Beispiel #1
0
/* Parse the SKB header and initialise state. */
static int tso_start(struct tso_state *st, struct efx_nic *efx,
		     struct efx_tx_queue *tx_queue,
		     const struct sk_buff *skb)
{
	struct device *dma_dev = &efx->pci_dev->dev;
	unsigned int header_len, in_len;
	bool use_opt_desc = false;
	dma_addr_t dma_addr;

	if (tx_queue->tso_version == 1)
		use_opt_desc = true;

	st->ip_off = skb_network_header(skb) - skb->data;
	st->tcp_off = skb_transport_header(skb) - skb->data;
	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
	in_len = skb_headlen(skb) - header_len;
	st->header_len = header_len;
	st->in_len = in_len;
	if (st->protocol == htons(ETH_P_IP)) {
		st->ip_base_len = st->header_len - st->ip_off;
		st->ipv4_id = ntohs(ip_hdr(skb)->id);
	} else {
		st->ip_base_len = st->header_len - st->tcp_off;
		st->ipv4_id = 0;
	}
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
	EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);

	st->out_len = skb->len - header_len;

	if (!use_opt_desc) {
		st->header_unmap_len = 0;

		if (likely(in_len == 0)) {
			st->dma_flags = 0;
			st->unmap_len = 0;
			return 0;
		}

		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
					  in_len, DMA_TO_DEVICE);
		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
		st->dma_addr = dma_addr;
		st->unmap_addr = dma_addr;
		st->unmap_len = in_len;
	} else {
		dma_addr = dma_map_single(dma_dev, skb->data,
					  skb_headlen(skb), DMA_TO_DEVICE);
		st->header_dma_addr = dma_addr;
		st->header_unmap_len = skb_headlen(skb);
		st->dma_flags = 0;
		st->dma_addr = dma_addr + header_len;
		st->unmap_len = 0;
	}

	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
}
Beispiel #2
0
static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer, unsigned int len)
{
	u8 *result;

	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);

	result = efx_tx_get_copy_buffer_limited(tx_queue, buffer, len);

	if (result) {
		buffer->flags = EFX_TX_BUF_CONT;
	} else {
		buffer->buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
		if (unlikely(!buffer->buf))
			return NULL;
		tx_queue->tso_long_headers++;
		result = (u8 *)buffer->buf + NET_IP_ALIGN;
		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
	}

	buffer->len = len;

	return result;
}
Beispiel #3
0
static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
				struct sk_buff *skb)
{
	unsigned int copy_len = skb->len;
	struct efx_tx_buffer *buffer;
	u8 *copy_buffer;
	int rc;

	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);

	buffer = efx_tx_queue_get_insert_buffer(tx_queue);

	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
	if (unlikely(!copy_buffer))
		return -ENOMEM;

	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
	EFX_WARN_ON_PARANOID(rc);
	buffer->len = copy_len;

	buffer->skb = skb;
	buffer->flags = EFX_TX_BUF_SKB;

	++tx_queue->insert_count;
	return rc;
}
Beispiel #4
0
/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
 * of fragment or end-of-packet.
 */
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
					  const struct sk_buff *skb,
					  struct tso_state *st)
{
	struct efx_tx_buffer *buffer;
	int n;

	if (st->in_len == 0)
		return;
	if (st->packet_space == 0)
		return;

	EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
	EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);

	n = min(st->in_len, st->packet_space);

	st->packet_space -= n;
	st->out_len -= n;
	st->in_len -= n;

	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);

	if (st->out_len == 0) {
		/* Transfer ownership of the skb */
		buffer->skb = skb;
		buffer->flags = EFX_TX_BUF_SKB;
	} else if (st->packet_space != 0) {
		buffer->flags = EFX_TX_BUF_CONT;
	}

	if (st->in_len == 0) {
		/* Transfer ownership of the DMA mapping */
		buffer->unmap_len = st->unmap_len;
		buffer->dma_offset = buffer->unmap_len - buffer->len;
		buffer->flags |= st->dma_flags;
		st->unmap_len = 0;
	}

	st->dma_addr += n;
}
Beispiel #5
0
/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
 * @final_buffer:	The final buffer inserted into the queue
 *
 * Push descriptors onto the TX queue.
 */
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
				dma_addr_t dma_addr, unsigned int len,
				struct efx_tx_buffer **final_buffer)
{
	struct efx_tx_buffer *buffer;
	unsigned int dma_len;

	EFX_WARN_ON_ONCE_PARANOID(len <= 0);

	while (1) {
		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
		++tx_queue->insert_count;

		EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
					  tx_queue->read_count >=
					  tx_queue->efx->txq_entries);

		buffer->dma_addr = dma_addr;

		dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
				dma_addr, len);

		/* If there's space for everything this is our last buffer. */
		if (dma_len >= len)
			break;

		buffer->len = dma_len;
		buffer->flags = EFX_TX_BUF_CONT;
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_WARN_ON_ONCE_PARANOID(!len);
	buffer->len = len;
	*final_buffer = buffer;
}
Beispiel #6
0
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
{
	/* We need to consider both queues that the net core sees as one */
	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
	struct efx_nic *efx = txq1->efx;
	unsigned int fill_level;

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	if (likely(fill_level < efx->txq_stop_thresh))
		return;

	/* We used the stale old_read_count above, which gives us a
	 * pessimistic estimate of the fill level (which may even
	 * validly be >= efx->txq_entries).  Now try again using
	 * read_count (more likely to be a cache miss).
	 *
	 * If we read read_count and then conditionally stop the
	 * queue, it is possible for the completion path to race with
	 * us and complete all outstanding descriptors in the middle,
	 * after which there will be no more completions to wake it.
	 * Therefore we stop the queue first, then read read_count
	 * (with a memory barrier to ensure the ordering), then
	 * restart the queue if the fill level turns out to be low
	 * enough.
	 */
	netif_tx_stop_queue(txq1->core_txq);
	smp_mb();
	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);

	fill_level = max(txq1->insert_count - txq1->old_read_count,
			 txq2->insert_count - txq2->old_read_count);
	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
	if (likely(fill_level < efx->txq_stop_thresh)) {
		smp_mb();
		if (likely(!efx->loopback_selftest))
			netif_tx_start_queue(txq1->core_txq);
	}
}
Beispiel #7
0
/**
 * efx_tx_tso_sw - segment and transmit a TSO socket buffer using SW or FATSOv1
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @data_mapped:        Did we map the data? Always set to true
 *                      by this on success.
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
 * %NETDEV_TX_OK.
 */
int efx_tx_tso_sw(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
		  bool *data_mapped)
{
	struct efx_nic *efx = tx_queue->efx;
	int frag_i, rc;
	struct tso_state state;

#if defined(EFX_USE_KCOMPAT) && !defined(EFX_HAVE_GSO_MAX_SEGS)
	/* Since the stack does not limit the number of segments per
	 * skb, we must do so.  Otherwise an attacker may be able to
	 * make the TCP produce skbs that will never fit in our TX
	 * queue, causing repeated resets.
	 */
	if (unlikely(skb_shinfo(skb)->gso_segs > EFX_TSO_MAX_SEGS)) {
		unsigned int excess =
			(skb_shinfo(skb)->gso_segs - EFX_TSO_MAX_SEGS) *
			skb_shinfo(skb)->gso_size;
		if (__pskb_trim(skb, skb->len - excess))
			return -E2BIG;
	}
#endif

	prefetch(skb->data);

	/* Find the packet protocol and sanity-check it */
	rc = efx_tso_check_protocol(skb, &state.protocol);
	if (rc)
		return rc;

	rc = tso_start(&state, efx, tx_queue, skb);
	if (rc)
		goto mem_err;

	if (likely(state.in_len == 0)) {
		/* Grab the first payload fragment. */
		EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
		if (rc)
			goto mem_err;
	} else {
		/* Payload starts in the header area. */
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state, true) < 0)
		goto mem_err;

	prefetch_ptr(tx_queue);

	while (1) {
		tso_fill_packet_with_fragment(tx_queue, skb, &state);

		/* Move onto the next fragment? */
		if (state.in_len == 0) {
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state, false) < 0)
			goto mem_err;
	}

	*data_mapped = true;

	return 0;

 mem_err:
	netif_err(efx, tx_err, efx->net_dev,
		  "Out of memory for TSO headers, or DMA mapping error\n");

	/* Free the DMA mapping we were in the process of writing out */
	if (state.unmap_len) {
		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
					 state.unmap_len, DMA_TO_DEVICE);
		else
			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
				       state.unmap_len, DMA_TO_DEVICE);
	}

	/* Free the header DMA mapping, if using option descriptors */
	if (state.header_unmap_len)
		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
				 state.header_unmap_len, DMA_TO_DEVICE);

	return -ENOMEM;
}