
    BN_free(y);

    return res;
}
// unsigned char *pC      输出,密文
// unsigned char *pPxKey, unsigned char *pPyKey  公钥
// unsigned char *pM      明文
// unsigned long MLen     明文长度
unsigned char eccEncrypt(unsigned char *pC, 
						 unsigned char *pPxKey, unsigned char *pPyKey, 
						 unsigned char *pM, unsigned long MLen)
{
	// NID_sm2p256v1
	EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_sm2p256v1);
	//// 相当于
	//EC_KEY *ret = EC_KEY_new();
	EC_GROUP *ec_group = EC_GROUP_new_by_curve_name(NID_sm2p256v1);

	KDF_FUNC kdf = KDF_get_x9_63(EVP_sm3());;

	EC_POINT *point = NULL;
	//// 设置私钥
	//BIGNUM *d = NULL;
	//BN_hex2bn(&d, pPDKey);
	//EC_KEY_set_private_key(ec_key, d);
	int ret = 1;

	BIGNUM *x = BN_new();;
	BIGNUM *y = BN_new();;
	if (!BN_bin2bn(pPxKey, 32, x)) {
		goto end;
	}
	if (!BN_bin2bn(pPyKey, 32, y)) {
		goto end;
	}
	if (!EC_KEY_set_public_key_affine_coordinates(ec_key, x, y)) {
		goto end;
	}
	const EC_POINT *pub_key = EC_KEY_get0_public_key(ec_key);
	/* init ec domain parameters */
	BIGNUM *n = NULL;
	BIGNUM *h = NULL;
	BIGNUM *k = NULL;
	n = BN_new();
	h = BN_new();
	k = BN_new();
	BN_CTX *bn_ctx = NULL;
	bn_ctx = BN_CTX_new();
	if (!EC_GROUP_get_order(ec_group, n, bn_ctx)) {
		goto end;
	}
	if (!EC_GROUP_get_cofactor(ec_group, h, bn_ctx)) {
		goto end;
	}
	int nbytes = (EC_GROUP_get_degree(ec_group) + 7) / 8;

	EC_POINT *ec_point = EC_POINT_new(ec_group);
	point = EC_POINT_new(ec_group);
	unsigned char buf[(OPENSSL_ECC_MAX_FIELD_BITS + 7)/4 + 1];
	size_t len;
	char *ciphertext = (char *)OPENSSL_malloc(MLen);
	size_t ciphertext_size = MLen;
	do
	{
		/* A1: rand k in [1, n-1] */
		do {
			BN_rand_range(k, n);
		} while (BN_is_zero(k));

		/* A2: C1 = [k]G = (x1, y1) */
		if (!EC_POINT_mul(ec_group, ec_point, k, NULL, NULL, bn_ctx)) {
			goto end;
		}
#if 1
		if (!(len = EC_POINT_point2oct(ec_group, ec_point,
			POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
				goto end;
		}
		BN_bin2bn(buf, 65, n);
		printf(BN_bn2hex(n));
		printf("\n");
		printf(BN_bn2hex(k));
#endif
		/* A3: check [h]P_B != O */
		if (!EC_POINT_mul(ec_group, point, NULL, pub_key, h, bn_ctx)) {
			goto end;
		}
		if (EC_POINT_is_at_infinity(ec_group, point)) {
			goto end;
		}

		/* A4: compute ECDH [k]P_B = (x2, y2) */
		if (!EC_POINT_mul(ec_group, point, NULL, pub_key, k, bn_ctx)) {
			goto end;
		}
		if (!(len = EC_POINT_point2oct(ec_group, point,
			POINT_CONVERSION_UNCOMPRESSED, buf, sizeof(buf), bn_ctx))) {
				goto end;
		}
		OPENSSL_assert(len == nbytes * 2 + 1);

		/* A5: t = KDF(x2 || y2, klen) */
		kdf(buf + 1, len - 1, (unsigned char *)ciphertext, &ciphertext_size);

		// 防止全0
		size_t i = 0;
		for (i = 0; i < ciphertext_size; i++) {
			if (ciphertext[i]) {
				break;
			}
		}
		if (i == ciphertext_size) {
			continue;
		}
		break;
	} while (1);


	/* A6: C2 = M xor t */
	for (size_t i = 0; i < MLen; i++) {
		ciphertext[i] ^= pM[i];
	}

	unsigned char dgst[EVP_MAX_MD_SIZE];
	unsigned int dgstlen;
	EVP_MD_CTX *md_ctx = EVP_MD_CTX_create();
	if (1) {

		/* A7: C3 = Hash(x2 || M || y2) */
		if (!EVP_DigestInit_ex(md_ctx, EVP_sm3(), NULL)) {
			goto end;
		}
		if (!EVP_DigestUpdate(md_ctx, buf + 1, nbytes)) {
			goto end;
		}
		if (!EVP_DigestUpdate(md_ctx, pM, MLen)) {
			goto end;
		}
		if (!EVP_DigestUpdate(md_ctx, buf + 1 + nbytes, nbytes)) {
			goto end;
		}
		if (!EVP_DigestFinal_ex(md_ctx, dgst, &dgstlen)) {
			goto end;
		}
	}

	EC_POINT_point2oct(ec_group, point, POINT_CONVERSION_UNCOMPRESSED, pC, 65, NULL);
	memcpy(&pC[65], ciphertext, MLen);
	memcpy(&pC[65 + MLen], dgst, dgstlen);
ret = 0;
end:

	if (point) EC_POINT_free(point);
	if (n) BN_free(n);
	if (h) BN_free(h);
	if (k) BN_free(k);
	if (bn_ctx) BN_CTX_free(bn_ctx);
	if (md_ctx) EVP_MD_CTX_destroy(md_ctx);

	return ret;
}