Beispiel #1
0
static Matrix_t *makekernel(const Poly_t *pol)
{
    Matrix_t *materg;
    PTR rowptr;
    FEL *xbuf, *pbuf = pol->Data;
    long pdeg = pol->Degree;
    int k, xshift;
    long fl = pol->Field;

    materg = MatAlloc(fl,pdeg,pdeg);
    rowptr = materg->Data;

    xbuf = NALLOC(FEL,pdeg+1);
    for (k = 0; k <= pdeg; ++k) 
	xbuf[k] = FF_ZERO;
    xbuf[0] = FF_ONE;

    for (k = 0; k < pdeg; ++k)
    {
	int l;
	for (l = 0; l < pdeg; ++l) 
	    FfInsert(rowptr,l,xbuf[l]);
	FfInsert(rowptr,k,FfSub(xbuf[k],FF_ONE));
	FfStepPtr(&rowptr);
        for (xshift = (int) fl; xshift > 0; )
	{
	    FEL f;
	    int d;

	    /* Find leading pos */
	    for (l = pdeg-1; xbuf[l] == FF_ZERO && l >= 0; --l);

	    /* Shift left as much as possible */
	    if ((d = pdeg - l) > xshift) d = xshift;
	    for (; l >= 0; l--) xbuf[l+d] = xbuf[l];
	    for (l = d-1; l >= 0; --l) xbuf[l] = FF_ZERO;
	    xshift -= d;
	    if (xbuf[pdeg] == FF_ZERO) continue;

	    /* Reduce with pol */
	    f = FfNeg(FfDiv(xbuf[pdeg],pbuf[pdeg]));
	    for (l = pdeg-1; l >= 0; --l)
		xbuf[l] = FfAdd(xbuf[l],FfMul(pbuf[l],f));
	    xbuf[pdeg] = FF_ZERO;
	}
    }
    SysFree(xbuf);
    return MatNullSpace__(materg);
 } 
Beispiel #2
0
static void TestScalarProduct1(PTR a, PTR b, int size)
{
   int count;
   for (count = 0; count < 10; ++count) {
      int i;
      FEL expected = FF_ZERO;
      FfMulRow(a,FF_ZERO);
      FfMulRow(b,FF_ZERO);
      for (i = 0; i < size; ++i) {
         FEL f1 = FTab[MtxRandomInt(FfOrder)];
         FEL f2 = FTab[MtxRandomInt(FfOrder)];
         FfInsert(a,i,f1);
         FfInsert(b,i,f2);
         expected = FfAdd(expected,FfMul(f1,f2));
      }
      ASSERT_EQ_INT(FfScalarProduct(a,b), expected);
   }
}
Beispiel #3
0
void FfAddMulRow(PTR row1, PTR row2, FEL f)

{	register long i;
	register FEL *p1, *p2;

	CHECKFEL(f);
	if (f == FF_ZERO) return;
	if (f == FF_ONE)
	{	FfAddRow(row1,row2);
		return;
	}
	p1 = row1;
	p2 = row2;
	for (i = FfNoc; i != 0; --i)
	{	*p1 = FfAdd(*p1,FfMul(*p2,f));
		++p1;
		++p2;
	}
}
Beispiel #4
0
EpidStatus EpidSignBasic(MemberCtx const* ctx, void const* msg, size_t msg_len,
                         void const* basename, size_t basename_len,
                         BasicSignature* sig, BigNumStr* rnd_bsn) {
  EpidStatus sts = kEpidErr;

  EcPoint* B = NULL;
  EcPoint* t = NULL;  // temp value in G1
  EcPoint* k = NULL;
  EcPoint* e = NULL;
  FfElement* R2 = NULL;
  FfElement* p2y = NULL;
  FfElement* t1 = NULL;
  FfElement* t2 = NULL;

  FfElement* a = NULL;
  FfElement* b = NULL;
  FfElement* rx = NULL;
  FfElement* ra = NULL;
  FfElement* rb = NULL;

  struct p2x_t {
    uint32_t i;
    uint8_t bsn[1];
  }* p2x = NULL;

  FfElement* t3 = NULL;  // temporary for multiplication
  FfElement* c = NULL;
  uint8_t* digest = NULL;

  PreComputedSignature curr_presig = {0};

  if (!ctx || !sig) {
    return kEpidBadArgErr;
  }
  if (!msg && (0 != msg_len)) {
    // if message is non-empty it must have both length and content
    return kEpidBadArgErr;
  }
  if (!basename && (0 != basename_len)) {
    // if basename is non-empty it must have both length and content
    return kEpidBadArgErr;
  }
  if (!ctx->epid2_params) {
    return kEpidBadArgErr;
  }

  do {
    FiniteField* Fp = ctx->epid2_params->Fp;
    SignCommitOutput commit_out = {0};
    FpElemStr c_str = {0};
    EcGroup* G1 = ctx->epid2_params->G1;
    FiniteField* GT = ctx->epid2_params->GT;

    FiniteField* Fq = ctx->epid2_params->Fq;
    PairingState* ps_ctx = ctx->epid2_params->pairing_state;
    const BigNumStr kOne = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
    BigNumStr t1_str = {0};
    BigNumStr t2_str = {0};
    size_t digest_size = 0;
    uint16_t* rf_ctr = (uint16_t*)&ctx->rf_ctr;
    FfElement const* x = ctx->x;

    if (basename) {
      if (!IsBasenameAllowed(ctx->allowed_basenames, basename, basename_len)) {
        sts = kEpidBadArgErr;
        BREAK_ON_EPID_ERROR(sts);
      }
    }

    sts = NewEcPoint(G1, &B);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(G1, &k);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(G1, &t);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(G1, &e);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(GT, &R2);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fq, &p2y);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &t1);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &t2);
    BREAK_ON_EPID_ERROR(sts);
    p2x = (struct p2x_t*)SAFE_ALLOC(sizeof(struct p2x_t) + basename_len - 1);
    if (!p2x) {
      sts = kEpidMemAllocErr;
      break;
    }

    sts = NewFfElement(Fp, &a);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &b);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &rx);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &ra);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(Fp, &rb);
    BREAK_ON_EPID_ERROR(sts);

    sts = MemberGetPreSig((MemberCtx*)ctx, &curr_presig);
    BREAK_ON_EPID_ERROR(sts);

    // 3.  If the pre-computed signature pre-sigma exists, the member
    //     loads (B, K, T, a, b, rx, rf, ra, rb, R1, R2) from
    //     pre-sigma. Refer to Section 4.4 for the computation of
    //     these values.
    sts = ReadFfElement(Fp, &curr_presig.a, sizeof(curr_presig.a), a);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.b, sizeof(curr_presig.b), b);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.rx, sizeof(curr_presig.rx), rx);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.ra, sizeof(curr_presig.ra), ra);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadFfElement(Fp, &curr_presig.rb, sizeof(curr_presig.rb), rb);
    BREAK_ON_EPID_ERROR(sts);

    // If the basename is provided, use it, otherwise use presig B
    if (basename) {
      // 3.a. The member computes (B, i2, y2) = G1.tpmHash(bsn).
      sts = EcHash(G1, basename, basename_len, ctx->hash_alg, B, &p2x->i);
      BREAK_ON_EPID_ERROR(sts);
      p2x->i = htonl(p2x->i);
      sts = WriteEcPoint(G1, B, &commit_out.B, sizeof(commit_out.B));
      BREAK_ON_EPID_ERROR(sts);
      sts = ReadFfElement(Fq, &commit_out.B.y, sizeof(commit_out.B.y), p2y);
      BREAK_ON_EPID_ERROR(sts);

      // b.i. (KTPM, LTPM, ETPM, counterTPM) = TPM2_Commit(P1=h1,(s2, y2) = (i2
      // || bsn, y2)).
      // b.ii.K = KTPM.
      if (0 !=
          memcpy_S((void*)p2x->bsn, basename_len, basename, basename_len)) {
        sts = kEpidBadArgErr;
        break;
      }
      sts =
          Tpm2Commit(ctx->tpm2_ctx, ctx->h1, p2x, sizeof(p2x->i) + basename_len,
                     p2y, k, t, e, (uint16_t*)&ctx->rf_ctr);
      BREAK_ON_EPID_ERROR(sts);
      sts = WriteEcPoint(G1, k, &commit_out.K, sizeof(commit_out.K));
      BREAK_ON_EPID_ERROR(sts);
      // c.i. The member computes R1 = LTPM.
      sts = WriteEcPoint(G1, t, &commit_out.R1, sizeof(commit_out.R1));
      BREAK_ON_EPID_ERROR(sts);
      // c.ii. e12rf = pairing(ETPM, g2)
      sts = Pairing(ps_ctx, e, ctx->epid2_params->g2, R2);
      BREAK_ON_EPID_ERROR(sts);
      // c.iii. R2 = GT.sscmMultiExp(ea2, t1, e12rf, 1, e22, t2, e2w,ra).
      // 4.i. The member computes t1 = (- rx) mod p.
      sts = FfNeg(Fp, rx, t1);
      BREAK_ON_EPID_ERROR(sts);
      // 4.j. The member computes t2 = (rb - a * rx) mod p.
      sts = FfMul(Fp, a, rx, t2);
      BREAK_ON_EPID_ERROR(sts);
      sts = FfNeg(Fp, t2, t2);
      BREAK_ON_EPID_ERROR(sts);
      sts = FfAdd(Fp, rb, t2, t2);
      BREAK_ON_EPID_ERROR(sts);

      sts = WriteFfElement(Fp, t1, &t1_str, sizeof(t1_str));
      BREAK_ON_EPID_ERROR(sts);
      sts = WriteFfElement(Fp, t2, &t2_str, sizeof(t2_str));
      BREAK_ON_EPID_ERROR(sts);
      {
        FfElement const* points[4];
        BigNumStr const* exponents[4];
        points[0] = ctx->ea2;
        points[1] = R2;
        points[2] = ctx->e22;
        points[3] = ctx->e2w;
        exponents[0] = &t1_str;
        exponents[1] = &kOne;
        exponents[2] = &t2_str;
        exponents[3] = (BigNumStr*)&curr_presig.ra;
        sts = FfMultiExp(GT, points, exponents, COUNT_OF(points), R2);
        BREAK_ON_EPID_ERROR(sts);
      }

      sts = WriteFfElement(GT, R2, &commit_out.R2, sizeof(commit_out.R2));
      BREAK_ON_EPID_ERROR(sts);
      // d. The member over-writes the counterTPM, B, K, R1 and R2 values.
    } else {
      if (!rnd_bsn) {
        sts = kEpidBadArgErr;
        break;
      }
      sts = ReadEcPoint(G1, &curr_presig.B, sizeof(curr_presig.B), B);
      BREAK_ON_EPID_ERROR(sts);
      commit_out.B = curr_presig.B;
      commit_out.K = curr_presig.K;
      commit_out.R1 = curr_presig.R1;
      ((MemberCtx*)ctx)->rf_ctr = curr_presig.rf_ctr;
      commit_out.R2 = curr_presig.R2;
      *rnd_bsn = curr_presig.rnd_bsn;
    }

    commit_out.T = curr_presig.T;

    sts = HashSignCommitment(Fp, ctx->hash_alg, &ctx->pub_key, &commit_out, msg,
                             msg_len, &c_str);
    BREAK_ON_EPID_ERROR(sts);

    digest_size = EpidGetHashSize(ctx->hash_alg);
    digest = (uint8_t*)SAFE_ALLOC(digest_size);
    if (!digest) {
      sts = kEpidNoMemErr;
      break;
    }
    memcpy_S(digest + digest_size - sizeof(c_str), sizeof(c_str), &c_str,
             sizeof(c_str));

    sts = NewFfElement(Fp, &t3);
    BREAK_ON_EPID_ERROR(sts);

    sts = NewFfElement(Fp, &c);
    BREAK_ON_EPID_ERROR(sts);

    sts = ReadFfElement(Fp, &c_str, sizeof(c_str), c);
    BREAK_ON_EPID_ERROR(sts);

    // 7.  The member computes sx = (rx + c * x) mod p.
    sts = FfMul(Fp, c, x, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(Fp, rx, t3, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sx, sizeof(sig->sx));
    BREAK_ON_EPID_ERROR(sts);

    // 8.  The member computes sf = (rf + c * f) mod p.
    sts = Tpm2Sign(ctx->tpm2_ctx, digest, digest_size, *rf_ctr, NULL, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sf, sizeof(sig->sf));
    BREAK_ON_EPID_ERROR(sts);

    // 9.  The member computes sa = (ra + c * a) mod p.
    sts = FfMul(Fp, c, a, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(Fp, ra, t3, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sa, sizeof(sig->sa));
    BREAK_ON_EPID_ERROR(sts);

    // 10. The member computes sb = (rb + c * b) mod p.
    sts = FfMul(Fp, c, b, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(Fp, rb, t3, t3);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(Fp, t3, &sig->sb, sizeof(sig->sb));
    BREAK_ON_EPID_ERROR(sts);

    sig->B = commit_out.B;
    sig->K = commit_out.K;
    sig->T = commit_out.T;
    sig->c = c_str;

    sts = kEpidNoErr;
  } while (0);

  if (sts != kEpidNoErr) {
    (void)Tpm2ReleaseCounter(ctx->tpm2_ctx, (uint16_t)ctx->rf_ctr);
    (void)Tpm2ReleaseCounter(ctx->tpm2_ctx, curr_presig.rf_ctr);
  } else if (basename) {
    (void)Tpm2ReleaseCounter(ctx->tpm2_ctx, curr_presig.rf_ctr);
  }

  EpidZeroMemory(&curr_presig, sizeof(curr_presig));

  DeleteEcPoint(&B);
  DeleteEcPoint(&k);
  DeleteEcPoint(&t);
  DeleteEcPoint(&e);
  DeleteFfElement(&R2);
  DeleteFfElement(&p2y);
  DeleteFfElement(&t1);
  DeleteFfElement(&t2);

  DeleteFfElement(&a);
  DeleteFfElement(&b);
  DeleteFfElement(&rx);
  DeleteFfElement(&ra);
  DeleteFfElement(&rb);

  SAFE_FREE(p2x);

  DeleteFfElement(&t3);
  DeleteFfElement(&c);
  SAFE_FREE(digest);

  return sts;
}
Beispiel #5
0
static factor_t *factorsquarefree(const Poly_t *pol)
{
    long int e,j,k,ltmp,tdeg,exp;
    Poly_t *t0, *t, *w, *v;
    FEL *tbuf, *t0buf;
    factor_t *list;
    int nfactors = 0;

    /* Initialize variables
       -------------------- */
    FfSetField(pol->Field);
    for (exp = 0, ltmp = FfOrder; ltmp % FfChar == 0; ++exp, ltmp /= FfChar);
    t0 = PolDup(pol);
    e = 1;

    /* Allocate the list of factors. The can be at most <pol->Degree>
       factors, but we need one extra entry to terminate the list.
       ----------------------------------------------------------- */
    list = NALLOC(factor_t,pol->Degree + 1);

    /* Main loop
       --------- */
    while (t0->Degree > 0)
    {
	Poly_t *der = PolDerive(PolDup(t0));
        t = PolGcd(t0,der);
	PolFree(der);
        v = PolDivMod(t0,t);
        PolFree(t0); 
        for (k = 0; v->Degree > 0; )
	{
	    Poly_t *tmp;
	    if ( ++k % FfChar == 0 )
	    {
		tmp = PolDivMod(t,v);
              	PolFree(t);
              	t = tmp;
	      	k++;
	    }
	    w = PolGcd(t,v);
	    list[nfactors].p = PolDivMod(v,w);
	    list[nfactors].n = e * k;
	    if (list[nfactors].p->Degree > 0)
	       	++nfactors;			/* add to output */
	    else
	    	PolFree(list[nfactors].p);	/* discard const. */
            PolFree(v);
	    v = w;
	    tmp = PolDivMod(t,v);
            PolFree(t); 
            t = tmp; 
	} 
	PolFree(v);

	/* shrink the polynomial */
      	tdeg = t->Degree;
      	e *= FfChar;
      	if ( tdeg % FfChar != 0 )
	    printf("error in t, degree not div. by prime \n");
      	t0 = PolAlloc(FfOrder,tdeg/FfChar);
      	t0buf = t0->Data;
      	tbuf = t->Data;
      	for (j = t0->Degree; j >= 0; --j)
	{
	    FEL el, el1;
	    long lexp;

	    el = *tbuf;
	    tbuf += FfChar;
	    el1 = el;
	    /* this is a bug, it should apply the e-1 power of the
	        frobenius K. Lux 16th 11 1996 */

	    /* replace el1 by el1^(FfChar^(exp-1)) */
	    for ( lexp = 0; lexp < exp-1; lexp++ )
	    {
		long n;
		/* replace el1 by el1^FfChar */
		el = el1;
		for ( n = FfChar-1;  0 < n;  n-- ) {
		    el1 = FfMul(el1,el);
		}
	    }
	    *t0buf = el1;
	    ++t0buf;
	}
        PolFree(t); 
    }
    PolFree(t0);

    /* Terminate the list
       ------------------ */
    list[nfactors].p = NULL;
    list[nfactors].n = 0;
    return list;
}
Beispiel #6
0
EpidStatus EpidComputePreSig(MemberCtx const* ctx,
                             PreComputedSignature* precompsig) {
  EpidStatus res = kEpidNotImpl;

  EcPoint* B = NULL;
  EcPoint* K = NULL;
  EcPoint* T = NULL;
  EcPoint* R1 = NULL;

  FfElement* R2 = NULL;

  FfElement* a = NULL;
  FfElement* b = NULL;
  FfElement* rx = NULL;
  FfElement* rf = NULL;
  FfElement* ra = NULL;
  FfElement* rb = NULL;
  FfElement* t1 = NULL;
  FfElement* t2 = NULL;
  FfElement* f = NULL;

  if (!ctx || !precompsig) return kEpidBadArgErr;
  if (!ctx->epid2_params || !ctx->pub_key || !ctx->priv_key)
    return kEpidBadArgErr;

  do {
    // handy shorthands:
    EcGroup* G1 = ctx->epid2_params->G1;
    FiniteField* GT = ctx->epid2_params->GT;
    FiniteField* Fp = ctx->epid2_params->Fp;
    EcPoint* h2 = ctx->pub_key->h2;
    EcPoint* A = ctx->priv_key->A;
    FfElement* x = ctx->priv_key->x;
    BigNumStr f_str = {0};
    BigNumStr a_str = {0};
    BigNumStr t1_str = {0};
    BigNumStr rf_str = {0};
    BigNumStr t2_str = {0};
    BigNumStr ra_str = {0};
    static const BigNumStr one = {
        {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};

    if (!G1 || !GT || !Fp || !h2 || !A || !x || !ctx->priv_key->f ||
        !ctx->e12 || !ctx->e22 || !ctx->e2w || !ctx->ea2) {
      res = kEpidBadArgErr;
      BREAK_ON_EPID_ERROR(res);
    }
    f = ctx->priv_key->f;
    // The following variables B, K, T, R1 (elements of G1), R2
    // (elements of GT), a, b, rx, rf, ra, rb, t1, t2 (256-bit
    // integers) are used.
    res = NewEcPoint(G1, &B);
    BREAK_ON_EPID_ERROR(res);
    res = NewEcPoint(G1, &K);
    BREAK_ON_EPID_ERROR(res);
    res = NewEcPoint(G1, &T);
    BREAK_ON_EPID_ERROR(res);
    res = NewEcPoint(G1, &R1);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(GT, &R2);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &a);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &b);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &rx);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &rf);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &ra);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &rb);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &t1);
    BREAK_ON_EPID_ERROR(res);
    res = NewFfElement(Fp, &t2);
    BREAK_ON_EPID_ERROR(res);
    // 1. The member expects the pre-computation is done (e12, e22, e2w,
    //    ea2). Refer to Section 3.5 for the computation of these
    //    values.

    // 2. The member verifies gid in public key matches gid in private
    //    key.
    // 3. The member computes B = G1.getRandom().
    res = EcGetRandom(G1, ctx->rnd_func, ctx->rnd_param, B);
    BREAK_ON_EPID_ERROR(res);
    // 4. The member computes K = G1.sscmExp(B, f).
    res = WriteFfElement(Fp, f, &f_str, sizeof(f_str));
    BREAK_ON_EPID_ERROR(res);
    res = EcExp(G1, B, &f_str, K);
    BREAK_ON_EPID_ERROR(res);
    // 5. The member chooses randomly an integers a from [1, p-1].
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, a);
    BREAK_ON_EPID_ERROR(res);
    // 6. The member computes T = G1.sscmExp(h2, a).
    res = WriteFfElement(Fp, a, &a_str, sizeof(a_str));
    BREAK_ON_EPID_ERROR(res);
    res = EcExp(G1, h2, &a_str, T);
    BREAK_ON_EPID_ERROR(res);
    // 7. The member computes T = G1.mul(T, A).
    res = EcMul(G1, T, A, T);
    BREAK_ON_EPID_ERROR(res);
    // 8. The member computes b = (a * x) mod p.
    res = FfMul(Fp, a, x, b);
    BREAK_ON_EPID_ERROR(res);
    // 9. The member chooses rx, rf, ra, rb randomly from [1, p-1].
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, rx);
    BREAK_ON_EPID_ERROR(res);
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, rf);
    BREAK_ON_EPID_ERROR(res);
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, ra);
    BREAK_ON_EPID_ERROR(res);
    res = FfGetRandom(Fp, &one, ctx->rnd_func, ctx->rnd_param, rb);
    BREAK_ON_EPID_ERROR(res);
    // 10. The member computes t1 = (- rx) mod p.
    res = FfNeg(Fp, rx, t1);
    BREAK_ON_EPID_ERROR(res);
    // 11. The member computes t2 = (rb - a * rx) mod p.
    res = FfMul(Fp, a, rx, t2);
    BREAK_ON_EPID_ERROR(res);
    res = FfNeg(Fp, t2, t2);
    BREAK_ON_EPID_ERROR(res);
    res = FfAdd(Fp, rb, t2, t2);
    BREAK_ON_EPID_ERROR(res);
    // 12. The member computes R1 = G1.sscmExp(B, rf).
    res = WriteFfElement(Fp, rf, &rf_str, sizeof(rf_str));
    BREAK_ON_EPID_ERROR(res);
    res = EcExp(G1, B, &rf_str, R1);
    BREAK_ON_EPID_ERROR(res);
    // 13. The member computes R2 = GT.sscmMultiExp(ea2, t1, e12, rf,
    //     e22, t2, e2w, ra).
    res = WriteFfElement(Fp, t1, &t1_str, sizeof(t1_str));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, t2, &t2_str, sizeof(t2_str));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, ra, &ra_str, sizeof(ra_str));
    BREAK_ON_EPID_ERROR(res);
    {
      FfElement const* points[4];
      BigNumStr const* exponents[4];
      points[0] = ctx->ea2;
      points[1] = ctx->e12;
      points[2] = ctx->e22;
      points[3] = ctx->e2w;
      exponents[0] = &t1_str;
      exponents[1] = &rf_str;
      exponents[2] = &t2_str;
      exponents[3] = &ra_str;
      res = FfMultiExp(GT, points, exponents, COUNT_OF(points), R2);
      BREAK_ON_EPID_ERROR(res);
    }
    // 14. The member sets and outputs pre-sigma = (B, K, T, a, b, rx,
    //     rf, ra, rb, R1, R2).
    res = WriteEcPoint(G1, B, &precompsig->B, sizeof(precompsig->B));
    BREAK_ON_EPID_ERROR(res);
    res = WriteEcPoint(G1, K, &precompsig->K, sizeof(precompsig->K));
    BREAK_ON_EPID_ERROR(res);
    res = WriteEcPoint(G1, T, &precompsig->T, sizeof(precompsig->T));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, a, &precompsig->a, sizeof(precompsig->a));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, b, &precompsig->b, sizeof(precompsig->b));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, rx, &precompsig->rx, sizeof(precompsig->rx));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, rf, &precompsig->rf, sizeof(precompsig->rf));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, ra, &precompsig->ra, sizeof(precompsig->ra));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(Fp, rb, &precompsig->rb, sizeof(precompsig->rb));
    BREAK_ON_EPID_ERROR(res);
    res = WriteEcPoint(G1, R1, &precompsig->R1, sizeof(precompsig->R1));
    BREAK_ON_EPID_ERROR(res);
    res = WriteFfElement(GT, R2, &precompsig->R2, sizeof(precompsig->R2));
    BREAK_ON_EPID_ERROR(res);
    // 15. The member stores pre-sigma in the secure storage of the
    //     member.
    res = kEpidNoErr;
  } while (0);

  f = NULL;
  DeleteEcPoint(&B);
  DeleteEcPoint(&K);
  DeleteEcPoint(&T);
  DeleteEcPoint(&R1);
  DeleteFfElement(&R2);
  DeleteFfElement(&a);
  DeleteFfElement(&b);
  DeleteFfElement(&rx);
  DeleteFfElement(&rf);
  DeleteFfElement(&ra);
  DeleteFfElement(&rb);
  DeleteFfElement(&t1);
  DeleteFfElement(&t2);

  return (res);
}
Beispiel #7
0
EpidStatus EpidRequestJoin(GroupPubKey const* pub_key, IssuerNonce const* ni,
                           FpElemStr const* f, BitSupplier rnd_func,
                           void* rnd_param, HashAlg hash_alg,
                           JoinRequest* join_request) {
  EpidStatus sts;
  static const BigNumStr one = {
      {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}};
  BigNumStr r_str;
  JoinPCommitValues commit_values;
  Epid2Params_* params = NULL;
  FfElement* r_el = NULL;
  FfElement* f_el = NULL;
  FfElement* c_el = NULL;
  FfElement* cf_el = NULL;
  FfElement* s_el = NULL;
  EcPoint* f_pt = NULL;
  EcPoint* r_pt = NULL;
  EcPoint* h1_pt = NULL;

  if (!pub_key || !ni || !f || !rnd_func || !join_request) {
    return kEpidBadArgErr;
  }
  if (kSha256 != hash_alg && kSha384 != hash_alg && kSha512 != hash_alg) {
    return kEpidBadArgErr;
  }

  do {
    sts = CreateEpid2Params(&params);
    BREAK_ON_EPID_ERROR(sts);
    if (!params->Fp || !params->G1) {
      sts = kEpidBadArgErr;
      break;
    }
    sts = NewFfElement(params->Fp, &r_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &f_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &c_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &cf_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewFfElement(params->Fp, &s_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(params->G1, &f_pt);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(params->G1, &h1_pt);
    BREAK_ON_EPID_ERROR(sts);
    sts = NewEcPoint(params->G1, &r_pt);
    BREAK_ON_EPID_ERROR(sts);

    sts = ReadFfElement(params->Fp, (uint8_t const*)f, sizeof(*f), f_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = ReadEcPoint(params->G1, (uint8_t*)&pub_key->h1, sizeof(pub_key->h1),
                      h1_pt);
    BREAK_ON_EPID_ERROR(sts);

    // Step 1. The member chooses a random integer r from [1, p-1].
    sts = FfGetRandom(params->Fp, &one, rnd_func, rnd_param, r_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(params->Fp, r_el, (uint8_t*)&r_str, sizeof(r_str));

    // Step 2. The member computes F = G1.sscmExp(h1, f).
    sts = EcExp(params->G1, h1_pt, (BigNumStr const*)f, f_pt);
    BREAK_ON_EPID_ERROR(sts);

    // Step 3. The member computes R = G1.sscmExp(h1, r).
    sts = EcExp(params->G1, h1_pt, (BigNumStr const*)&r_str, r_pt);
    BREAK_ON_EPID_ERROR(sts);

    // Step 4. The member computes c = Fp.hash(p || g1 || g2 || h1 || h2 || w ||
    // F || R || NI). Refer to Section 7.1 for hash operation over a prime
    // field.
    sts = WriteBigNum(params->p, sizeof(commit_values.p),
                      (uint8_t*)&commit_values.p);
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G1, params->g1, (uint8_t*)&commit_values.g1,
                       sizeof(commit_values.g1));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G2, params->g2, (uint8_t*)&commit_values.g2,
                       sizeof(commit_values.g2));
    BREAK_ON_EPID_ERROR(sts);
    commit_values.h1 = pub_key->h1;
    commit_values.h2 = pub_key->h2;
    commit_values.w = pub_key->w;
    sts = WriteEcPoint(params->G1, f_pt, (uint8_t*)&commit_values.F,
                       sizeof(commit_values.F));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G1, r_pt, (uint8_t*)&commit_values.R,
                       sizeof(commit_values.R));
    BREAK_ON_EPID_ERROR(sts);
    commit_values.NI = *ni;
    sts = FfHash(params->Fp, (uint8_t*)&commit_values, sizeof(commit_values),
                 hash_alg, c_el);
    BREAK_ON_EPID_ERROR(sts);

    // Step 5. The member computes s = (r + c * f) mod p.
    sts = FfMul(params->Fp, c_el, f_el, cf_el);
    BREAK_ON_EPID_ERROR(sts);
    sts = FfAdd(params->Fp, r_el, cf_el, s_el);
    BREAK_ON_EPID_ERROR(sts);

    // Step 6. The output join request is (F, c, s).
    sts = WriteFfElement(params->Fp, c_el, (uint8_t*)&join_request->c,
                         sizeof(join_request->c));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteFfElement(params->Fp, s_el, (uint8_t*)&join_request->s,
                         sizeof(join_request->s));
    BREAK_ON_EPID_ERROR(sts);
    sts = WriteEcPoint(params->G1, f_pt, (uint8_t*)&join_request->F,
                       sizeof(join_request->F));
    BREAK_ON_EPID_ERROR(sts);

    sts = kEpidNoErr;
  } while (0);
  DeleteEcPoint(&h1_pt);
  DeleteEcPoint(&r_pt);
  DeleteEcPoint(&f_pt);
  DeleteFfElement(&s_el);
  DeleteFfElement(&cf_el);
  DeleteFfElement(&c_el);
  DeleteFfElement(&f_el);
  DeleteFfElement(&r_el);
  DeleteEpid2Params(&params);
  return sts;
}
Beispiel #8
0
EpidStatus NewG2(Epid2Params const* param, BigNum* p, BigNum* q,
                 FiniteField* Fq, FiniteField* Fq2, EcGroup** G2) {
  EpidStatus result = kEpidErr;
  EcGroup* ec = NULL;
  FfElement* a = NULL;
  FfElement* b = NULL;
  FfElement* fq_param_b = NULL;
  FfElement* x = NULL;
  FfElement* y = NULL;
  BigNum* order = NULL;
  BigNum* cofactor = NULL;
  if (!param || !Fq || !Fq2 || !G2) {
    return kEpidBadArgErr;
  }
  do {
    //   2. Set xi = (xi0, xi1) an element of Fq2.
    //   3. Let b', xi' be a temporary variable in Fq2.
    //   4. Compute xi' = Fq2.inverse(xi).
    //   5. Compute b' = Fq2.mul(xi', b).
    result = NewFfElement(Fq2, &b);
    if (kEpidNoErr != result) {
      break;
    }
    result = ReadFfElement(Fq2, &param->xi, sizeof(param->xi), b);
    if (kEpidNoErr != result) {
      break;
    }
    result = FfInv(Fq2, b, b);
    if (kEpidNoErr != result) {
      break;
    }
    result = NewFfElement(Fq, &fq_param_b);
    if (kEpidNoErr != result) {
      break;
    }
    result = ReadFfElement(Fq, &param->b, sizeof(param->b), fq_param_b);
    if (kEpidNoErr != result) {
      break;
    }
    result = FfMul(Fq2, b, fq_param_b, b);  // ??? overflow fq2*fq
    if (kEpidNoErr != result) {
      break;
    }
    //   6. Set g2.x = (g2.x[0], g2.x[1]) an element of Fq2.
    //   7. Set g2.y = (g2.y[0], g2.y[1]) an element of Fq2.
    result = NewFfElement(Fq2, &x);
    if (kEpidNoErr != result) {
      break;
    }
    result = ReadFfElement(Fq2, &param->g2.x, sizeof(param->g2.x), x);
    if (kEpidNoErr != result) {
      break;
    }
    result = NewFfElement(Fq2, &y);
    if (kEpidNoErr != result) {
      break;
    }
    result = ReadFfElement(Fq2, &param->g2.y, sizeof(param->g2.y), y);
    if (kEpidNoErr != result) {
      break;
    }
    //   8. set h = 2q - p, aka cofactor
    result = NewBigNum(2 * sizeof(param->q), &cofactor);
    if (kEpidNoErr != result) {
      break;
    }
    result = BigNumAdd(q, q, cofactor);
    if (kEpidNoErr != result) {
      break;
    }
    result = BigNumSub(cofactor, p, cofactor);
    if (kEpidNoErr != result) {
      break;
    }
    //   9. set n = p * h, AKA order
    result = NewBigNum(2 * sizeof(param->q), &order);
    if (kEpidNoErr != result) {
      break;
    }
    result = BigNumMul(p, cofactor, order);
    if (kEpidNoErr != result) {
      break;
    }
    // set a to identity, NewFfElement does it by default
    result = NewFfElement(Fq2, &a);
    if (kEpidNoErr != result) {
      break;
    }
    //   10. Set G2 = E(Fq2).init(p, param(Fq2), n, h, 0, b', g2.x, g2.y)
    result = NewEcGroup(Fq2, a, b, x, y, order, cofactor, &ec);
    if (kEpidNoErr != result) {
      break;
    }
    *G2 = ec;
    result = kEpidNoErr;
  } while (0);

  DeleteBigNum(&cofactor);
  DeleteBigNum(&order);
  DeleteFfElement(&y);
  DeleteFfElement(&x);
  DeleteFfElement(&b);
  DeleteFfElement(&a);
  DeleteFfElement(&fq_param_b);

  return result;
}