Beispiel #1
0
NTSTATUS
DriverEntry(
    IN PDRIVER_OBJECT DriverObject,
    IN PUNICODE_STRING RegistryPath
    )

/*++

Routine Description:

    This is the initialization routine for the Fat file system
    device driver.  This routine creates the device object for the FileSystem
    device and performs all other driver initialization.

Arguments:

    DriverObject - Pointer to driver object created by the system.

Return Value:

    NTSTATUS - The function value is the final status from the initialization
        operation.

--*/

{
    USHORT MaxDepth;
    NTSTATUS Status;
    UNICODE_STRING UnicodeString;
    FS_FILTER_CALLBACKS FilterCallbacks;
    UNICODE_STRING ValueName;
    ULONG Value;

#if __NDAS_FAT__
	UNICODE_STRING	linkString;
	UNICODE_STRING	functionName;
	UNICODE_STRING	tempUnicode;
#endif

#if DBG
	DbgPrint( "NdasFat DriverEntry %s %s\n", __DATE__, __TIME__ );
#endif

#if __NDAS_FAT_DBG__

	FatDebugTraceLevel |= DEBUG_TRACE_ERROR;
	FatDebugTraceLevel |= DEBUG_TRACE_CLEANUP;
	FatDebugTraceLevel |= DEBUG_TRACE_CLOSE;
	FatDebugTraceLevel |= DEBUG_TRACE_CREATE;
	FatDebugTraceLevel |= DEBUG_TRACE_DIRCTRL;
	FatDebugTraceLevel |= DEBUG_TRACE_EA;
	FatDebugTraceLevel |= DEBUG_TRACE_FILEINFO;
	FatDebugTraceLevel |= DEBUG_TRACE_FSCTRL;
	FatDebugTraceLevel |= DEBUG_TRACE_LOCKCTRL;
	FatDebugTraceLevel |= DEBUG_TRACE_READ;
	FatDebugTraceLevel |= DEBUG_TRACE_VOLINFO;
	FatDebugTraceLevel |= DEBUG_TRACE_WRITE;
	FatDebugTraceLevel |= DEBUG_TRACE_DEVCTRL;
	FatDebugTraceLevel |= DEBUG_TRACE_FLUSH;
	FatDebugTraceLevel |= DEBUG_TRACE_PNP;
	FatDebugTraceLevel |= DEBUG_TRACE_SHUTDOWN;
	
	FatDebugTraceLevel = 0x00000009;

	//FatDebugTraceLevel |= DEBUG_TRACE_FSCTRL;
	//FatDebugTraceLevel |= DEBUG_INFO_DEVCTRL;
	FatDebugTraceLevel |= DEBUG_INFO_FSCTRL;
	FatDebugTraceLevel |= DEBUG_INFO_READ;
	FatDebugTraceLevel |= DEBUG_INFO_SECONDARY;
	//FatDebugTraceLevel |= DEBUG_INFO_PRIMARY;
	FatDebugTraceLevel |= DEBUG_INFO_FILOBSUP;
	FatDebugTraceLevel |= DEBUG_TRACE_PNP;
	FatDebugTraceLevel |= DEBUG_TRACE_SHUTDOWN;
	FatDebugTraceLevel |= DEBUG_INFO_FILEINFO;
	FatDebugTraceLevel |= DEBUG_INFO_CREATE;
	FatDebugTraceLevel |= DEBUG_INFO_STRUCSUP;
	FatDebugTraceLevel |= DEBUG_INFO_CLEANUP;
	FatDebugTraceLevel |= DEBUG_INFO_CLOSE;
	FatDebugTraceLevel |= DEBUG_INFO_ALL;
	FatDebugTraceLevel |= DEBUG_INFO_WRITE;
	//FatDebugTraceLevel |= DEBUG_TRACE_WRITE;
	FatDebugTraceLevel &= ~DEBUG_TRACE_UNWIND;
	//FatDebugTraceLevel = 0xFFFFFFFFFFFFFFFF;
	//FatDebugTraceLevel |= DEBUG_TRACE_STRUCSUP;
	FatDebugTraceLevel |= DEBUG_INFO_FILEINFO;
	//FatDebugTraceLevel |= DEBUG_TRACE_FILEINFO;

	DebugTrace2( 0, DEBUG_INFO_ALL, ("sizeof(NDFS_WINXP_REPLY_HEADER) = %d\n", sizeof(NDFS_WINXP_REPLY_HEADER)) );

#endif

#if __NDAS_FAT_WIN2K_SUPPORT__

	PsGetVersion( &gOsMajorVersion,
                  &gOsMinorVersion,
                  NULL,
                  NULL );

	RtlInitUnicodeString( &functionName, L"SeFilterToken" );
	NdasFatSeFilterToken = MmGetSystemRoutineAddress( &functionName );

	if (IS_WINDOWSXP_OR_LATER()) { // to prevent incomprehensible error
	
		RtlInitUnicodeString( &functionName, L"CcMdlWriteAbort" ); 
		NdasFatCcMdlWriteAbort = MmGetSystemRoutineAddress( &functionName );
	}

	RtlInitUnicodeString( &functionName, L"KeAreApcsDisabled" );
	NdasFatKeAreApcsDisabled = MmGetSystemRoutineAddress( &functionName );

	RtlInitUnicodeString( &functionName, L"KeAreAllApcsDisabled" );
	NdasFatKeAreAllApcsDisabled = MmGetSystemRoutineAddress( &functionName );

	RtlInitUnicodeString( &functionName, L"FsRtlRegisterFileSystemFilterCallbacks" );
	NdasFatFsRtlRegisterFileSystemFilterCallbacks = MmGetSystemRoutineAddress( &functionName );

	RtlInitUnicodeString( &functionName, L"FsRtlAreVolumeStartupApplicationsComplete" );
	NdasFatFsRtlAreVolumeStartupApplicationsComplete = MmGetSystemRoutineAddress( &functionName );
	
	RtlInitUnicodeString( &functionName, L"MmDoesFileHaveUserWritableReferences" );
	NdasFatMmDoesFileHaveUserWritableReferences = MmGetSystemRoutineAddress( &functionName );

#endif

#if __NDAS_FAT__
	
    RtlInitUnicodeString( &UnicodeString, NDAS_FAT_CONTROL_DEVICE_NAME );

    Status = IoCreateDevice( DriverObject,
                             0,                 //  has no device extension
                             &UnicodeString,
                             FILE_DEVICE_NULL,
                             0,
                             FALSE,
                             &FatControlDeviceObject );

	if (!NT_SUCCESS( Status )) {

		return Status;
	}

    RtlInitUnicodeString( &linkString, NDAS_FAT_CONTROL_LINK_NAME );
    Status = IoCreateSymbolicLink( &linkString, &UnicodeString );

    if (!NT_SUCCESS(Status)) {
		
        IoDeleteDevice( FatControlDeviceObject );
	    return Status;
    }

#endif

#if __NDAS_FAT__

    RtlInitUnicodeString( &UnicodeString, NDAS_FAT_DEVICE_NAME );

    Status = IoCreateDevice( DriverObject,
                             sizeof(VOLUME_DEVICE_OBJECT) - sizeof(DEVICE_OBJECT),
                             &UnicodeString,
                             FILE_DEVICE_DISK_FILE_SYSTEM,
                             0,
                             FALSE,
                             &FatDiskFileSystemDeviceObject );

	if (!NT_SUCCESS(Status)) {
		
        IoDeleteSymbolicLink( &linkString );
        IoDeleteDevice( FatControlDeviceObject );
	    return Status;
    }

	RtlZeroMemory( (PUCHAR)FatDiskFileSystemDeviceObject+sizeof(DEVICE_OBJECT), 
				   sizeof(VOLUME_DEVICE_OBJECT)-sizeof(DEVICE_OBJECT) );

#else

    //
    // Create the device object for disks.  To avoid problems with filters who
    // know this name, we must keep it.
    //

    RtlInitUnicodeString( &UnicodeString, L"\\Fat" );
    Status = IoCreateDevice( DriverObject,
                             0,
                             &UnicodeString,
                             FILE_DEVICE_DISK_FILE_SYSTEM,
                             0,
                             FALSE,
                             &FatDiskFileSystemDeviceObject );

    if (!NT_SUCCESS( Status )) {
        return Status;
    }

#endif

#if !__NDAS_FAT__

    //
    // Create the device object for "cdroms".
    //

    RtlInitUnicodeString( &UnicodeString, L"\\FatCdrom" );
    Status = IoCreateDevice( DriverObject,
                             0,
                             &UnicodeString,
                             FILE_DEVICE_CD_ROM_FILE_SYSTEM,
                             0,
                             FALSE,
                             &FatCdromFileSystemDeviceObject );

    if (!NT_SUCCESS( Status )) {
        IoDeleteDevice( FatDiskFileSystemDeviceObject);
        return Status;
    }

#endif

    DriverObject->DriverUnload = FatUnload;

    //
    //  Note that because of the way data caching is done, we set neither
    //  the Direct I/O or Buffered I/O bit in DeviceObject->Flags.  If
    //  data is not in the cache, or the request is not buffered, we may,
    //  set up for Direct I/O by hand.
    //

    //
    // Initialize the driver object with this driver's entry points.
    //

    DriverObject->MajorFunction[IRP_MJ_CREATE]                   = (PDRIVER_DISPATCH)FatFsdCreate;
    DriverObject->MajorFunction[IRP_MJ_CLOSE]                    = (PDRIVER_DISPATCH)FatFsdClose;
    DriverObject->MajorFunction[IRP_MJ_READ]                     = (PDRIVER_DISPATCH)FatFsdRead;
    DriverObject->MajorFunction[IRP_MJ_WRITE]                    = (PDRIVER_DISPATCH)FatFsdWrite;
    DriverObject->MajorFunction[IRP_MJ_QUERY_INFORMATION]        = (PDRIVER_DISPATCH)FatFsdQueryInformation;
    DriverObject->MajorFunction[IRP_MJ_SET_INFORMATION]          = (PDRIVER_DISPATCH)FatFsdSetInformation;
    DriverObject->MajorFunction[IRP_MJ_QUERY_EA]                 = (PDRIVER_DISPATCH)FatFsdQueryEa;
    DriverObject->MajorFunction[IRP_MJ_SET_EA]                   = (PDRIVER_DISPATCH)FatFsdSetEa;
    DriverObject->MajorFunction[IRP_MJ_FLUSH_BUFFERS]            = (PDRIVER_DISPATCH)FatFsdFlushBuffers;
    DriverObject->MajorFunction[IRP_MJ_QUERY_VOLUME_INFORMATION] = (PDRIVER_DISPATCH)FatFsdQueryVolumeInformation;
    DriverObject->MajorFunction[IRP_MJ_SET_VOLUME_INFORMATION]   = (PDRIVER_DISPATCH)FatFsdSetVolumeInformation;
    DriverObject->MajorFunction[IRP_MJ_CLEANUP]                  = (PDRIVER_DISPATCH)FatFsdCleanup;
    DriverObject->MajorFunction[IRP_MJ_DIRECTORY_CONTROL]        = (PDRIVER_DISPATCH)FatFsdDirectoryControl;
    DriverObject->MajorFunction[IRP_MJ_FILE_SYSTEM_CONTROL]      = (PDRIVER_DISPATCH)FatFsdFileSystemControl;
    DriverObject->MajorFunction[IRP_MJ_LOCK_CONTROL]             = (PDRIVER_DISPATCH)FatFsdLockControl;
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL]           = (PDRIVER_DISPATCH)FatFsdDeviceControl;
    DriverObject->MajorFunction[IRP_MJ_SHUTDOWN]                 = (PDRIVER_DISPATCH)FatFsdShutdown;
    DriverObject->MajorFunction[IRP_MJ_PNP]                      = (PDRIVER_DISPATCH)FatFsdPnp;

    DriverObject->FastIoDispatch = &FatFastIoDispatch;

    RtlZeroMemory(&FatFastIoDispatch, sizeof(FatFastIoDispatch));

    FatFastIoDispatch.SizeOfFastIoDispatch =    sizeof(FAST_IO_DISPATCH);
    FatFastIoDispatch.FastIoCheckIfPossible =   FatFastIoCheckIfPossible;  //  CheckForFastIo
    FatFastIoDispatch.FastIoRead =              FsRtlCopyRead;             //  Read
    FatFastIoDispatch.FastIoWrite =             FsRtlCopyWrite;            //  Write
    FatFastIoDispatch.FastIoQueryBasicInfo =    FatFastQueryBasicInfo;     //  QueryBasicInfo
    FatFastIoDispatch.FastIoQueryStandardInfo = FatFastQueryStdInfo;       //  QueryStandardInfo
    FatFastIoDispatch.FastIoLock =              FatFastLock;               //  Lock
    FatFastIoDispatch.FastIoUnlockSingle =      FatFastUnlockSingle;       //  UnlockSingle
    FatFastIoDispatch.FastIoUnlockAll =         FatFastUnlockAll;          //  UnlockAll
    FatFastIoDispatch.FastIoUnlockAllByKey =    FatFastUnlockAllByKey;     //  UnlockAllByKey
    FatFastIoDispatch.FastIoQueryNetworkOpenInfo = FatFastQueryNetworkOpenInfo;
    FatFastIoDispatch.AcquireForCcFlush =       FatAcquireForCcFlush;
    FatFastIoDispatch.ReleaseForCcFlush =       FatReleaseForCcFlush;
    FatFastIoDispatch.MdlRead =                 FsRtlMdlReadDev;
    FatFastIoDispatch.MdlReadComplete =         FsRtlMdlReadCompleteDev;
    FatFastIoDispatch.PrepareMdlWrite =         FsRtlPrepareMdlWriteDev;
    FatFastIoDispatch.MdlWriteComplete =        FsRtlMdlWriteCompleteDev;
    
#if __NDAS_FAT_SECONDARY__

	RtlZeroMemory(&FatFastIoDispatch, sizeof(FAST_IO_DISPATCH));
	FatFastIoDispatch.SizeOfFastIoDispatch			 =	sizeof(FAST_IO_DISPATCH);

	//FatFastIoDispatch.FastIoCheckIfPossible			=	FatFastIoCheckIfPossible;  //  CheckForFastIo
	//FatFastIoDispatch.AcquireForModWrite				=	FatAcquireFileForModWrite;
	//FatFastIoDispatch.AcquireFileForNtCreateSection	=  FatAcquireForCreateSection;
	//FatFastIoDispatch.ReleaseFileForNtCreateSection	=  FatReleaseForCreateSection;

	FatFastIoDispatch.AcquireForCcFlush				=  FatAcquireForCcFlush;
	FatFastIoDispatch.ReleaseForCcFlush				=  FatReleaseForCcFlush;

#endif

    //
    //  Initialize the filter callbacks we use.
    //

#if __NDAS_FAT__

	if (IS_WINDOWSVISTA_OR_LATER()) {

#if __NDAS_FAT_WIN2K_SUPPORT__

	if (NdasFatFsRtlRegisterFileSystemFilterCallbacks) {

		RtlZeroMemory( &FilterCallbacks,
		               sizeof(FS_FILTER_CALLBACKS) );

		FilterCallbacks.SizeOfFsFilterCallbacks = sizeof(FS_FILTER_CALLBACKS);

		FilterCallbacks.PreAcquireForSectionSynchronization = FatFilterCallbackAcquireForCreateSection;

	    Status = NdasFatFsRtlRegisterFileSystemFilterCallbacks( DriverObject,
															  &FilterCallbacks );

	    if (!NT_SUCCESS( Status )) {

		    IoDeleteDevice( FatDiskFileSystemDeviceObject );
			IoDeleteDevice( FatCdromFileSystemDeviceObject );
			return Status;
		}
	}

#else

    RtlZeroMemory( &FilterCallbacks,
                   sizeof(FS_FILTER_CALLBACKS) );

    FilterCallbacks.SizeOfFsFilterCallbacks = sizeof(FS_FILTER_CALLBACKS);
    FilterCallbacks.PreAcquireForSectionSynchronization = FatFilterCallbackAcquireForCreateSection;

    Status = FsRtlRegisterFileSystemFilterCallbacks( DriverObject,
                                                     &FilterCallbacks );

    if (!NT_SUCCESS( Status )) {

        IoDeleteDevice( FatDiskFileSystemDeviceObject );
        IoDeleteDevice( FatCdromFileSystemDeviceObject );
        return Status;
    }

#endif

	}

#endif

    //
    //  Initialize the global data structures
    //

    //
    //  The FatData record
    //

    RtlZeroMemory( &FatData, sizeof(FAT_DATA));

    FatData.NodeTypeCode = FAT_NTC_DATA_HEADER;
    FatData.NodeByteSize = sizeof(FAT_DATA);

    InitializeListHead(&FatData.VcbQueue);

    FatData.DriverObject = DriverObject;
    FatData.DiskFileSystemDeviceObject = FatDiskFileSystemDeviceObject;
    FatData.CdromFileSystemDeviceObject = FatCdromFileSystemDeviceObject;

    //
    //  This list head keeps track of closes yet to be done.
    //

    InitializeListHead( &FatData.AsyncCloseList );
    InitializeListHead( &FatData.DelayedCloseList );
    
    FatData.FatCloseItem = IoAllocateWorkItem( FatDiskFileSystemDeviceObject);

    if (FatData.FatCloseItem == NULL) {
        IoDeleteDevice (FatDiskFileSystemDeviceObject);
#if __NDAS_FAT__
		if (FatCdromFileSystemDeviceObject)
#endif
        IoDeleteDevice (FatCdromFileSystemDeviceObject);
        return STATUS_INSUFFICIENT_RESOURCES;
    }

    //
    //  Now initialize our general purpose spinlock (gag) and figure out how
    //  deep and wide we want our delayed lists (along with fooling ourselves
    //  about the lookaside depths).
    //

    KeInitializeSpinLock( &FatData.GeneralSpinLock );

    switch ( MmQuerySystemSize() ) {

    case MmSmallSystem:

        MaxDepth = 4;
        FatMaxDelayedCloseCount = FAT_MAX_DELAYED_CLOSES;
        break;

    case MmMediumSystem:

        MaxDepth = 8;
        FatMaxDelayedCloseCount = 4 * FAT_MAX_DELAYED_CLOSES;
        break;

    case MmLargeSystem:

        MaxDepth = 16;
        FatMaxDelayedCloseCount = 16 * FAT_MAX_DELAYED_CLOSES;
        break;
    }


    //
    //  Initialize the cache manager callback routines
    //

    FatData.CacheManagerCallbacks.AcquireForLazyWrite  = &FatAcquireFcbForLazyWrite;
    FatData.CacheManagerCallbacks.ReleaseFromLazyWrite = &FatReleaseFcbFromLazyWrite;
    FatData.CacheManagerCallbacks.AcquireForReadAhead  = &FatAcquireFcbForReadAhead;
    FatData.CacheManagerCallbacks.ReleaseFromReadAhead = &FatReleaseFcbFromReadAhead;

    FatData.CacheManagerNoOpCallbacks.AcquireForLazyWrite  = &FatNoOpAcquire;
    FatData.CacheManagerNoOpCallbacks.ReleaseFromLazyWrite = &FatNoOpRelease;
    FatData.CacheManagerNoOpCallbacks.AcquireForReadAhead  = &FatNoOpAcquire;
    FatData.CacheManagerNoOpCallbacks.ReleaseFromReadAhead = &FatNoOpRelease;

    //
    //  Set up global pointer to our process.
    //

    FatData.OurProcess = PsGetCurrentProcess();

    //
    //  Read the registry to determine if we are in ChicagoMode.
    //

    ValueName.Buffer = COMPATIBILITY_MODE_VALUE_NAME;
    ValueName.Length = sizeof(COMPATIBILITY_MODE_VALUE_NAME) - sizeof(WCHAR);
    ValueName.MaximumLength = sizeof(COMPATIBILITY_MODE_VALUE_NAME);

    Status = FatGetCompatibilityModeValue( &ValueName, &Value );

    if (NT_SUCCESS(Status) && FlagOn(Value, 1)) {

        FatData.ChicagoMode = FALSE;

    } else {

        FatData.ChicagoMode = TRUE;
    }

    //
    //  Read the registry to determine if we are going to generate LFNs
    //  for valid 8.3 names with extended characters.
    //

    ValueName.Buffer = CODE_PAGE_INVARIANCE_VALUE_NAME;
    ValueName.Length = sizeof(CODE_PAGE_INVARIANCE_VALUE_NAME) - sizeof(WCHAR);
    ValueName.MaximumLength = sizeof(CODE_PAGE_INVARIANCE_VALUE_NAME);

    Status = FatGetCompatibilityModeValue( &ValueName, &Value );

    if (NT_SUCCESS(Status) && FlagOn(Value, 1)) {

        FatData.CodePageInvariant = FALSE;

    } else {

        FatData.CodePageInvariant = TRUE;
    }

    //
    //  Initialize our global resource and fire up the lookaside lists.
    //

    ExInitializeResourceLite( &FatData.Resource );

    ExInitializeNPagedLookasideList( &FatIrpContextLookasideList,
                                     NULL,
                                     NULL,
                                     POOL_RAISE_IF_ALLOCATION_FAILURE,
                                     sizeof(IRP_CONTEXT),
                                     TAG_IRP_CONTEXT,
                                     MaxDepth );

    ExInitializeNPagedLookasideList( &FatNonPagedFcbLookasideList,
                                     NULL,
                                     NULL,
                                     POOL_RAISE_IF_ALLOCATION_FAILURE,
                                     sizeof(NON_PAGED_FCB),
                                     TAG_FCB_NONPAGED,
                                     MaxDepth );

    ExInitializeNPagedLookasideList( &FatEResourceLookasideList,
                                     NULL,
                                     NULL,
                                     POOL_RAISE_IF_ALLOCATION_FAILURE,
                                     sizeof(ERESOURCE),
                                     TAG_ERESOURCE,
                                     MaxDepth );

    ExInitializeSListHead( &FatCloseContextSList );
    ExInitializeFastMutex( &FatCloseQueueMutex );
    KeInitializeEvent( &FatReserveEvent, SynchronizationEvent, TRUE );

    //
    //  Register the file system with the I/O system
    //

    IoRegisterFileSystem(FatDiskFileSystemDeviceObject);
    ObReferenceObject (FatDiskFileSystemDeviceObject);
#if __NDAS_FAT__
	if (FatCdromFileSystemDeviceObject) {

		IoRegisterFileSystem(FatCdromFileSystemDeviceObject);
		ObReferenceObject (FatCdromFileSystemDeviceObject);
	}
#else
    IoRegisterFileSystem(FatCdromFileSystemDeviceObject);
    ObReferenceObject (FatCdromFileSystemDeviceObject);
#endif

#if __NDAS_FAT__

	FatData.FileSystemRegistered = TRUE;

	RtlInitEmptyUnicodeString( &FatData.Root, 
							   FatData.RootBuffer,
							   sizeof(FatData.RootBuffer) );

	RtlInitUnicodeString( &tempUnicode, L"\\" );
	RtlCopyUnicodeString( &FatData.Root, &tempUnicode );

	RtlInitEmptyUnicodeString( &FatData.MountMgrRemoteDatabase, 
							   FatData.MountMgrRemoteDatabaseBuffer,
							   sizeof(FatData.MountMgrRemoteDatabaseBuffer) );

	RtlInitUnicodeString( &tempUnicode, L"\\:$MountMgrRemoteDatabase" );
	RtlCopyUnicodeString( &FatData.MountMgrRemoteDatabase, &tempUnicode );

	RtlInitEmptyUnicodeString( &FatData.ExtendReparse, 
							   FatData.ExtendReparseBuffer,
							   sizeof(FatData.ExtendReparseBuffer) );

	RtlInitUnicodeString( &tempUnicode, L"\\$Extend\\$Reparse:$R:$INDEX_ALLOCATION" );
	RtlCopyUnicodeString( &FatData.ExtendReparse, &tempUnicode );

	RtlInitEmptyUnicodeString( &FatData.MountPointManagerRemoteDatabase, 
							   FatData.MountPointManagerRemoteDatabaseBuffer,
							   sizeof(FatData.MountPointManagerRemoteDatabaseBuffer) );

	RtlInitUnicodeString( &tempUnicode, L"\\System Volume Information\\MountPointManagerRemoteDatabase" );
	RtlCopyUnicodeString( &FatData.MountPointManagerRemoteDatabase, &tempUnicode );

#endif

    //
    //  Find out if we are running an a FujitsuFMR machine.
    //

    FatData.FujitsuFMR = FatIsFujitsuFMR();

#if __NDAS_FAT__

    //
    //  Check to see if new kernel is present to decide if we want
    //  to support advance fcb headers
    //

    RtlInitUnicodeString( &UnicodeString, L"FsRtlTeardownPerStreamContexts" );
    FatFsRtlTeardownPerStreamContexts = MmGetSystemRoutineAddress( &UnicodeString );

#endif

    //
    //  And return to our caller
    //

    return( STATUS_SUCCESS );
}
NTSTATUS
DriverEntry(
    _In_ PDRIVER_OBJECT DriverObject,
    _In_ PUNICODE_STRING RegistryPath
    )

/*++

Routine Description:

    This is the initialization routine for the Fat file system
    device driver.  This routine creates the device object for the FileSystem
    device and performs all other driver initialization.

Arguments:

    DriverObject - Pointer to driver object created by the system.

Return Value:

    NTSTATUS - The function value is the final status from the initialization
        operation.

--*/

{
    USHORT MaxDepth;
    NTSTATUS Status;
    UNICODE_STRING UnicodeString;
    FS_FILTER_CALLBACKS FilterCallbacks;
    UNICODE_STRING ValueName;
    ULONG Value;

    UNREFERENCED_PARAMETER( RegistryPath );

    //
    // Create the device object for disks.  To avoid problems with filters who
    // know this name, we must keep it.
    //

    RtlInitUnicodeString( &UnicodeString, L"\\Fat" );
    Status = IoCreateDevice( DriverObject,
                             0,
                             &UnicodeString,
                             FILE_DEVICE_DISK_FILE_SYSTEM,
                             0,
                             FALSE,
                             &FatDiskFileSystemDeviceObject );

    if (!NT_SUCCESS( Status )) {
        return Status;
    }

    //
    // Create the device object for "cdroms".
    //

    RtlInitUnicodeString( &UnicodeString, L"\\FatCdrom" );
    Status = IoCreateDevice( DriverObject,
                             0,
                             &UnicodeString,
                             FILE_DEVICE_CD_ROM_FILE_SYSTEM,
                             0,
                             FALSE,
                             &FatCdromFileSystemDeviceObject );

    if (!NT_SUCCESS( Status )) {
        IoDeleteDevice( FatDiskFileSystemDeviceObject);
        return Status;
    }

#pragma prefast( push )
#pragma prefast( disable:28155, "these are all correct" )
#pragma prefast( disable:28169, "these are all correct" )
#pragma prefast( disable:28175, "this is a filesystem, touching FastIoDispatch is allowed" )

    DriverObject->DriverUnload = FatUnload;

    //
    //  Note that because of the way data caching is done, we set neither
    //  the Direct I/O or Buffered I/O bit in DeviceObject->Flags.  If
    //  data is not in the cache, or the request is not buffered, we may,
    //  set up for Direct I/O by hand.
    //

    //
    // Initialize the driver object with this driver's entry points.
    //

    DriverObject->MajorFunction[IRP_MJ_CREATE]                   = (PDRIVER_DISPATCH)FatFsdCreate;
    DriverObject->MajorFunction[IRP_MJ_CLOSE]                    = (PDRIVER_DISPATCH)FatFsdClose;
    DriverObject->MajorFunction[IRP_MJ_READ]                     = (PDRIVER_DISPATCH)FatFsdRead;
    DriverObject->MajorFunction[IRP_MJ_WRITE]                    = (PDRIVER_DISPATCH)FatFsdWrite;
    DriverObject->MajorFunction[IRP_MJ_QUERY_INFORMATION]        = (PDRIVER_DISPATCH)FatFsdQueryInformation;
    DriverObject->MajorFunction[IRP_MJ_SET_INFORMATION]          = (PDRIVER_DISPATCH)FatFsdSetInformation;
    DriverObject->MajorFunction[IRP_MJ_QUERY_EA]                 = (PDRIVER_DISPATCH)FatFsdQueryEa;
    DriverObject->MajorFunction[IRP_MJ_SET_EA]                   = (PDRIVER_DISPATCH)FatFsdSetEa;
    DriverObject->MajorFunction[IRP_MJ_FLUSH_BUFFERS]            = (PDRIVER_DISPATCH)FatFsdFlushBuffers;
    DriverObject->MajorFunction[IRP_MJ_QUERY_VOLUME_INFORMATION] = (PDRIVER_DISPATCH)FatFsdQueryVolumeInformation;
    DriverObject->MajorFunction[IRP_MJ_SET_VOLUME_INFORMATION]   = (PDRIVER_DISPATCH)FatFsdSetVolumeInformation;
    DriverObject->MajorFunction[IRP_MJ_CLEANUP]                  = (PDRIVER_DISPATCH)FatFsdCleanup;
    DriverObject->MajorFunction[IRP_MJ_DIRECTORY_CONTROL]        = (PDRIVER_DISPATCH)FatFsdDirectoryControl;
    DriverObject->MajorFunction[IRP_MJ_FILE_SYSTEM_CONTROL]      = (PDRIVER_DISPATCH)FatFsdFileSystemControl;
    DriverObject->MajorFunction[IRP_MJ_LOCK_CONTROL]             = (PDRIVER_DISPATCH)FatFsdLockControl;
    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL]           = (PDRIVER_DISPATCH)FatFsdDeviceControl;
    DriverObject->MajorFunction[IRP_MJ_SHUTDOWN]                 = (PDRIVER_DISPATCH)FatFsdShutdown;
    DriverObject->MajorFunction[IRP_MJ_PNP]                      = (PDRIVER_DISPATCH)FatFsdPnp;

    DriverObject->FastIoDispatch = &FatFastIoDispatch;

    RtlZeroMemory(&FatFastIoDispatch, sizeof(FatFastIoDispatch));

    FatFastIoDispatch.SizeOfFastIoDispatch =    sizeof(FAST_IO_DISPATCH);
    FatFastIoDispatch.FastIoCheckIfPossible =   FatFastIoCheckIfPossible;  //  CheckForFastIo
    FatFastIoDispatch.FastIoRead =              FsRtlCopyRead;             //  Read
    FatFastIoDispatch.FastIoWrite =             FsRtlCopyWrite;            //  Write
    FatFastIoDispatch.FastIoQueryBasicInfo =    FatFastQueryBasicInfo;     //  QueryBasicInfo
    FatFastIoDispatch.FastIoQueryStandardInfo = FatFastQueryStdInfo;       //  QueryStandardInfo
    FatFastIoDispatch.FastIoLock =              FatFastLock;               //  Lock
    FatFastIoDispatch.FastIoUnlockSingle =      FatFastUnlockSingle;       //  UnlockSingle
    FatFastIoDispatch.FastIoUnlockAll =         FatFastUnlockAll;          //  UnlockAll
    FatFastIoDispatch.FastIoUnlockAllByKey =    FatFastUnlockAllByKey;     //  UnlockAllByKey
    FatFastIoDispatch.FastIoQueryNetworkOpenInfo = FatFastQueryNetworkOpenInfo;
    FatFastIoDispatch.AcquireForCcFlush =       FatAcquireForCcFlush;
    FatFastIoDispatch.ReleaseForCcFlush =       FatReleaseForCcFlush;
    FatFastIoDispatch.MdlRead =                 FsRtlMdlReadDev;
    FatFastIoDispatch.MdlReadComplete =         FsRtlMdlReadCompleteDev;
    FatFastIoDispatch.PrepareMdlWrite =         FsRtlPrepareMdlWriteDev;
    FatFastIoDispatch.MdlWriteComplete =        FsRtlMdlWriteCompleteDev;

#pragma prefast( pop )
    
    //
    //  Initialize the filter callbacks we use.
    //

    RtlZeroMemory( &FilterCallbacks,
                   sizeof(FS_FILTER_CALLBACKS) );

    FilterCallbacks.SizeOfFsFilterCallbacks = sizeof(FS_FILTER_CALLBACKS);
    FilterCallbacks.PreAcquireForSectionSynchronization = FatFilterCallbackAcquireForCreateSection;

    Status = FsRtlRegisterFileSystemFilterCallbacks( DriverObject,
                                                     &FilterCallbacks );

    if (!NT_SUCCESS( Status )) {

        IoDeleteDevice( FatDiskFileSystemDeviceObject );
        IoDeleteDevice( FatCdromFileSystemDeviceObject );
        return Status;
    }

    //
    //  Initialize the global data structures
    //

    //
    //  The FatData record
    //

    RtlZeroMemory( &FatData, sizeof(FAT_DATA));

    FatData.NodeTypeCode = FAT_NTC_DATA_HEADER;
    FatData.NodeByteSize = sizeof(FAT_DATA);

    InitializeListHead(&FatData.VcbQueue);

    FatData.DriverObject = DriverObject;
    FatData.DiskFileSystemDeviceObject = FatDiskFileSystemDeviceObject;
    FatData.CdromFileSystemDeviceObject = FatCdromFileSystemDeviceObject;

    //
    //  This list head keeps track of closes yet to be done.
    //

    InitializeListHead( &FatData.AsyncCloseList );
    InitializeListHead( &FatData.DelayedCloseList );
    
    FatData.FatCloseItem = IoAllocateWorkItem( FatDiskFileSystemDeviceObject);

    if (FatData.FatCloseItem == NULL) {
        IoDeleteDevice (FatDiskFileSystemDeviceObject);
        IoDeleteDevice (FatCdromFileSystemDeviceObject);
        return STATUS_INSUFFICIENT_RESOURCES;
    }

    //
    //  Allocate the zero page
    //

    FatData.ZeroPage = ExAllocatePoolWithTag( NonPagedPoolNx, PAGE_SIZE, 'ZtaF' );
    if (FatData.ZeroPage == NULL) {
        IoDeleteDevice (FatDiskFileSystemDeviceObject);
        IoDeleteDevice (FatCdromFileSystemDeviceObject);        
        return STATUS_INSUFFICIENT_RESOURCES;
    }
    RtlZeroMemory( FatData.ZeroPage, PAGE_SIZE );


    //
    //  Now initialize our general purpose spinlock (gag) and figure out how
    //  deep and wide we want our delayed lists (along with fooling ourselves
    //  about the lookaside depths).
    //

    KeInitializeSpinLock( &FatData.GeneralSpinLock );

    switch ( MmQuerySystemSize() ) {

    case MmSmallSystem:

        MaxDepth = 4;
        FatMaxDelayedCloseCount = FAT_MAX_DELAYED_CLOSES;
        break;

    case MmMediumSystem:

        MaxDepth = 8;
        FatMaxDelayedCloseCount = 4 * FAT_MAX_DELAYED_CLOSES;
        break;

    case MmLargeSystem:
    default:
        
        MaxDepth = 16;
        FatMaxDelayedCloseCount = 16 * FAT_MAX_DELAYED_CLOSES;
        break;
    }


    //
    //  Initialize the cache manager callback routines
    //

    FatData.CacheManagerCallbacks.AcquireForLazyWrite  = &FatAcquireFcbForLazyWrite;
    FatData.CacheManagerCallbacks.ReleaseFromLazyWrite = &FatReleaseFcbFromLazyWrite;
    FatData.CacheManagerCallbacks.AcquireForReadAhead  = &FatAcquireFcbForReadAhead;
    FatData.CacheManagerCallbacks.ReleaseFromReadAhead = &FatReleaseFcbFromReadAhead;

    FatData.CacheManagerNoOpCallbacks.AcquireForLazyWrite  = &FatNoOpAcquire;
    FatData.CacheManagerNoOpCallbacks.ReleaseFromLazyWrite = &FatNoOpRelease;
    FatData.CacheManagerNoOpCallbacks.AcquireForReadAhead  = &FatNoOpAcquire;
    FatData.CacheManagerNoOpCallbacks.ReleaseFromReadAhead = &FatNoOpRelease;

    //
    //  Set up global pointer to our process.
    //

    FatData.OurProcess = PsGetCurrentProcess();

    // 
    //  Setup the number of processors we support for statistics as the current number 
    //  running.
    //

#if (NTDDI_VERSION >= NTDDI_VISTA)
    FatData.NumberProcessors = KeQueryActiveProcessorCount( NULL );
#else
    FatData.NumberProcessors = KeNumberProcessors;
#endif


    //
    //  Read the registry to determine if we are in ChicagoMode.
    //

    ValueName.Buffer = COMPATIBILITY_MODE_VALUE_NAME;
    ValueName.Length = sizeof(COMPATIBILITY_MODE_VALUE_NAME) - sizeof(WCHAR);
    ValueName.MaximumLength = sizeof(COMPATIBILITY_MODE_VALUE_NAME);

    Status = FatGetCompatibilityModeValue( &ValueName, &Value );

    if (NT_SUCCESS(Status) && FlagOn(Value, 1)) {

        FatData.ChicagoMode = FALSE;

    } else {

        FatData.ChicagoMode = TRUE;
    }

    //
    //  Read the registry to determine if we are going to generate LFNs
    //  for valid 8.3 names with extended characters.
    //

    ValueName.Buffer = CODE_PAGE_INVARIANCE_VALUE_NAME;
    ValueName.Length = sizeof(CODE_PAGE_INVARIANCE_VALUE_NAME) - sizeof(WCHAR);
    ValueName.MaximumLength = sizeof(CODE_PAGE_INVARIANCE_VALUE_NAME);

    Status = FatGetCompatibilityModeValue( &ValueName, &Value );

    if (NT_SUCCESS(Status) && FlagOn(Value, 1)) {

        FatData.CodePageInvariant = FALSE;

    } else {

        FatData.CodePageInvariant = TRUE;
    }

    //
    //  Initialize our global resource and fire up the lookaside lists.
    //

    ExInitializeResourceLite( &FatData.Resource );

    ExInitializeNPagedLookasideList( &FatIrpContextLookasideList,
                                     NULL,
                                     NULL,
                                     POOL_NX_ALLOCATION | POOL_RAISE_IF_ALLOCATION_FAILURE,
                                     sizeof(IRP_CONTEXT),
                                     TAG_IRP_CONTEXT,
                                     MaxDepth );

    ExInitializeNPagedLookasideList( &FatNonPagedFcbLookasideList,
                                     NULL,
                                     NULL,
                                     POOL_NX_ALLOCATION | POOL_RAISE_IF_ALLOCATION_FAILURE,
                                     sizeof(NON_PAGED_FCB),
                                     TAG_FCB_NONPAGED,
                                     MaxDepth );

    ExInitializeNPagedLookasideList( &FatEResourceLookasideList,
                                     NULL,
                                     NULL,
                                     POOL_NX_ALLOCATION | POOL_RAISE_IF_ALLOCATION_FAILURE,
                                     sizeof(ERESOURCE),
                                     TAG_ERESOURCE,
                                     MaxDepth );

    ExInitializeSListHead( &FatCloseContextSList );
    ExInitializeFastMutex( &FatCloseQueueMutex );
    KeInitializeEvent( &FatReserveEvent, SynchronizationEvent, TRUE );

    //
    //  Register the file system with the I/O system
    //

    IoRegisterFileSystem(FatDiskFileSystemDeviceObject);
    ObReferenceObject (FatDiskFileSystemDeviceObject);
    IoRegisterFileSystem(FatCdromFileSystemDeviceObject);
    ObReferenceObject (FatCdromFileSystemDeviceObject);

    //
    //  Find out if we are running an a FujitsuFMR machine.
    //

    FatData.FujitsuFMR = FatIsFujitsuFMR();

#if (NTDDI_VERSION >= NTDDI_WIN8)

    //
    //  Find out global disk accounting state, cache the result
    //

    FatDiskAccountingEnabled = PsIsDiskCountersEnabled();

#endif

    //
    //  And return to our caller
    //

    return( STATUS_SUCCESS );
}