/*
** Add a single new WhereTerm entry to the WhereClause object pWC.
** The new WhereTerm object is constructed from Expr p and with wtFlags.
** The index in pWC->a[] of the new WhereTerm is returned on success.
** 0 is returned if the new WhereTerm could not be added due to a memory
** allocation error.  The memory allocation failure will be recorded in
** the db->mallocFailed flag so that higher-level functions can detect it.
**
** This routine will increase the size of the pWC->a[] array as necessary.
**
** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
** for freeing the expression p is assumed by the WhereClause object pWC.
** This is true even if this routine fails to allocate a new WhereTerm.
**
** WARNING:  This routine might reallocate the space used to store
** WhereTerms.  All pointers to WhereTerms should be invalidated after
** calling this routine.  Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;
    }
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqlite3DbFree(db, pOld);
    }
    pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
    memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm));
  }
  pTerm = &pWC->a[idx = pWC->nTerm++];
  if( p && ExprHasProperty(p, EP_Unlikely) ){
    pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
  }else{
    pTerm->truthProb = 1;
  }
  pTerm->pExpr = sqlite3ExprSkipCollate(p);
  pTerm->wtFlags = wtFlags;
  pTerm->pWC = pWC;
  pTerm->iParent = -1;
  return idx;
}
Beispiel #2
0
int sqlite3WalkExpr(Walker *pWalker, Expr *pExpr){
  int rc;
  if( pExpr==0 ) return WRC_Continue;
  testcase( ExprHasProperty(pExpr, EP_TokenOnly) );
  testcase( ExprHasProperty(pExpr, EP_Reduced) );
  rc = pWalker->xExprCallback(pWalker, pExpr);
  if( rc==WRC_Continue
              && !ExprHasAnyProperty(pExpr,EP_TokenOnly) ){
    if( sqlite3WalkExpr(pWalker, pExpr->pLeft) ) return WRC_Abort;
    if( sqlite3WalkExpr(pWalker, pExpr->pRight) ) return WRC_Abort;
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
    }else{
      if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
    }
  }
  return rc & WRC_Abort;
}
Beispiel #3
0
/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
**
** If the result set column is a simple column reference, then this routine
** makes an exact copy.  But for any other kind of expression, this
** routine make a copy of the result set column as the argument to the
** TK_AS operator.  The TK_AS operator causes the expression to be
** evaluated just once and then reused for each alias.
**
** The reason for suppressing the TK_AS term when the expression is a simple
** column reference is so that the column reference will be recognized as
** usable by indices within the WHERE clause processing logic. 
**
** Hack:  The TK_AS operator is inhibited if zType[0]=='G'.  This means
** that in a GROUP BY clause, the expression is evaluated twice.  Hence:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
**
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  We might fix this someday.  Or
** then again, we might not...
*/
static void resolveAlias(
  Parse *pParse,         /* Parsing context */
  ExprList *pEList,      /* A result set */
  int iCol,              /* A column in the result set.  0..pEList->nExpr-1 */
  Expr *pExpr,           /* Transform this into an alias to the result set */
  const char *zType      /* "GROUP" or "ORDER" or "" */
){
  Expr *pOrig;           /* The iCol-th column of the result set */
  Expr *pDup;            /* Copy of pOrig */
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  assert( pOrig->flags & EP_Resolved );
  db = pParse->db;
  if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
    pDup = sqlite3ExprDup(db, pOrig, 0);
    pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
    if( pDup==0 ) return;
    if( pEList->a[iCol].iAlias==0 ){
      pEList->a[iCol].iAlias = (u16)(++pParse->nAlias);
    }
    pDup->iTable = pEList->a[iCol].iAlias;
  }else if( ExprHasProperty(pOrig, EP_IntValue) || pOrig->u.zToken==0 ){
    pDup = sqlite3ExprDup(db, pOrig, 0);
    if( pDup==0 ) return;
  }else{
    char *zToken = pOrig->u.zToken;
    assert( zToken!=0 );
    pOrig->u.zToken = 0;
    pDup = sqlite3ExprDup(db, pOrig, 0);
    pOrig->u.zToken = zToken;
    if( pDup==0 ) return;
    assert( (pDup->flags & (EP_Reduced|EP_TokenOnly))==0 );
    pDup->flags2 |= EP2_MallocedToken;
    pDup->u.zToken = sqlite3DbStrDup(db, zToken);
  }
  if( pExpr->flags & EP_ExpCollate ){
    pDup->pColl = pExpr->pColl;
    pDup->flags |= EP_ExpCollate;
  }

  /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This 
  ** prevents ExprDelete() from deleting the Expr structure itself,
  ** allowing it to be repopulated by the memcpy() on the following line.
  */
  ExprSetProperty(pExpr, EP_Static);
  sqlite3ExprDelete(db, pExpr);
  memcpy(pExpr, pDup, sizeof(*pExpr));
  sqlite3DbFree(db, pDup);
}
Beispiel #4
0
/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
**
** If the result set column is a simple column reference, then this routine
** makes an exact copy.  But for any other kind of expression, this
** routine make a copy of the result set column as the argument to the
** TK_AS operator.  The TK_AS operator causes the expression to be
** evaluated just once and then reused for each alias.
**
** The reason for suppressing the TK_AS term when the expression is a simple
** column reference is so that the column reference will be recognized as
** usable by indices within the WHERE clause processing logic. 
**
** The TK_AS operator is inhibited if zType[0]=='G'.  This means
** that in a GROUP BY clause, the expression is evaluated twice.  Hence:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY x
**
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  On the other hand Standard SQL does
** not allow the GROUP BY clause to contain references to result-set columns.
** So this should never come up in well-formed queries.
**
** If the reference is followed by a COLLATE operator, then make sure
** the COLLATE operator is preserved.  For example:
**
**     SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase;
**
** Should be transformed into:
**
**     SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase;
**
** The nSubquery parameter specifies how many levels of subquery the
** alias is removed from the original expression.  The usually value is
** zero but it might be more if the alias is contained within a subquery
** of the original expression.  The Expr.op2 field of TK_AGG_FUNCTION
** structures must be increased by the nSubquery amount.
*/
static void resolveAlias(
  Parse *pParse,         /* Parsing context */
  ExprList *pEList,      /* A result set */
  int iCol,              /* A column in the result set.  0..pEList->nExpr-1 */
  Expr *pExpr,           /* Transform this into an alias to the result set */
  const char *zType,     /* "GROUP" or "ORDER" or "" */
  int nSubquery          /* Number of subqueries that the label is moving */
){
  Expr *pOrig;           /* The iCol-th column of the result set */
  Expr *pDup;            /* Copy of pOrig */
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  assert( pOrig->flags & EP_Resolved );
  db = pParse->db;
  pDup = sqlite3ExprDup(db, pOrig, 0);
  if( pDup==0 ) return;
  if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
    incrAggFunctionDepth(pDup, nSubquery);
    pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
    if( pDup==0 ) return;
    ExprSetProperty(pDup, EP_Skip);
    if( pEList->a[iCol].u.x.iAlias==0 ){
      pEList->a[iCol].u.x.iAlias = (u16)(++pParse->nAlias);
    }
    pDup->iTable = pEList->a[iCol].u.x.iAlias;
  }
  if( pExpr->op==TK_COLLATE ){
    pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken);
  }

  /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This 
  ** prevents ExprDelete() from deleting the Expr structure itself,
  ** allowing it to be repopulated by the memcpy() on the following line.
  ** The pExpr->u.zToken might point into memory that will be freed by the
  ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to
  ** make a copy of the token before doing the sqlite3DbFree().
  */
  ExprSetProperty(pExpr, EP_Static);
  sqlite3ExprDelete(db, pExpr);
  memcpy(pExpr, pDup, sizeof(*pExpr));
  if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){
    assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 );
    pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken);
    pExpr->flags |= EP_MemToken;
  }
  sqlite3DbFree(db, pDup);
}
Beispiel #5
0
/*
** These routines walk (recursively) an expression tree and generate
** a bitmask indicating which tables are used in that expression
** tree.
*/
Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
    mask = sqlite3WhereGetMask(pMaskSet, p->iTable);
    return mask;
  }
  mask = sqlite3WhereExprUsage(pMaskSet, p->pRight);
  mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft);
  if( ExprHasProperty(p, EP_xIsSelect) ){
    mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
  }else{
    mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
  }
  return mask;
}
Beispiel #6
0
int sqlite3FixExpr(
  DbFixer *pFix,     /* Context of the fixation */
  Expr *pExpr        /* The expression to be fixed to one database */
){
  while( pExpr ){
    if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ) break;
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1;
    }else{
      if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1;
    }
    if( sqlite3FixExpr(pFix, pExpr->pRight) ){
      return 1;
    }
    pExpr = pExpr->pLeft;
  }
  return 0;
}
Beispiel #7
0
int sqlite3FixExpr(
  DbFixer *pFix,     
  Expr *pExpr        
){
  while( pExpr ){
    if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ) break;
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      if( sqlite3FixSelect(pFix, pExpr->x.pSelect) ) return 1;
    }else{
      if( sqlite3FixExprList(pFix, pExpr->x.pList) ) return 1;
    }
    if( sqlite3FixExpr(pFix, pExpr->pRight) ){
      return 1;
    }
    pExpr = pExpr->pLeft;
  }
  return 0;
}
Beispiel #8
0
/*
** This routine walks an expression tree and resolves references to
** table columns and result-set columns.  At the same time, do error
** checking on function usage and set a flag if any aggregate functions
** are seen.
**
** To resolve table columns references we look for nodes (or subtrees) of the 
** form X.Y.Z or Y.Z or just Z where
**
**      X:   The name of a database.  Ex:  "main" or "temp" or
**           the symbolic name assigned to an ATTACH-ed database.
**
**      Y:   The name of a table in a FROM clause.  Or in a trigger
**           one of the special names "old" or "new".
**
**      Z:   The name of a column in table Y.
**
** The node at the root of the subtree is modified as follows:
**
**    Expr.op        Changed to TK_COLUMN
**    Expr.pTab      Points to the Table object for X.Y
**    Expr.iColumn   The column index in X.Y.  -1 for the rowid.
**    Expr.iTable    The VDBE cursor number for X.Y
**
**
** To resolve result-set references, look for expression nodes of the
** form Z (with no X and Y prefix) where the Z matches the right-hand
** size of an AS clause in the result-set of a SELECT.  The Z expression
** is replaced by a copy of the left-hand side of the result-set expression.
** Table-name and function resolution occurs on the substituted expression
** tree.  For example, in:
**
**      SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x;
**
** The "x" term of the order by is replaced by "a+b" to render:
**
**      SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b;
**
** Function calls are checked to make sure that the function is 
** defined and that the correct number of arguments are specified.
** If the function is an aggregate function, then the NC_HasAgg flag is
** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION.
** If an expression contains aggregate functions then the EP_Agg
** property on the expression is set.
**
** An error message is left in pParse if anything is amiss.  The number
** if errors is returned.
*/
int sqlite3ResolveExprNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){
  u8 savedHasAgg;
  Walker w;

  if( pExpr==0 ) return 0;
#if SQLITE_MAX_EXPR_DEPTH>0
  {
    Parse *pParse = pNC->pParse;
    if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){
      return 1;
    }
    pParse->nHeight += pExpr->nHeight;
  }
#endif
  savedHasAgg = pNC->ncFlags & NC_HasAgg;
  pNC->ncFlags &= ~NC_HasAgg;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = resolveExprStep;
  w.xSelectCallback = resolveSelectStep;
  w.pParse = pNC->pParse;
  w.u.pNC = pNC;
  sqlite3WalkExpr(&w, pExpr);
#if SQLITE_MAX_EXPR_DEPTH>0
  pNC->pParse->nHeight -= pExpr->nHeight;
#endif
  if( pNC->nErr>0 || w.pParse->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
  }
  if( pNC->ncFlags & NC_HasAgg ){
    ExprSetProperty(pExpr, EP_Agg);
  }else if( savedHasAgg ){
    pNC->ncFlags |= NC_HasAgg;
  }
  return ExprHasProperty(pExpr, EP_Error);
}
Beispiel #9
0
/*
** We already know that pExpr is a binary operator where both operands are
** column references.  This routine checks to see if pExpr is an equivalence
** relation:
**   1.  The SQLITE_Transitive optimization must be enabled
**   2.  Must be either an == or an IS operator
**   3.  Not originating in the ON clause of an OUTER JOIN
**   4.  The affinities of A and B must be compatible
**   5a. Both operands use the same collating sequence OR
**   5b. The overall collating sequence is BINARY
** If this routine returns TRUE, that means that the RHS can be substituted
** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
** This is an optimization.  No harm comes from returning 0.  But if 1 is
** returned when it should not be, then incorrect answers might result.
*/
static int termIsEquivalence(Parse *pParse, Expr *pExpr){
  char aff1, aff2;
  CollSeq *pColl;
  const char *zColl1, *zColl2;
  if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
  if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
  if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
  aff1 = sqlite3ExprAffinity(pExpr->pLeft);
  aff2 = sqlite3ExprAffinity(pExpr->pRight);
  if( aff1!=aff2
   && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
  ){
    return 0;
  }
  pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight);
  if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1;
  pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
  /* Since pLeft and pRight are both a column references, their collating
  ** sequence should always be defined. */
  zColl1 = ALWAYS(pColl) ? pColl->zName : 0;
  pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
  zColl2 = ALWAYS(pColl) ? pColl->zName : 0;
  return sqlite3StrICmp(zColl1, zColl2)==0;
}
Beispiel #10
0
/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;

  /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3.
  ** The ifdef here is to enable us to achieve 100% branch test coverage even
  ** when SQLITE_ENABLE_STAT3 is omitted.
  */
#ifdef SQLITE_ENABLE_STAT3
  if( op==TK_REGISTER ) op = pExpr->op2;
#else
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
#endif

  /* Handle negative integers in a single step.  This is needed in the
  ** case when the value is -9223372036854775808.
  */
  if( op==TK_UMINUS
   && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
    pExpr = pExpr->pLeft;
    op = pExpr->op;
    negInt = -1;
    zNeg = "-";
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
    }else{
      zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
      if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
    }
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
    if( enc!=SQLITE_UTF8 ){
      sqlite3VdbeChangeEncoding(pVal, enc);
    }
  }else if( op==TK_UMINUS ) {
    /* This branch happens for multiple negative signs.  Ex: -(-5) */
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
      sqlite3VdbeMemNumerify(pVal);
      if( pVal->u.i==SMALLEST_INT64 ){
        pVal->flags &= MEM_Int;
        pVal->flags |= MEM_Real;
        pVal->r = (double)LARGEST_INT64;
      }else{
        pVal->u.i = -pVal->u.i;
      }
      pVal->r = -pVal->r;
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_NULL ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
    assert( pExpr->u.zToken[1]=='\'' );
    pVal = sqlite3ValueNew(db);
    if( !pVal ) goto no_mem;
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

  if( pVal ){
    sqlite3VdbeMemStoreType(pVal);
  }
  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);
  sqlite3ValueFree(pVal);
  *ppVal = 0;
  return SQLITE_NOMEM;
}
Beispiel #11
0
/*
** Resolve names in the SELECT statement p and all of its descendents.
*/
static int resolveSelectStep(Walker *pWalker, Select *p){
  NameContext *pOuterNC;  /* Context that contains this SELECT */
  NameContext sNC;        /* Name context of this SELECT */
  int isCompound;         /* True if p is a compound select */
  int nCompound;          /* Number of compound terms processed so far */
  Parse *pParse;          /* Parsing context */
  ExprList *pEList;       /* Result set expression list */
  int i;                  /* Loop counter */
  ExprList *pGroupBy;     /* The GROUP BY clause */
  Select *pLeftmost;      /* Left-most of SELECT of a compound */
  sqlite3 *db;            /* Database connection */
  

  assert( p!=0 );
  if( p->selFlags & SF_Resolved ){
    return WRC_Prune;
  }
  pOuterNC = pWalker->u.pNC;
  pParse = pWalker->pParse;
  db = pParse->db;

  /* Normally sqlite3SelectExpand() will be called first and will have
  ** already expanded this SELECT.  However, if this is a subquery within
  ** an expression, sqlite3ResolveExprNames() will be called without a
  ** prior call to sqlite3SelectExpand().  When that happens, let
  ** sqlite3SelectPrep() do all of the processing for this SELECT.
  ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and
  ** this routine in the correct order.
  */
  if( (p->selFlags & SF_Expanded)==0 ){
    sqlite3SelectPrep(pParse, p, pOuterNC);
    return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune;
  }

  isCompound = p->pPrior!=0;
  nCompound = 0;
  pLeftmost = p;
  while( p ){
    assert( (p->selFlags & SF_Expanded)!=0 );
    assert( (p->selFlags & SF_Resolved)==0 );
    p->selFlags |= SF_Resolved;

    /* Resolve the expressions in the LIMIT and OFFSET clauses. These
    ** are not allowed to refer to any names, so pass an empty NameContext.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }
  
    /* Set up the local name-context to pass to sqlite3ResolveExprNames() to
    ** resolve the result-set expression list.
    */
    sNC.allowAgg = 1;
    sNC.pSrcList = p->pSrc;
    sNC.pNext = pOuterNC;
  
    /* Resolve names in the result set. */
    pEList = p->pEList;
    assert( pEList!=0 );
    for(i=0; i<pEList->nExpr; i++){
      Expr *pX = pEList->a[i].pExpr;
      if( sqlite3ResolveExprNames(&sNC, pX) ){
        return WRC_Abort;
      }
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        const char *zSavedContext = pParse->zAuthContext;
        if( pItem->zName ) pParse->zAuthContext = pItem->zName;
        sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
        pParse->zAuthContext = zSavedContext;
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;
      }
    }
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
    pGroupBy = p->pGroupBy;
    if( pGroupBy || sNC.hasAgg ){
      p->selFlags |= SF_Aggregate;
    }else{
      sNC.allowAgg = 0;
    }
  
    /* If a HAVING clause is present, then there must be a GROUP BY clause.
    */
    if( p->pHaving && !pGroupBy ){
      sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
      return WRC_Abort;
    }
  
    /* Add the expression list to the name-context before parsing the
    ** other expressions in the SELECT statement. This is so that
    ** expressions in the WHERE clause (etc.) can refer to expressions by
    ** aliases in the result set.
    **
    ** Minor point: If this is the case, then the expression will be
    ** re-evaluated for each reference to it.
    */
    sNC.pEList = p->pEList;
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ||
       sqlite3ResolveExprNames(&sNC, p->pHaving)
    ){
      return WRC_Abort;
    }

    /* The ORDER BY and GROUP BY clauses may not refer to terms in
    ** outer queries 
    */
    sNC.pNext = 0;
    sNC.allowAgg = 1;

    /* Process the ORDER BY clause for singleton SELECT statements.
    ** The ORDER BY clause for compounds SELECT statements is handled
    ** below, after all of the result-sets for all of the elements of
    ** the compound have been resolved.
    */
    if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){
      return WRC_Abort;
    }
    if( db->mallocFailed ){
      return WRC_Abort;
    }
  
    /* Resolve the GROUP BY clause.  At the same time, make sure 
    ** the GROUP BY clause does not contain aggregate functions.
    */
    if( pGroupBy ){
      struct ExprList_item *pItem;
    
      if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){
        return WRC_Abort;
      }
      for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
        if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
          sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
              "the GROUP BY clause");
          return WRC_Abort;
        }
      }
    }

    /* Advance to the next term of the compound
    */
    p = p->pPrior;
    nCompound++;
  }

  /* Resolve the ORDER BY on a compound SELECT after all terms of
  ** the compound have been resolved.
  */
  if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){
    return WRC_Abort;
  }

  return WRC_Prune;
}
Beispiel #12
0
/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[30];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){
    sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);
  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
        /* This only happens when coding check constraints */
        sqlite3TreeViewLine(pView, "COLUMN(%d)%s", pExpr->iColumn, zFlgs);
      }else{
        sqlite3TreeViewLine(pView, "{%d:%d}%s",
                             pExpr->iTable, pExpr->iColumn, zFlgs);
      }
      break;
    }
    case TK_INTEGER: {
      if( pExpr->flags & EP_IntValue ){
        sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
      }else{
        sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
      }
      break;
    }
#ifndef SQLITE_OMIT_FLOATING_POINT
    case TK_FLOAT: {
      sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
      break;
    }
#endif
    case TK_STRING: {
      sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
      break;
    }
    case TK_NULL: {
      sqlite3TreeViewLine(pView,"NULL");
      break;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case TK_BLOB: {
      sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
      break;
    }
#endif
    case TK_VARIABLE: {
      sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
                          pExpr->u.zToken, pExpr->iColumn);
      break;
    }
    case TK_REGISTER: {
      sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
      break;
    }
    case TK_AS: {
      sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }
    case TK_ID: {
      sqlite3TreeViewLine(pView,"ID \"%w\"", pExpr->u.zToken);
      break;
    }
#ifndef SQLITE_OMIT_CAST
    case TK_CAST: {
      /* Expressions of the form:   CAST(pLeft AS token) */
      sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }
#endif /* SQLITE_OMIT_CAST */
    case TK_LT:      zBinOp = "LT";     break;
    case TK_LE:      zBinOp = "LE";     break;
    case TK_GT:      zBinOp = "GT";     break;
    case TK_GE:      zBinOp = "GE";     break;
    case TK_NE:      zBinOp = "NE";     break;
    case TK_EQ:      zBinOp = "EQ";     break;
    case TK_IS:      zBinOp = "IS";     break;
    case TK_ISNOT:   zBinOp = "ISNOT";  break;
    case TK_AND:     zBinOp = "AND";    break;
    case TK_OR:      zBinOp = "OR";     break;
    case TK_PLUS:    zBinOp = "ADD";    break;
    case TK_STAR:    zBinOp = "MUL";    break;
    case TK_MINUS:   zBinOp = "SUB";    break;
    case TK_REM:     zBinOp = "REM";    break;
    case TK_BITAND:  zBinOp = "BITAND"; break;
    case TK_BITOR:   zBinOp = "BITOR";  break;
    case TK_SLASH:   zBinOp = "DIV";    break;
    case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
    case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
    case TK_CONCAT:  zBinOp = "CONCAT"; break;
    case TK_DOT:     zBinOp = "DOT";    break;

    case TK_UMINUS:  zUniOp = "UMINUS"; break;
    case TK_UPLUS:   zUniOp = "UPLUS";  break;
    case TK_BITNOT:  zUniOp = "BITNOT"; break;
    case TK_NOT:     zUniOp = "NOT";    break;
    case TK_ISNULL:  zUniOp = "ISNULL"; break;
    case TK_NOTNULL: zUniOp = "NOTNULL"; break;

    case TK_COLLATE: {
      sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
      break;
    }

    case TK_AGG_FUNCTION:
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }
      if( pExpr->op==TK_AGG_FUNCTION ){
        sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
                             pExpr->op2, pExpr->u.zToken);
      }else{
        sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
      }
      if( pFarg ){
        sqlite3TreeViewExprList(pView, pFarg, 0, 0);
      }
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS: {
      sqlite3TreeViewLine(pView, "EXISTS-expr");
      sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
      break;
    }
    case TK_SELECT: {
      sqlite3TreeViewLine(pView, "SELECT-expr");
      sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
      break;
    }
    case TK_IN: {
      sqlite3TreeViewLine(pView, "IN");
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
      }else{
        sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
      }
      break;
    }
#endif /* SQLITE_OMIT_SUBQUERY */

    /*
    **    x BETWEEN y AND z
    **
    ** This is equivalent to
    **
    **    x>=y AND x<=z
    **
    ** X is stored in pExpr->pLeft.
    ** Y is stored in pExpr->pList->a[0].pExpr.
    ** Z is stored in pExpr->pList->a[1].pExpr.
    */
    case TK_BETWEEN: {
      Expr *pX = pExpr->pLeft;
      Expr *pY = pExpr->x.pList->a[0].pExpr;
      Expr *pZ = pExpr->x.pList->a[1].pExpr;
      sqlite3TreeViewLine(pView, "BETWEEN");
      sqlite3TreeViewExpr(pView, pX, 1);
      sqlite3TreeViewExpr(pView, pY, 1);
      sqlite3TreeViewExpr(pView, pZ, 0);
      break;
    }
    case TK_TRIGGER: {
      /* If the opcode is TK_TRIGGER, then the expression is a reference
      ** to a column in the new.* or old.* pseudo-tables available to
      ** trigger programs. In this case Expr.iTable is set to 1 for the
      ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
      ** is set to the column of the pseudo-table to read, or to -1 to
      ** read the rowid field.
      */
      sqlite3TreeViewLine(pView, "%s(%d)", 
          pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
      break;
    }
    case TK_CASE: {
      sqlite3TreeViewLine(pView, "CASE");
      sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
      sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
      break;
    }
#ifndef SQLITE_OMIT_TRIGGER
    case TK_RAISE: {
      const char *zType = "unk";
      switch( pExpr->affinity ){
        case OE_Rollback:   zType = "rollback";  break;
        case OE_Abort:      zType = "abort";     break;
        case OE_Fail:       zType = "fail";      break;
        case OE_Ignore:     zType = "ignore";    break;
      }
      sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
      break;
    }
#endif
    default: {
      sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
      break;
    }
  }
  if( zBinOp ){
    sqlite3TreeViewLine(pView, "%s%s", zBinOp, zFlgs);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
    sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
  }else if( zUniOp ){
    sqlite3TreeViewLine(pView, "%s%s", zUniOp, zFlgs);
    sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
  }
  sqlite3TreeViewPop(pView);
}
Beispiel #13
0
/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
** the tree or 2 to abort the tree walk.
**
** This routine also does error checking and name resolution for
** function names.  The operator for aggregate functions is changed
** to TK_AGG_FUNCTION.
*/
static int resolveExprStep(Walker *pWalker, Expr *pExpr){
  NameContext *pNC;
  Parse *pParse;

  pNC = pWalker->u.pNC;
  assert( pNC!=0 );
  pParse = pNC->pParse;
  assert( pParse==pWalker->pParse );

  if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return WRC_Prune;
  ExprSetProperty(pExpr, EP_Resolved);
#ifndef NDEBUG
  if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
    SrcList *pSrcList = pNC->pSrcList;
    int i;
    for(i=0; i<pNC->pSrcList->nSrc; i++){
      assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
    }
  }
#endif
  switch( pExpr->op ){

#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
    /* The special operator TK_ROW means use the rowid for the first
    ** column in the FROM clause.  This is used by the LIMIT and ORDER BY
    ** clause processing on UPDATE and DELETE statements.
    */
    case TK_ROW: {
      SrcList *pSrcList = pNC->pSrcList;
      struct SrcList_item *pItem;
      assert( pSrcList && pSrcList->nSrc==1 );
      pItem = pSrcList->a; 
      pExpr->op = TK_COLUMN;
      pExpr->pTab = pItem->pTab;
      pExpr->iTable = pItem->iCursor;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
      break;
    }
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */

    /* A lone identifier is the name of a column.
    */
    case TK_ID: {
      return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
    }
  
    /* A table name and column name:     ID.ID
    ** Or a database, table and column:  ID.ID.ID
    */
    case TK_DOT: {
      const char *zColumn;
      const char *zTable;
      const char *zDb;
      Expr *pRight;

      /* if( pSrcList==0 ) break; */
      pRight = pExpr->pRight;
      if( pRight->op==TK_ID ){
        zDb = 0;
        zTable = pExpr->pLeft->u.zToken;
        zColumn = pRight->u.zToken;
      }else{
        assert( pRight->op==TK_DOT );
        zDb = pExpr->pLeft->u.zToken;
        zTable = pRight->pLeft->u.zToken;
        zColumn = pRight->pRight->u.zToken;
      }
      return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
    }

    /* Resolve function names
    */
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->x.pList;    /* The argument list */
      int n = pList ? pList->nExpr : 0;    /* Number of arguments */
      int no_such_func = 0;       /* True if no such function exists */
      int wrong_num_args = 0;     /* True if wrong number of arguments */
      int is_agg = 0;             /* True if is an aggregate function */
      int auth;                   /* Authorization to use the function */
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;              /* Information about the function */
      u8 enc = ENC(pParse->db);   /* The database encoding */

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
      }
#ifndef SQLITE_OMIT_AUTHORIZATION
      if( pDef ){
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }
      }
#endif
      if( is_agg && !pNC->allowAgg ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
      if( is_agg ){
        pExpr->op = TK_AGG_FUNCTION;
        pNC->hasAgg = 1;
      }
      if( is_agg ) pNC->allowAgg = 0;
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ) pNC->allowAgg = 1;
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:  testcase( pExpr->op==TK_EXISTS );
#endif
    case TK_IN: {
      testcase( pExpr->op==TK_IN );
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        int nRef = pNC->nRef;
#ifndef SQLITE_OMIT_CHECK
        if( pNC->isCheck ){
          sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
        }
#endif
        sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
        assert( pNC->nRef>=nRef );
        if( nRef!=pNC->nRef ){
          ExprSetProperty(pExpr, EP_VarSelect);
        }
      }
      break;
    }
#ifndef SQLITE_OMIT_CHECK
    case TK_VARIABLE: {
      if( pNC->isCheck ){
        sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
      }
      break;
    }
#endif
  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}
Beispiel #14
0
/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database X
**                         (even if X is implied).
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->pTab          Points to the Table structure of X.Y (even if
**                         X and/or Y are implied.)
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The zDb variable is the name of the database (the "X").  This value may be
** NULL meaning that name is of the form Y.Z or Z.  Any available database
** can be used.  The zTable variable is the name of the table (the "Y").  This
** value can be NULL if zDb is also NULL.  If zTable is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return WRC_Abort.  Return WRC_Prune on success.
*/
static int lookupName(
  Parse *pParse,       /* The parsing context */
  const char *zDb,     /* Name of the database containing table, or NULL */
  const char *zTab,    /* Name of table containing column, or NULL */
  const char *zCol,    /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  int i, j;            /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int isTrigger = 0;

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( ~ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetIrreducible(pExpr);

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab;
        int iDb;
        Column *pCol;
  
        pTab = pItem->pTab;
        assert( pTab!=0 && pTab->zName!=0 );
        iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){
            char *zTabName = pItem->zAlias;
            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
          }else{
            char *zTabName = pTab->zName;
            if( NEVER(zTabName==0) || sqlite3StrICmp(zTabName, zTab)!=0 ){
              continue;
            }
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
              continue;
            }
          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pExpr->pTab = pTab;
          pSchema = pTab->pSchema;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            IdList *pUsing;
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pExpr->pTab = pTab;
            pMatch = pItem;
            pSchema = pTab->pSchema;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            if( i<pSrcList->nSrc-1 ){
              if( pItem[1].jointype & JT_NATURAL ){
                /* If this match occurred in the left table of a natural join,
                ** then skip the right table to avoid a duplicate match */
                pItem++;
                i++;
              }else if( (pUsing = pItem[1].pUsing)!=0 ){
                /* If this match occurs on a column that is in the USING clause
                ** of a join, skip the search of the right table of the join
                ** to avoid a duplicate match there. */
                int k;
                for(k=0; k<pUsing->nId; k++){
                  if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
                    pItem++;
                    i++;
                    break;
                  }
                }
              }
            }
            break;
          }
        }
      }
    }

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cnt==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;
      Table *pTab = 0;
      assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
      if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
        pExpr->iTable = 1;
        pTab = pParse->pTriggerTab;
      }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
        pExpr->iTable = 0;
        pTab = pParse->pTriggerTab;
      }

      if( pTab ){ 
        int iCol;
        pSchema = pTab->pSchema;
        cntTab++;
        for(iCol=0; iCol<pTab->nCol; iCol++){
          Column *pCol = &pTab->aCol[iCol];
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            if( iCol==pTab->iPKey ){
              iCol = -1;
            }
            break;
          }
        }
        if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) ){
          iCol = -1;        /* IMP: R-44911-55124 */
        }
        if( iCol<pTab->nCol ){
          cnt++;
          if( iCol<0 ){
            pExpr->affinity = SQLITE_AFF_INTEGER;
          }else if( pExpr->iTable==0 ){
            testcase( iCol==31 );
            testcase( iCol==32 );
            pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }else{
            testcase( iCol==31 );
            testcase( iCol==32 );
            pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }
          pExpr->iColumn = (i16)iCol;
          pExpr->pTab = pTab;
          isTrigger = 1;
        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID
    */
    if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
      cnt = 1;
      pExpr->iColumn = -1;     /* IMP: R-44911-55124 */
      pExpr->affinity = SQLITE_AFF_INTEGER;
    }

    /*
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
    ** might refer to an result-set alias.  This happens, for example, when
    ** we are resolving names in the WHERE clause of the following command:
    **
    **     SELECT a+b AS x FROM table WHERE x<10;
    **
    ** In cases like this, replace pExpr with a copy of the expression that
    ** forms the result set entry ("a+b" in the example) and return immediately.
    ** Note that the expression in the result set should have already been
    ** resolved by the time the WHERE clause is resolved.
    */
    if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->x.pList==0 );
          assert( pExpr->x.pSelect==0 );
          pOrig = pEList->a[j].pExpr;
          if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
            return WRC_Abort;
          }
          resolveAlias(pParse, pEList, j, pExpr, "");
          cnt = 1;
          pMatch = 0;
          assert( zTab==0 && zDb==0 );
          goto lookupname_end;
        }
      } 
    }

    /* Advance to the next name context.  The loop will exit when either
    ** we have a match (cnt>0) or when we run out of name contexts.
    */
    if( cnt==0 ){
      pNC = pNC->pNext;
    }
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that
  ** case, we need to return right away and not make any changes to
  ** pExpr.
  **
  ** Because no reference was made to outer contexts, the pNC->nRef
  ** fields are not changed in any context.
  */
  if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){
    pExpr->op = TK_STRING;
    pExpr->pTab = 0;
    return WRC_Prune;
  }

  /*
  ** cnt==0 means there was not match.  cnt>1 means there were two or
  ** more matches.  Either way, we have an error.
  */
  if( cnt!=1 ){
    const char *zErr;
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
    if( zDb ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
    }else if( zTab ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
    }
    pTopNC->nErr++;
  }

  /* If a column from a table in pSrcList is referenced, then record
  ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
  ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
  ** column number is greater than the number of bits in the bitmask
  ** then set the high-order bit of the bitmask.
  */
  if( pExpr->iColumn>=0 && pMatch!=0 ){
    int n = pExpr->iColumn;
    testcase( n==BMS-1 );
    if( n>=BMS ){
      n = BMS-1;
    }
    assert( pMatch->iCursor==pExpr->iTable );
    pMatch->colUsed |= ((Bitmask)1)<<n;
  }

  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
      assert( pTopNC!=0 );
      pTopNC->nRef++;
      if( pTopNC==pNC ) break;
      pTopNC = pTopNC->pNext;
    }
    return WRC_Prune;
  } else {
    return WRC_Abort;
  }
}
Beispiel #15
0
/*
** The input to this routine is an WhereTerm structure with only the
** "pExpr" field filled in.  The job of this routine is to analyze the
** subexpression and populate all the other fields of the WhereTerm
** structure.
**
** If the expression is of the form "<expr> <op> X" it gets commuted
** to the standard form of "X <op> <expr>".
**
** If the expression is of the form "X <op> Y" where both X and Y are
** columns, then the original expression is unchanged and a new virtual
** term of the form "Y <op> X" is added to the WHERE clause and
** analyzed separately.  The original term is marked with TERM_COPIED
** and the new term is marked with TERM_DYNAMIC (because it's pExpr
** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
** is a commuted copy of a prior term.)  The original term has nChild=1
** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
  WhereTerm *pTerm;                /* The term to be analyzed */
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
    }else{
      pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
    }
  }else if( op==TK_ISNULL ){
    pTerm->prereqRight = 0;
  }else{
    pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
  }
  prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr);
  if( ExprHasProperty(pExpr, EP_FromJoin) ){
    Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
    prereqAll |= x;
    extraRight = x-1;  /* ON clause terms may not be used with an index
                       ** on left table of a LEFT JOIN.  Ticket #3015 */
  }
  pTerm->prereqAll = prereqAll;
  pTerm->leftCursor = -1;
  pTerm->iParent = -1;
  pTerm->eOperator = 0;
  if( allowedOp(op) ){
    Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
    Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
    u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
    if( pLeft->op==TK_COLUMN ){
      pTerm->leftCursor = pLeft->iTable;
      pTerm->u.leftColumn = pLeft->iColumn;
      pTerm->eOperator = operatorMask(op) & opMask;
    }
    if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
    if( pRight && pRight->op==TK_COLUMN ){
      WhereTerm *pNew;
      Expr *pDup;
      u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
      if( pTerm->leftCursor>=0 ){
        int idxNew;
        pDup = sqlite3ExprDup(db, pExpr, 0);
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        markTermAsChild(pWC, idxNew, idxTerm);
        if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
        pTerm = &pWC->a[idxTerm];
        pTerm->wtFlags |= TERM_COPIED;

        if( termIsEquivalence(pParse, pDup) ){
          pTerm->eOperator |= WO_EQUIV;
          eExtraOp = WO_EQUIV;
        }
      }else{
        pDup = pExpr;
        pNew = pTerm;
      }
      exprCommute(pParse, pDup);
      pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
      pNew->leftCursor = pLeft->iTable;
      pNew->u.leftColumn = pLeft->iColumn;
      testcase( (prereqLeft | extraRight) != prereqLeft );
      pNew->prereqRight = prereqLeft | extraRight;
      pNew->prereqAll = prereqAll;
      pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
    }
  }

#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
  /* If a term is the BETWEEN operator, create two new virtual terms
  ** that define the range that the BETWEEN implements.  For example:
  **
  **      a BETWEEN b AND c
  **
  ** is converted into:
  **
  **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
  **
  ** The two new terms are added onto the end of the WhereClause object.
  ** The new terms are "dynamic" and are children of the original BETWEEN
  ** term.  That means that if the BETWEEN term is coded, the children are
  ** skipped.  Or, if the children are satisfied by an index, the original
  ** BETWEEN term is skipped.
  */
  else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
    ExprList *pList = pExpr->x.pList;
    int i;
    static const u8 ops[] = {TK_GE, TK_LE};
    assert( pList!=0 );
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3PExpr(pParse, ops[i], 
                             sqlite3ExprDup(db, pExpr->pLeft, 0),
                             sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
      transferJoinMarkings(pNewExpr, pExpr);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      markTermAsChild(pWC, idxNew, idxTerm);
    }
  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
  /* Analyze a term that is composed of two or more subterms connected by
  ** an OR operator.
  */
  else if( pExpr->op==TK_OR ){
    assert( pWC->op==TK_AND );
    exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
    pTerm = &pWC->a[idxTerm];
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
  /* Add constraints to reduce the search space on a LIKE or GLOB
  ** operator.
  **
  ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
  **
  **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
  **
  ** The last character of the prefix "abc" is incremented to form the
  ** termination condition "abd".  If case is not significant (the default
  ** for LIKE) then the lower-bound is made all uppercase and the upper-
  ** bound is made all lowercase so that the bounds also work when comparing
  ** BLOBs.
  */
  if( pWC->op==TK_AND 
   && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
  ){
    Expr *pLeft;       /* LHS of LIKE/GLOB operator */
    Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
    Expr *pNewExpr1;
    Expr *pNewExpr2;
    int idxNew1;
    int idxNew2;
    const char *zCollSeqName;     /* Name of collating sequence */
    const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;

    pLeft = pExpr->x.pList->a[1].pExpr;
    pStr2 = sqlite3ExprDup(db, pStr1, 0);

    /* Convert the lower bound to upper-case and the upper bound to
    ** lower-case (upper-case is less than lower-case in ASCII) so that
    ** the range constraints also work for BLOBs
    */
    if( noCase && !pParse->db->mallocFailed ){
      int i;
      char c;
      pTerm->wtFlags |= TERM_LIKE;
      for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
        pStr1->u.zToken[i] = sqlite3Toupper(c);
        pStr2->u.zToken[i] = sqlite3Tolower(c);
      }
    }

    if( !db->mallocFailed ){
      u8 c, *pC;       /* Last character before the first wildcard */
      pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
      c = *pC;
      if( noCase ){
        /* The point is to increment the last character before the first
        ** wildcard.  But if we increment '@', that will push it into the
        ** alphabetic range where case conversions will mess up the 
        ** inequality.  To avoid this, make sure to also run the full
        ** LIKE on all candidate expressions by clearing the isComplete flag
        */
        if( c=='A'-1 ) isComplete = 0;
        c = sqlite3UpperToLower[c];
      }
      *pC = c + 1;
    }
    zCollSeqName = noCase ? "NOCASE" : "BINARY";
    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
           sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
           pStr1, 0);
    transferJoinMarkings(pNewExpr1, pExpr);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
    testcase( idxNew1==0 );
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
           sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      markTermAsChild(pWC, idxNew1, idxTerm);
      markTermAsChild(pWC, idxNew2, idxTerm);
    }
  }
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */

#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Add a WO_MATCH auxiliary term to the constraint set if the
  ** current expression is of the form:  column MATCH expr.
  ** This information is used by the xBestIndex methods of
  ** virtual tables.  The native query optimizer does not attempt
  ** to do anything with MATCH functions.
  */
  if( isMatchOfColumn(pExpr) ){
    int idxNew;
    Expr *pRight, *pLeft;
    WhereTerm *pNewTerm;
    Bitmask prereqColumn, prereqExpr;

    pRight = pExpr->x.pList->a[0].pExpr;
    pLeft = pExpr->x.pList->a[1].pExpr;
    prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
    prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
    if( (prereqExpr & prereqColumn)==0 ){
      Expr *pNewExpr;
      pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
                              0, sqlite3ExprDup(db, pRight, 0), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = prereqExpr;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_MATCH;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  /* When sqlite_stat3 histogram data is available an operator of the
  ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
  ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0
   && OptimizationEnabled(db, SQLITE_Stat34)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

    pNewExpr = sqlite3PExpr(pParse, TK_GT,
                            sqlite3ExprDup(db, pLeft, 0),
                            sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);

    idxNew = whereClauseInsert(pWC, pNewExpr,
                              TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
    if( idxNew ){
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = 0;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_GT;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}
Beispiel #16
0
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**
**     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
**                          ^^^^^^^^^^^^^^^^^^^^
**
** This routine analyzes terms such as the middle term in the above example.
** A WhereOrTerm object is computed and attached to the term under
** analysis, regardless of the outcome of the analysis.  Hence:
**
**     WhereTerm.wtFlags   |=  TERM_ORINFO
**     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
**
** The term being analyzed must have two or more of OR-connected subterms.
** A single subterm might be a set of AND-connected sub-subterms.
** Examples of terms under analysis:
**
**     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**     (F)     x>A OR (x=A AND y>=B)
**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C and
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:
**
**      x IN (expr1,expr2,expr3)
**
** CASE 2:
**
** If there are exactly two disjuncts and one side has x>A and the other side
** has x=A (for the same x and A) then add a new virtual conjunct term to the
** WHERE clause of the form "x>=A".  Example:
**
**      x>A OR (x=A AND y>B)    adds:    x>=A
**
** The added conjunct can sometimes be helpful in query planning.
**
** CASE 3:
**
** If all subterms are indexable by a single table T, then set
**
**     WhereTerm.eOperator              =  WO_OR
**     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
**
** A subterm is "indexable" if it is of the form
** "T.C <op> <expr>" where C is any column of table T and 
** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
** A subterm is also indexable if it is an AND of two or more
** subsubterms at least one of which is indexable.  Indexable AND 
** subterms have their eOperator set to WO_AND and they have
** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
**
** From another point of view, "indexable" means that the subterm could
** potentially be used with an index if an appropriate index exists.
** This analysis does not consider whether or not the index exists; that
** is decided elsewhere.  This analysis only looks at whether subterms
** appropriate for indexing exist.
**
** All examples A through E above satisfy case 3.  But if a term
** also satisfies case 1 (such as B) we know that the optimizer will
** always prefer case 1, so in that case we pretend that case 3 is not
** satisfied.
**
** It might be the case that multiple tables are indexable.  For example,
** (E) above is indexable on tables P, Q, and R.
**
** Terms that satisfy case 3 are candidates for lookup by using
** separate indices to find rowids for each subterm and composing
** the union of all rowids using a RowSet object.  This is similar
** to "bitmap indices" in other database engines.
**
** OTHERWISE:
**
** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
** zero.  This term is not useful for search.
*/
static void exprAnalyzeOrTerm(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the complete WHERE clause */
  int idxTerm               /* Index of the OR-term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
  Parse *pParse = pWInfo->pParse;         /* Parser context */
  sqlite3 *db = pParse->db;               /* Database connection */
  WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
  Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
  int i;                                  /* Loop counters */
  WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
  WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
  WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
  Bitmask chngToIN;         /* Tables that might satisfy case 1 */
  Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */

  /*
  ** Break the OR clause into its separate subterms.  The subterms are
  ** stored in a WhereClause structure containing within the WhereOrInfo
  ** object that is attached to the original OR clause term.
  */
  assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
  assert( pExpr->op==TK_OR );
  pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
  if( pOrInfo==0 ) return;
  pTerm->wtFlags |= TERM_ORINFO;
  pOrWc = &pOrInfo->wc;
  sqlite3WhereClauseInit(pOrWc, pWInfo);
  sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
  sqlite3WhereExprAnalyze(pSrc, pOrWc);
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 3.
  */
  indexable = ~(Bitmask)0;
  chngToIN = ~(Bitmask)0;
  for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
    if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
      WhereAndInfo *pAndInfo;
      assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
      chngToIN = 0;
      pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
      if( pAndInfo ){
        WhereClause *pAndWC;
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
        sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        sqlite3WhereExprAnalyze(pSrc, pAndWC);
        pAndWC->pOuter = pWC;
        testcase( db->mallocFailed );
        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
            }
          }
        }
        indexable &= b;
      }
    }else if( pOrTerm->wtFlags & TERM_COPIED ){
      /* Skip this term for now.  We revisit it when we process the
      ** corresponding TERM_VIRTUAL term */
    }else{
      Bitmask b;
      b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
    }
  }

  /*
  ** Record the set of tables that satisfy case 3.  The set might be
  ** empty.
  */
  pOrInfo->indexable = indexable;
  pTerm->eOperator = indexable==0 ? 0 : WO_OR;

  /* For a two-way OR, attempt to implementation case 2.
  */
  if( indexable && pOrWc->nTerm==2 ){
    int iOne = 0;
    WhereTerm *pOne;
    while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
      int iTwo = 0;
      WhereTerm *pTwo;
      while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
        whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
      }
    }
  }

  /*
  ** chngToIN holds a set of tables that *might* satisfy case 1.  But
  ** we have to do some additional checking to see if case 1 really
  ** is satisfied.
  **
  ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
  ** that there is no possibility of transforming the OR clause into an
  ** IN operator because one or more terms in the OR clause contain
  ** something other than == on a column in the single table.  The 1-bit
  ** case means that every term of the OR clause is of the form
  ** "table.column=expr" for some single table.  The one bit that is set
  ** will correspond to the common table.  We still need to check to make
  ** sure the same column is used on all terms.  The 2-bit case is when
  ** the all terms are of the form "table1.column=table2.column".  It
  ** might be possible to form an IN operator with either table1.column
  ** or table2.column as the LHS if either is common to every term of
  ** the OR clause.
  **
  ** Note that terms of the form "table.column1=table.column2" (the
  ** same table on both sizes of the ==) cannot be optimized.
  */
  if( chngToIN ){
    int okToChngToIN = 0;     /* True if the conversion to IN is valid */
    int iColumn = -1;         /* Column index on lhs of IN operator */
    int iCursor = -1;         /* Table cursor common to all terms */
    int j = 0;                /* Loop counter */

    /* Search for a table and column that appears on one side or the
    ** other of the == operator in every subterm.  That table and column
    ** will be recorded in iCursor and iColumn.  There might not be any
    ** such table and column.  Set okToChngToIN if an appropriate table
    ** and column is found but leave okToChngToIN false if not found.
    */
    for(j=0; j<2 && !okToChngToIN; j++){
      pOrTerm = pOrWc->a;
      for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
        assert( pOrTerm->eOperator & WO_EQ );
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
                                            pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
          continue;
        }
        iColumn = pOrTerm->u.leftColumn;
        iCursor = pOrTerm->leftCursor;
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
      for(; i>=0 && okToChngToIN; i--, pOrTerm++){
        assert( pOrTerm->eOperator & WO_EQ );
        if( pOrTerm->leftCursor!=iCursor ){
          pOrTerm->wtFlags &= ~TERM_OR_OK;
        }else if( pOrTerm->u.leftColumn!=iColumn ){
          okToChngToIN = 0;
        }else{
          int affLeft, affRight;
          /* If the right-hand side is also a column, then the affinities
          ** of both right and left sides must be such that no type
          ** conversions are required on the right.  (Ticket #2249)
          */
          affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
          affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
          if( affRight!=0 && affRight!=affLeft ){
            okToChngToIN = 0;
          }else{
            pOrTerm->wtFlags |= TERM_OR_OK;
          }
        }
      }
    }

    /* At this point, okToChngToIN is true if original pTerm satisfies
    ** case 1.  In that case, construct a new virtual term that is 
    ** pTerm converted into an IN operator.
    */
    if( okToChngToIN ){
      Expr *pDup;            /* A transient duplicate expression */
      ExprList *pList = 0;   /* The RHS of the IN operator */
      Expr *pLeft = 0;       /* The LHS of the IN operator */
      Expr *pNew;            /* The complete IN operator */

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
      pDup = sqlite3ExprDup(db, pLeft, 0);
      pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;
        transferJoinMarkings(pNew, pExpr);
        assert( !ExprHasProperty(pNew, EP_xIsSelect) );
        pNew->x.pList = pList;
        idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        markTermAsChild(pWC, idxNew, idxTerm);
      }else{
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 3 */
    }
  }
}
Beispiel #17
0
/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
  sqlite3 *db,              /* The database connection */
  Expr *pExpr,              /* The expression to evaluate */
  u8 enc,                   /* Encoding to use */
  u8 affinity,              /* Affinity to use */
  sqlite3_value **ppVal     /* Write the new value here */
){
  int op;
  char *zVal = 0;
  sqlite3_value *pVal = 0;

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  op = pExpr->op;
  if( op==TK_REGISTER ){
    op = pExpr->op2;
  }

  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
    pVal = sqlite3ValueNew(db);
    if( pVal==0 ) goto no_mem;
    if( ExprHasProperty(pExpr, EP_IntValue) ){
      sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue);
    }else{
      zVal = sqlite3DbStrDup(db, pExpr->u.zToken);
      if( zVal==0 ) goto no_mem;
      sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
      if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
    }
    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
    }
    if( enc!=SQLITE_UTF8 ){
      sqlite3VdbeChangeEncoding(pVal, enc);
    }
  }else if( op==TK_UMINUS ) {
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
      pVal->u.i = -1 * pVal->u.i;
      /* (double)-1 In case of SQLITE_OMIT_FLOATING_POINT... */
      pVal->r = (double)-1 * pVal->r;
    }
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
    assert( pExpr->u.zToken[1]=='\'' );
    pVal = sqlite3ValueNew(db);
    if( !pVal ) goto no_mem;
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

  *ppVal = pVal;
  return SQLITE_OK;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);
  sqlite3ValueFree(pVal);
  *ppVal = 0;
  return SQLITE_NOMEM;
}
Beispiel #18
0
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an (opaque) structure that contains
** information needed to terminate the loop.  Later, the calling routine
** should invoke sqliteWhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select.  (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.)  For
** example, if the SQL is this:
**
**       SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
**      foreach row1 in t1 do       \    Code generated
**        foreach row2 in t2 do      |-- by sqliteWhereBegin()
**          foreach row3 in t3 do   /
**            ...
**          end                     \    Code generated
**        end                        |-- by sqliteWhereEnd()
**      end                         /
**
** There are Btree cursors associated with each table.  t1 uses cursor
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
** And so forth.  This routine generates code to open those VDBE cursors
** and sqliteWhereEnd() generates the code to close them.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster.  Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop.  After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
**    foreach row1 in t1 do
**      flag = 0
**      foreach row2 in t2 do
**        start:
**          ...
**          flag = 1
**      end
**      if flag==0 then
**        move the row2 cursor to a null row
**        goto start
**      fi
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** *ppOrderBy is set to NULL.  This is an optimization that prevents an
** unnecessary sort of the result set if an index appropriate for the
** ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqliteWhereBegin(
  Parse *pParse,       /* The parser context */
  SrcList *pTabList,   /* A list of all tables to be scanned */
  Expr *pWhere,        /* The WHERE clause */
  int pushKey,         /* If TRUE, leave the table key on the stack */
  ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
){
  int i;                     /* Loop counter */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  int brk, cont = 0;         /* Addresses used during code generation */
  int nExpr;           /* Number of subexpressions in the WHERE clause */
  int loopMask;        /* One bit set for each outer loop */
  int haveKey;         /* True if KEY is on the stack */
  ExprMaskSet maskSet; /* The expression mask set */
  int iDirectEq[32];   /* Term of the form ROWID==X for the N-th table */
  int iDirectLt[32];   /* Term of the form ROWID<X or ROWID<=X */
  int iDirectGt[32];   /* Term of the form ROWID>X or ROWID>=X */
  ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */

  /* pushKey is only allowed if there is a single table (as in an INSERT or
  ** UPDATE statement)
  */
  assert( pushKey==0 || pTabList->nSrc==1 );

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.  If the aExpr[]
  ** array fills up, the last entry might point to an expression which
  ** contains additional unfactored AND operators.
  */
  initMaskSet(&maskSet);
  memset(aExpr, 0, sizeof(aExpr));
  nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
  if( nExpr==ARRAYSIZE(aExpr) ){
    sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
       "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
    return 0;
  }
  
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite_malloc_failed ){
    sqliteFree(pWInfo);
    return 0;
  }
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
  pWInfo->iBreak = sqliteVdbeMakeLabel(v);

  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
    sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
    pWhere = 0;
  }

  /* Analyze all of the subexpressions.
  */
  for(i=0; i<nExpr; i++){
    exprAnalyze(&maskSet, &aExpr[i]);

    /* If we are executing a trigger body, remove all references to
    ** new.* and old.* tables from the prerequisite masks.
    */
    if( pParse->trigStack ){
      int x;
      if( (x = pParse->trigStack->newIdx) >= 0 ){
        int mask = ~getMask(&maskSet, x);
        aExpr[i].prereqRight &= mask;
        aExpr[i].prereqLeft &= mask;
        aExpr[i].prereqAll &= mask;
      }
      if( (x = pParse->trigStack->oldIdx) >= 0 ){
        int mask = ~getMask(&maskSet, x);
        aExpr[i].prereqRight &= mask;
        aExpr[i].prereqLeft &= mask;
        aExpr[i].prereqAll &= mask;
      }
    }
  }

  /* Figure out what index to use (if any) for each nested loop.
  ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
  ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
  ** loop. 
  **
  ** If terms exist that use the ROWID of any table, then set the
  ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
  ** to the index of the term containing the ROWID.  We always prefer
  ** to use a ROWID which can directly access a table rather than an
  ** index which requires reading an index first to get the rowid then
  ** doing a second read of the actual database table.
  **
  ** Actually, if there are more than 32 tables in the join, only the
  ** first 32 tables are candidates for indices.  This is (again) due
  ** to the limit of 32 bits in an integer bitmask.
  */
  loopMask = 0;
  for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
    int j;
    int iCur = pTabList->a[i].iCursor;    /* The cursor for this table */
    int mask = getMask(&maskSet, iCur);   /* Cursor mask for this table */
    Table *pTab = pTabList->a[i].pTab;
    Index *pIdx;
    Index *pBestIdx = 0;
    int bestScore = 0;

    /* Check to see if there is an expression that uses only the
    ** ROWID field of this table.  For terms of the form ROWID==expr
    ** set iDirectEq[i] to the index of the term.  For terms of the
    ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
    ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
    **
    ** (Added:) Treat ROWID IN expr like ROWID=expr.
    */
    pWInfo->a[i].iCur = -1;
    iDirectEq[i] = -1;
    iDirectLt[i] = -1;
    iDirectGt[i] = -1;
    for(j=0; j<nExpr; j++){
      if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
            && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
        switch( aExpr[j].p->op ){
          case TK_IN:
          case TK_EQ: iDirectEq[i] = j; break;
          case TK_LE:
          case TK_LT: iDirectLt[i] = j; break;
          case TK_GE:
          case TK_GT: iDirectGt[i] = j;  break;
        }
      }
      if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
            && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
        switch( aExpr[j].p->op ){
          case TK_EQ: iDirectEq[i] = j;  break;
          case TK_LE:
          case TK_LT: iDirectGt[i] = j;  break;
          case TK_GE:
          case TK_GT: iDirectLt[i] = j;  break;
        }
      }
    }
    if( iDirectEq[i]>=0 ){
      loopMask |= mask;
      pWInfo->a[i].pIdx = 0;
      continue;
    }

    /* Do a search for usable indices.  Leave pBestIdx pointing to
    ** the "best" index.  pBestIdx is left set to NULL if no indices
    ** are usable.
    **
    ** The best index is determined as follows.  For each of the
    ** left-most terms that is fixed by an equality operator, add
    ** 8 to the score.  The right-most term of the index may be
    ** constrained by an inequality.  Add 1 if for an "x<..." constraint
    ** and add 2 for an "x>..." constraint.  Chose the index that
    ** gives the best score.
    **
    ** This scoring system is designed so that the score can later be
    ** used to determine how the index is used.  If the score&7 is 0
    ** then all constraints are equalities.  If score&1 is not 0 then
    ** there is an inequality used as a termination key.  (ex: "x<...")
    ** If score&2 is not 0 then there is an inequality used as the
    ** start key.  (ex: "x>...").  A score or 4 is the special case
    ** of an IN operator constraint.  (ex:  "x IN ...").
    **
    ** The IN operator (as in "<expr> IN (...)") is treated the same as
    ** an equality comparison except that it can only be used on the
    ** left-most column of an index and other terms of the WHERE clause
    ** cannot be used in conjunction with the IN operator to help satisfy
    ** other columns of the index.
    */
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int eqMask = 0;  /* Index columns covered by an x=... term */
      int ltMask = 0;  /* Index columns covered by an x<... term */
      int gtMask = 0;  /* Index columns covered by an x>... term */
      int inMask = 0;  /* Index columns covered by an x IN .. term */
      int nEq, m, score;

      if( pIdx->nColumn>32 ) continue;  /* Ignore indices too many columns */
      for(j=0; j<nExpr; j++){
        if( aExpr[j].idxLeft==iCur 
             && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
          int iColumn = aExpr[j].p->pLeft->iColumn;
          int k;
          for(k=0; k<pIdx->nColumn; k++){
            if( pIdx->aiColumn[k]==iColumn ){
              switch( aExpr[j].p->op ){
                case TK_IN: {
                  if( k==0 ) inMask |= 1;
                  break;
                }
                case TK_EQ: {
                  eqMask |= 1<<k;
                  break;
                }
                case TK_LE:
                case TK_LT: {
                  ltMask |= 1<<k;
                  break;
                }
                case TK_GE:
                case TK_GT: {
                  gtMask |= 1<<k;
                  break;
                }
                default: {
                  /* CANT_HAPPEN */
                  assert( 0 );
                  break;
                }
              }
              break;
            }
          }
        }
        if( aExpr[j].idxRight==iCur 
             && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
          int iColumn = aExpr[j].p->pRight->iColumn;
          int k;
          for(k=0; k<pIdx->nColumn; k++){
            if( pIdx->aiColumn[k]==iColumn ){
              switch( aExpr[j].p->op ){
                case TK_EQ: {
                  eqMask |= 1<<k;
                  break;
                }
                case TK_LE:
                case TK_LT: {
                  gtMask |= 1<<k;
                  break;
                }
                case TK_GE:
                case TK_GT: {
                  ltMask |= 1<<k;
                  break;
                }
                default: {
                  /* CANT_HAPPEN */
                  assert( 0 );
                  break;
                }
              }
              break;
            }
          }
        }
      }

      /* The following loop ends with nEq set to the number of columns
      ** on the left of the index with == constraints.
      */
      for(nEq=0; nEq<pIdx->nColumn; nEq++){
        m = (1<<(nEq+1))-1;
        if( (m & eqMask)!=m ) break;
      }
      score = nEq*8;   /* Base score is 8 times number of == constraints */
      m = 1<<nEq;
      if( m & ltMask ) score++;    /* Increase score for a < constraint */
      if( m & gtMask ) score+=2;   /* Increase score for a > constraint */
      if( score==0 && inMask ) score = 4;  /* Default score for IN constraint */
      if( score>bestScore ){
        pBestIdx = pIdx;
        bestScore = score;
      }
    }
    pWInfo->a[i].pIdx = pBestIdx;
    pWInfo->a[i].score = bestScore;
    pWInfo->a[i].bRev = 0;
    loopMask |= mask;
    if( pBestIdx ){
      pWInfo->a[i].iCur = pParse->nTab++;
      pWInfo->peakNTab = pParse->nTab;
    }
  }

  /* Check to see if the ORDER BY clause is or can be satisfied by the
  ** use of an index on the first table.
  */
  if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
     Index *pSortIdx;
     Index *pIdx;
     Table *pTab;
     int bRev = 0;

     pTab = pTabList->a[0].pTab;
     pIdx = pWInfo->a[0].pIdx;
     if( pIdx && pWInfo->a[0].score==4 ){
       /* If there is already an IN index on the left-most table,
       ** it will not give the correct sort order.
       ** So, pretend that no suitable index is found.
       */
       pSortIdx = 0;
     }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
       /* If the left-most column is accessed using its ROWID, then do
       ** not try to sort by index.
       */
       pSortIdx = 0;
     }else{
       int nEqCol = (pWInfo->a[0].score+4)/8;
       pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, 
                                   *ppOrderBy, pIdx, nEqCol, &bRev);
     }
     if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
       if( pIdx==0 ){
         pWInfo->a[0].pIdx = pSortIdx;
         pWInfo->a[0].iCur = pParse->nTab++;
         pWInfo->peakNTab = pParse->nTab;
       }
       pWInfo->a[0].bRev = bRev;
       *ppOrderBy = 0;
     }
  }

  /* Open all tables in the pTabList and all indices used by those tables.
  */
  for(i=0; i<pTabList->nSrc; i++){
    Table *pTab;
    Index *pIx;

    pTab = pTabList->a[i].pTab;
    if( pTab->isTransient || pTab->pSelect ) continue;
    sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
                     pTab->zName, P3_STATIC);
    sqliteCodeVerifySchema(pParse, pTab->iDb);
    if( (pIx = pWInfo->a[i].pIdx)!=0 ){
      sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
      sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
    }
  }

  /* Generate the code to do the search
  */
  loopMask = 0;
  for(i=0; i<pTabList->nSrc; i++){
    int j, k;
    int iCur = pTabList->a[i].iCursor;
    Index *pIdx;
    WhereLevel *pLevel = &pWInfo->a[i];

    /* If this is the right table of a LEFT OUTER JOIN, allocate and
    ** initialize a memory cell that records if this table matches any
    ** row of the left table of the join.
    */
    if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
      if( !pParse->nMem ) pParse->nMem++;
      pLevel->iLeftJoin = pParse->nMem++;
      sqliteVdbeAddOp(v, OP_String, 0, 0);
      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
    }

    pIdx = pLevel->pIdx;
    pLevel->inOp = OP_Noop;
    if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
      /* Case 1:  We can directly reference a single row using an
      **          equality comparison against the ROWID field.  Or
      **          we reference multiple rows using a "rowid IN (...)"
      **          construct.
      */
      k = iDirectEq[i];
      assert( k<nExpr );
      assert( aExpr[k].p!=0 );
      assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      if( aExpr[k].idxLeft==iCur ){
        Expr *pX = aExpr[k].p;
        if( pX->op!=TK_IN ){
          sqliteExprCode(pParse, aExpr[k].p->pRight);
        }else if( pX->pList ){
          sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
          pLevel->inOp = OP_SetNext;
          pLevel->inP1 = pX->iTable;
          pLevel->inP2 = sqliteVdbeCurrentAddr(v);
        }else{
          assert( pX->pSelect );
          sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
          sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
          pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
          pLevel->inOp = OP_Next;
          pLevel->inP1 = pX->iTable;
        }
      }else{
        sqliteExprCode(pParse, aExpr[k].p->pLeft);
      }
      disableTerm(pLevel, &aExpr[k].p);
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
      haveKey = 0;
      sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
      pLevel->op = OP_Noop;
    }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
      /* Case 2:  There is an index and all terms of the WHERE clause that
      **          refer to the index use the "==" or "IN" operators.
      */
      int start;
      int testOp;
      int nColumn = (pLevel->score+4)/8;
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      for(j=0; j<nColumn; j++){
        for(k=0; k<nExpr; k++){
          Expr *pX = aExpr[k].p;
          if( pX==0 ) continue;
          if( aExpr[k].idxLeft==iCur
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && pX->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            if( pX->op==TK_EQ ){
              sqliteExprCode(pParse, pX->pRight);
              disableTerm(pLevel, &aExpr[k].p);
              break;
            }
            if( pX->op==TK_IN && nColumn==1 ){
              if( pX->pList ){
                sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
                pLevel->inOp = OP_SetNext;
                pLevel->inP1 = pX->iTable;
                pLevel->inP2 = sqliteVdbeCurrentAddr(v);
              }else{
                assert( pX->pSelect );
                sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
                sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
                pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
                pLevel->inOp = OP_Next;
                pLevel->inP1 = pX->iTable;
              }
              disableTerm(pLevel, &aExpr[k].p);
              break;
            }
          }
          if( aExpr[k].idxRight==iCur
             && aExpr[k].p->op==TK_EQ
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, aExpr[k].p->pLeft);
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
      }
      pLevel->iMem = pParse->nMem++;
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
      sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
      sqliteVdbeAddOp(v, OP_Goto, 0, brk);
      sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
      sqliteAddIdxKeyType(v, pIdx);
      if( nColumn==pIdx->nColumn || pLevel->bRev ){
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
        testOp = OP_IdxGT;
      }else{
        sqliteVdbeAddOp(v, OP_Dup, 0, 0);
        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        testOp = OP_IdxGE;
      }
      if( pLevel->bRev ){
        /* Scan in reverse order */
        sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
        pLevel->op = OP_Prev;
      }else{
        /* Scan in the forward order */
        sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
        start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
        pLevel->op = OP_Next;
      }
      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
      sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
      if( i==pTabList->nSrc-1 && pushKey ){
        haveKey = 1;
      }else{
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
        haveKey = 0;
      }
      pLevel->p1 = pLevel->iCur;
      pLevel->p2 = start;
    }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
      /* Case 3:  We have an inequality comparison against the ROWID field.
      */
      int testOp = OP_Noop;
      int start;

      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      if( iDirectGt[i]>=0 ){
        k = iDirectGt[i];
        assert( k<nExpr );
        assert( aExpr[k].p!=0 );
        assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
        if( aExpr[k].idxLeft==iCur ){
          sqliteExprCode(pParse, aExpr[k].p->pRight);
        }else{
          sqliteExprCode(pParse, aExpr[k].p->pLeft);
        }
        sqliteVdbeAddOp(v, OP_ForceInt,
          aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
        disableTerm(pLevel, &aExpr[k].p);
      }else{
        sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
      }
      if( iDirectLt[i]>=0 ){
        k = iDirectLt[i];
        assert( k<nExpr );
        assert( aExpr[k].p!=0 );
        assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
        if( aExpr[k].idxLeft==iCur ){
          sqliteExprCode(pParse, aExpr[k].p->pRight);
        }else{
          sqliteExprCode(pParse, aExpr[k].p->pLeft);
        }
        /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
        pLevel->iMem = pParse->nMem++;
        sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
          testOp = OP_Ge;
        }else{
          testOp = OP_Gt;
        }
        disableTerm(pLevel, &aExpr[k].p);
      }
      start = sqliteVdbeCurrentAddr(v);
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      if( testOp!=OP_Noop ){
        sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, testOp, 0, brk);
      }
      haveKey = 0;
    }else if( pIdx==0 ){
      /* Case 4:  There is no usable index.  We must do a complete
      **          scan of the entire database table.
      */
      int start;

      brk = pLevel->brk = sqliteVdbeMakeLabel(v);
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
      start = sqliteVdbeCurrentAddr(v);
      pLevel->op = OP_Next;
      pLevel->p1 = iCur;
      pLevel->p2 = start;
      haveKey = 0;
    }else{
      /* Case 5: The WHERE clause term that refers to the right-most
      **         column of the index is an inequality.  For example, if
      **         the index is on (x,y,z) and the WHERE clause is of the
      **         form "x=5 AND y<10" then this case is used.  Only the
      **         right-most column can be an inequality - the rest must
      **         use the "==" operator.
      **
      **         This case is also used when there are no WHERE clause
      **         constraints but an index is selected anyway, in order
      **         to force the output order to conform to an ORDER BY.
      */
      int score = pLevel->score;
      int nEqColumn = score/8;
      int start;
      int leFlag, geFlag;
      int testOp;

      /* Evaluate the equality constraints
      */
      for(j=0; j<nEqColumn; j++){
        for(k=0; k<nExpr; k++){
          if( aExpr[k].p==0 ) continue;
          if( aExpr[k].idxLeft==iCur
             && aExpr[k].p->op==TK_EQ
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, aExpr[k].p->pRight);
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
          if( aExpr[k].idxRight==iCur
             && aExpr[k].p->op==TK_EQ
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, aExpr[k].p->pLeft);
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
      }

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; j<nEqColumn; j++){
        sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
      }

      /* Labels for the beginning and end of the loop
      */
      cont = pLevel->cont = sqliteVdbeMakeLabel(v);
      brk = pLevel->brk = sqliteVdbeMakeLabel(v);

      /* Generate the termination key.  This is the key value that
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( (score & 1)!=0 ){
        for(k=0; k<nExpr; k++){
          Expr *pExpr = aExpr[k].p;
          if( pExpr==0 ) continue;
          if( aExpr[k].idxLeft==iCur
             && (pExpr->op==TK_LT || pExpr->op==TK_LE)
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pRight);
            leFlag = pExpr->op==TK_LE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
          if( aExpr[k].idxRight==iCur
             && (pExpr->op==TK_GT || pExpr->op==TK_GE)
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && pExpr->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pLeft);
            leFlag = pExpr->op==TK_GE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
        testOp = OP_IdxGE;
      }else{
        testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
        leFlag = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEqColumn + (score & 1);
        pLevel->iMem = pParse->nMem++;
        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
        sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, brk);
        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
        sqliteAddIdxKeyType(v, pIdx);
        if( leFlag ){
          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        }
        if( pLevel->bRev ){
          sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
        }else{
          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( pLevel->bRev ){
        sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( (score & 2)!=0 ){
        for(k=0; k<nExpr; k++){
          Expr *pExpr = aExpr[k].p;
          if( pExpr==0 ) continue;
          if( aExpr[k].idxLeft==iCur
             && (pExpr->op==TK_GT || pExpr->op==TK_GE)
             && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight 
             && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pRight);
            geFlag = pExpr->op==TK_GE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
          if( aExpr[k].idxRight==iCur
             && (pExpr->op==TK_LT || pExpr->op==TK_LE)
             && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
             && pExpr->pRight->iColumn==pIdx->aiColumn[j]
          ){
            sqliteExprCode(pParse, pExpr->pLeft);
            geFlag = pExpr->op==TK_LE;
            disableTerm(pLevel, &aExpr[k].p);
            break;
          }
        }
      }else{
        geFlag = 1;
      }
      if( nEqColumn>0 || (score&2)!=0 ){
        int nCol = nEqColumn + ((score&2)!=0);
        sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
        sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
        sqliteVdbeAddOp(v, OP_Goto, 0, brk);
        sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
        sqliteAddIdxKeyType(v, pIdx);
        if( !geFlag ){
          sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
        }
        if( pLevel->bRev ){
          pLevel->iMem = pParse->nMem++;
          sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
        }
      }else if( pLevel->bRev ){
        testOp = OP_Noop;
      }else{
        sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqliteVdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
      }
      sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
      sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
      sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
      if( i==pTabList->nSrc-1 && pushKey ){
        haveKey = 1;
      }else{
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
        haveKey = 0;
      }

      /* Record the instruction used to terminate the loop.
      */
      pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
      pLevel->p1 = pLevel->iCur;
      pLevel->p2 = start;
    }
    loopMask |= getMask(&maskSet, iCur);

    /* Insert code to test every subexpression that can be completely
    ** computed using the current set of tables.
    */
    for(j=0; j<nExpr; j++){
      if( aExpr[j].p==0 ) continue;
      if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
      if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
        continue;
      }
      if( haveKey ){
        haveKey = 0;
        sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
      }
      sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
      aExpr[j].p = 0;
    }
    brk = cont;

    /* For a LEFT OUTER JOIN, generate code that will record the fact that
    ** at least one row of the right table has matched the left table.  
    */
    if( pLevel->iLeftJoin ){
      pLevel->top = sqliteVdbeCurrentAddr(v);
      sqliteVdbeAddOp(v, OP_Integer, 1, 0);
      sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
      for(j=0; j<nExpr; j++){
        if( aExpr[j].p==0 ) continue;
        if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
        if( haveKey ){
          /* Cannot happen.  "haveKey" can only be true if pushKey is true
          ** an pushKey can only be true for DELETE and UPDATE and there are
          ** no outer joins with DELETE and UPDATE.
          */
          haveKey = 0;
          sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
        }
        sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
        aExpr[j].p = 0;
      }
    }
  }
  pWInfo->iContinue = cont;
  if( pushKey && !haveKey ){
    sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
  }
  freeMaskSet(&maskSet);
  return pWInfo;
}
Beispiel #19
0
/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
**   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
**   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
**   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it did not originate
** in the ON clause.  The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join.  Disabling is an optimization.  We would get the correct
** results if nothing were ever disabled, but joins might run a little
** slower.  The trick is to disable as much as we can without disabling
** too much.  If we disabled in (1), we'd get the wrong answer.
** See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
  Expr *pExpr = *ppExpr;
  if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
    *ppExpr = 0;
  }
}
Beispiel #20
0
/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
** the tree or 2 to abort the tree walk.
**
** This routine also does error checking and name resolution for
** function names.  The operator for aggregate functions is changed
** to TK_AGG_FUNCTION.
*/
static int resolveExprStep(Walker *pWalker, Expr *pExpr){
  NameContext *pNC;
  Parse *pParse;

  pNC = pWalker->u.pNC;
  assert( pNC!=0 );
  pParse = pNC->pParse;
  assert( pParse==pWalker->pParse );

  if( ExprHasProperty(pExpr, EP_Resolved) ) return WRC_Prune;
  ExprSetProperty(pExpr, EP_Resolved);
#ifndef NDEBUG
  if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
    SrcList *pSrcList = pNC->pSrcList;
    int i;
    for(i=0; i<pNC->pSrcList->nSrc; i++){
      assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
    }
  }
#endif
  switch( pExpr->op ){

#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
    /* The special operator TK_ROW means use the rowid for the first
    ** column in the FROM clause.  This is used by the LIMIT and ORDER BY
    ** clause processing on UPDATE and DELETE statements.
    */
    case TK_ROW: {
      SrcList *pSrcList = pNC->pSrcList;
      struct SrcList_item *pItem;
      assert( pSrcList && pSrcList->nSrc==1 );
      pItem = pSrcList->a; 
      pExpr->op = TK_COLUMN;
      pExpr->pTab = pItem->pTab;
      pExpr->iTable = pItem->iCursor;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
      break;
    }
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */

    /* A lone identifier is the name of a column.
    */
    case TK_ID: {
      return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
    }
  
    /* A table name and column name:     ID.ID
    ** Or a database, table and column:  ID.ID.ID
    */
    case TK_DOT: {
      const char *zColumn;
      const char *zTable;
      const char *zDb;
      Expr *pRight;

      /* if( pSrcList==0 ) break; */
      pRight = pExpr->pRight;
      if( pRight->op==TK_ID ){
        zDb = 0;
        zTable = pExpr->pLeft->u.zToken;
        zColumn = pRight->u.zToken;
      }else{
        assert( pRight->op==TK_DOT );
        zDb = pExpr->pLeft->u.zToken;
        zTable = pRight->pLeft->u.zToken;
        zColumn = pRight->pRight->u.zToken;
      }
      return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
    }

    /* Resolve function names
    */
    case TK_FUNCTION: {
      ExprList *pList = pExpr->x.pList;    /* The argument list */
      int n = pList ? pList->nExpr : 0;    /* Number of arguments */
      int no_such_func = 0;       /* True if no such function exists */
      int wrong_num_args = 0;     /* True if wrong number of arguments */
      int is_agg = 0;             /* True if is an aggregate function */
      int auth;                   /* Authorization to use the function */
      int nId;                    /* Number of characters in function name */
      const char *zId;            /* The function name. */
      FuncDef *pDef;              /* Information about the function */
      u8 enc = ENC(pParse->db);   /* The database encoding */

      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      notValidPartIdxWhere(pParse, pNC, "functions");
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
        if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
          ExprSetProperty(pExpr, EP_Unlikely|EP_Skip);
          if( n==2 ){
            pExpr->iTable = exprProbability(pList->a[1].pExpr);
            if( pExpr->iTable<0 ){
              sqlite3ErrorMsg(pParse, "second argument to likelihood() must be a "
                                      "constant between 0.0 and 1.0");
              pNC->nErr++;
            }
          }else{
            /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is equivalent to
            ** likelihood(X, 0.0625).
            ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for
            ** likelihood(X,0.0625). */
            pExpr->iTable = 62;  /* TUNING:  Default 2nd arg to unlikely() is 0.0625 */
          }             
        }
      }
#ifndef SQLITE_OMIT_AUTHORIZATION
      if( pDef ){
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }
        if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant);
      }
#endif
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
      if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg;
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ){
        NameContext *pNC2 = pNC;
        pExpr->op = TK_AGG_FUNCTION;
        pExpr->op2 = 0;
        while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){
          pExpr->op2++;
          pNC2 = pNC2->pNext;
        }
        if( pNC2 ) pNC2->ncFlags |= NC_HasAgg;
        pNC->ncFlags |= NC_AllowAgg;
      }
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:  testcase( pExpr->op==TK_EXISTS );
#endif
    case TK_IN: {
      testcase( pExpr->op==TK_IN );
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        int nRef = pNC->nRef;
        notValidCheckConstraint(pParse, pNC, "subqueries");
        notValidPartIdxWhere(pParse, pNC, "subqueries");
        sqlite3WalkSelect(pWalker, pExpr->x.pSelect);
        assert( pNC->nRef>=nRef );
        if( nRef!=pNC->nRef ){
          ExprSetProperty(pExpr, EP_VarSelect);
        }
      }
      break;
    }
    case TK_VARIABLE: {
      notValidCheckConstraint(pParse, pNC, "parameters");
      notValidPartIdxWhere(pParse, pNC, "parameters");
      break;
    }
  }
  return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue;
}
Beispiel #21
0
/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr 
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database X
**                         (even if X is implied).
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->pTab          Points to the Table structure of X.Y (even if
**                         X and/or Y are implied.)
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The zDb variable is the name of the database (the "X").  This value may be
** NULL meaning that name is of the form Y.Z or Z.  Any available database
** can be used.  The zTable variable is the name of the table (the "Y").  This
** value can be NULL if zDb is also NULL.  If zTable is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return WRC_Abort.  Return WRC_Prune on success.
*/
static int lookupName(
  Parse *pParse,       /* The parsing context */
  const char *zDb,     /* Name of the database containing table, or NULL */
  const char *zTab,    /* Name of table containing column, or NULL */
  const char *zCol,    /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  int i, j;                         /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */
  int nSubquery = 0;                /* How many levels of subquery */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int isTrigger = 0;                /* True if resolved to a trigger column */
  Table *pTab = 0;                  /* Table hold the row */
  Column *pCol;                     /* A column of pTab */

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetVVAProperty(pExpr, EP_NoReduce);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
    testcase( pNC->ncFlags & NC_PartIdx );
    testcase( pNC->ncFlags & NC_IsCheck );
    if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
      /* Silently ignore database qualifiers inside CHECK constraints and partial
      ** indices.  Do not raise errors because that might break legacy and
      ** because it does not hurt anything to just ignore the database name. */
      zDb = 0;
    }else{
      for(i=0; i<db->nDb; i++){
        assert( db->aDb[i].zName );
        if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
          pSchema = db->aDb[i].pSchema;
          break;
        }
      }
    }
  }

  /* Start at the inner-most context and move outward until a match is found */
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        pTab = pItem->pTab;
        assert( pTab!=0 && pTab->zName!=0 );
        assert( pTab->nCol>0 );
        if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){
          int hit = 0;
          pEList = pItem->pSelect->pEList;
          for(j=0; j<pEList->nExpr; j++){
            if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){
              cnt++;
              cntTab = 2;
              pMatch = pItem;
              pExpr->iColumn = j;
              hit = 1;
            }
          }
          if( hit || zTab==0 ) continue;
        }
        if( zDb && pTab->pSchema!=pSchema ){
          continue;
        }
        if( zTab ){
          const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
          assert( zTabName!=0 );
          if( sqlite3StrICmp(zTabName, zTab)!=0 ){
            continue;
          }
        }
        if( 0==(cntTab++) ){
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            /* If there has been exactly one prior match and this match
            ** is for the right-hand table of a NATURAL JOIN or is in a 
            ** USING clause, then skip this match.
            */
            if( cnt==1 ){
              if( pItem->jointype & JT_NATURAL ) continue;
              if( nameInUsingClause(pItem->pUsing, zCol) ) continue;
            }
            cnt++;
            pMatch = pItem;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
    */
    if( zDb==0 && zTab!=0 && cntTab==0 && pParse->pTriggerTab!=0 ){
      int op = pParse->eTriggerOp;
      assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT );
      if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){
        pExpr->iTable = 1;
        pTab = pParse->pTriggerTab;
      }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){
        pExpr->iTable = 0;
        pTab = pParse->pTriggerTab;
      }else{
        pTab = 0;
      }

      if( pTab ){ 
        int iCol;
        pSchema = pTab->pSchema;
        cntTab++;
        for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            if( iCol==pTab->iPKey ){
              iCol = -1;
            }
            break;
          }
        }
        if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && HasRowid(pTab) ){
          /* IMP: R-24309-18625 */
          /* IMP: R-44911-55124 */
          iCol = -1;
        }
        if( iCol<pTab->nCol ){
          cnt++;
          if( iCol<0 ){
            pExpr->affinity = SQLITE_AFF_INTEGER;
          }else if( pExpr->iTable==0 ){
            testcase( iCol==31 );
            testcase( iCol==32 );
            pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }else{
            testcase( iCol==31 );
            testcase( iCol==32 );
            pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
          }
          pExpr->iColumn = (i16)iCol;
          pExpr->pTab = pTab;
          isTrigger = 1;
        }
      }
    }
#endif /* !defined(SQLITE_OMIT_TRIGGER) */

    /*
    ** Perhaps the name is a reference to the ROWID
    */
    if( cnt==0 && cntTab==1 && pMatch && sqlite3IsRowid(zCol)
     && HasRowid(pMatch->pTab) ){
      cnt = 1;
      pExpr->iColumn = -1;     /* IMP: R-44911-55124 */
      pExpr->affinity = SQLITE_AFF_INTEGER;
    }

    /*
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
    ** might refer to an result-set alias.  This happens, for example, when
    ** we are resolving names in the WHERE clause of the following command:
    **
    **     SELECT a+b AS x FROM table WHERE x<10;
    **
    ** In cases like this, replace pExpr with a copy of the expression that
    ** forms the result set entry ("a+b" in the example) and return immediately.
    ** Note that the expression in the result set should have already been
    ** resolved by the time the WHERE clause is resolved.
    **
    ** The ability to use an output result-set column in the WHERE, GROUP BY,
    ** or HAVING clauses, or as part of a larger expression in the ORDRE BY
    ** clause is not standard SQL.  This is a (goofy) SQLite extension, that
    ** is supported for backwards compatibility only.  TO DO: Issue a warning
    ** on sqlite3_log() whenever the capability is used.
    */
    if( (pEList = pNC->pEList)!=0
     && zTab==0
     && cnt==0
    ){
      for(j=0; j<pEList->nExpr; j++){
        char *zAs = pEList->a[j].zName;
        if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
          Expr *pOrig;
          assert( pExpr->pLeft==0 && pExpr->pRight==0 );
          assert( pExpr->x.pList==0 );
          assert( pExpr->x.pSelect==0 );
          pOrig = pEList->a[j].pExpr;
          if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
            return WRC_Abort;
          }
          resolveAlias(pParse, pEList, j, pExpr, "", nSubquery);
          cnt = 1;
          pMatch = 0;
          assert( zTab==0 && zDb==0 );
          goto lookupname_end;
        }
      } 
    }

    /* Advance to the next name context.  The loop will exit when either
    ** we have a match (cnt>0) or when we run out of name contexts.
    */
    if( cnt==0 ){
      pNC = pNC->pNext;
      nSubquery++;
    }
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that
  ** case, we need to return right away and not make any changes to
  ** pExpr.
  **
  ** Because no reference was made to outer contexts, the pNC->nRef
  ** fields are not changed in any context.
  */
  if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){
    pExpr->op = TK_STRING;
    pExpr->pTab = 0;
    return WRC_Prune;
  }

  /*
  ** cnt==0 means there was not match.  cnt>1 means there were two or
  ** more matches.  Either way, we have an error.
  */
  if( cnt!=1 ){
    const char *zErr;
    zErr = cnt==0 ? "no such column" : "ambiguous column name";
    if( zDb ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
    }else if( zTab ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
    }
    pParse->checkSchema = 1;
    pTopNC->nErr++;
  }

  /* If a column from a table in pSrcList is referenced, then record
  ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
  ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
  ** column number is greater than the number of bits in the bitmask
  ** then set the high-order bit of the bitmask.
  */
  if( pExpr->iColumn>=0 && pMatch!=0 ){
    int n = pExpr->iColumn;
    testcase( n==BMS-1 );
    if( n>=BMS ){
      n = BMS-1;
    }
    assert( pMatch->iCursor==pExpr->iTable );
    pMatch->colUsed |= ((Bitmask)1)<<n;
  }

  /* Clean up and return
  */
  sqlite3ExprDelete(db, pExpr->pLeft);
  pExpr->pLeft = 0;
  sqlite3ExprDelete(db, pExpr->pRight);
  pExpr->pRight = 0;
  pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN);
lookupname_end:
  if( cnt==1 ){
    assert( pNC!=0 );
    if( pExpr->op!=TK_AS ){
      sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
    }
    /* Increment the nRef value on all name contexts from TopNC up to
    ** the point where the name matched. */
    for(;;){
      assert( pTopNC!=0 );
      pTopNC->nRef++;
      if( pTopNC==pNC ) break;
      pTopNC = pTopNC->pNext;
    }
    return WRC_Prune;
  } else {
    return WRC_Abort;
  }
}