Fp operator-(const Fp& me, const Fp& rhs) { mpz_class c = me.x - rhs.x; if (c > 0) { return c; } return Fp(c + Fp::p); }
void LowMachNavierStokes<Mu,SH,TC>::assemble_mass_time_deriv( bool /*compute_jacobian*/, AssemblyContext& context, CachedValues& cache ) { // The number of local degrees of freedom in each variable. const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size(); // Element Jacobian * quadrature weights for interior integration. const std::vector<libMesh::Real> &JxW = context.get_element_fe(this->_u_var)->get_JxW(); // The pressure shape functions at interior quadrature points. const std::vector<std::vector<libMesh::Real> >& p_phi = context.get_element_fe(this->_p_var)->get_phi(); libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_p_var); // R_{p} unsigned int n_qpoints = context.get_element_qrule().n_points(); for (unsigned int qp=0; qp != n_qpoints; qp++) { libMesh::Number u, v, T; u = cache.get_cached_values(Cache::X_VELOCITY)[qp]; v = cache.get_cached_values(Cache::Y_VELOCITY)[qp]; T = cache.get_cached_values(Cache::TEMPERATURE)[qp]; libMesh::Gradient grad_u = cache.get_cached_gradient_values(Cache::X_VELOCITY_GRAD)[qp]; libMesh::Gradient grad_v = cache.get_cached_gradient_values(Cache::Y_VELOCITY_GRAD)[qp]; libMesh::Gradient grad_T = cache.get_cached_gradient_values(Cache::TEMPERATURE_GRAD)[qp]; libMesh::NumberVectorValue U(u,v); if (this->_dim == 3) U(2) = cache.get_cached_values(Cache::Z_VELOCITY)[qp]; // w libMesh::Number divU = grad_u(0) + grad_v(1); if (this->_dim == 3) { libMesh::Gradient grad_w = cache.get_cached_gradient_values(Cache::Z_VELOCITY_GRAD)[qp]; divU += grad_w(2); } // Now a loop over the pressure degrees of freedom. This // computes the contributions of the continuity equation. for (unsigned int i=0; i != n_p_dofs; i++) { Fp(i) += (-U*grad_T/T + divU)*p_phi[i][qp]*JxW[qp]; } } return; }
Expression* sintactico::Fp() { if(CurrentToken->tipo == PORCENTAJE) { CurrentToken = Lexer->NexToken(); Expression* izq = G(); Expression* der = Fp(); if(der != NULL) return new exprMode(izq,der,Lexer->linea); return izq; } return NULL; }
void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_continuity_time_deriv( bool /*compute_jacobian*/, AssemblyContext& context ) { // The number of local degrees of freedom in each variable. const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size(); // Element Jacobian * quadrature weights for interior integration. const std::vector<libMesh::Real> &JxW = context.get_element_fe(this->_flow_vars.u())->get_JxW(); // The pressure shape functions at interior quadrature points. const std::vector<std::vector<libMesh::RealGradient> >& p_dphi = context.get_element_fe(this->_press_var.p())->get_dphi(); libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p} unsigned int n_qpoints = context.get_element_qrule().n_points(); for (unsigned int qp=0; qp != n_qpoints; qp++) { libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u()); libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp ); libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp ); libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp ); libMesh::Real mu = this->_mu(T); libMesh::Real rho = this->rho( T, this->get_p0_steady( context, qp ) ); libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ), context.interior_value( this->_flow_vars.v(), qp ) ); if( this->mesh_dim(context) == 3 ) U(2) = context.interior_value( this->_flow_vars.w(), qp ); libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, this->_is_steady ); libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp ); // Now a loop over the pressure degrees of freedom. This // computes the contributions of the continuity equation. for (unsigned int i=0; i != n_p_dofs; i++) { Fp(i) += tau_M*RM_s*p_dphi[i][qp]*JxW[qp]; } } return; }
// Right-hand side of the Lax-Wendroff discretization: // // ( q(t+dt) - q(t) )/dt = -F_{x} - G_{y}. // // This routine constructs the 'time-integrated' flux functions F and G using the // Cauchy-Kowalewski procedure. // // First, consider time derivatives of q // // q^{n+1} = q^n + dt * (q^n_t + dt/2 * q^n_tt + dt^3/6 q^n_ttt ). // // Formally, these are given by // // q_{t} = ( -f(q) )_x + ( -g(q) )_y, // q_{tt} = ( f'(q) * ( f_x + g_y )_x + ( g'(q) * ( f_x + g_y )_y // q_{ttt} = ... // // Now, considering Taylor expansions of f and g, centered about t = t^n // // F = f^n + (t-t^n) \dot{f^n} + \cdots // G = g^n + (t-t^n) \dot{g^n} + \cdots // // We have the following form, after integrating in time // // F: = ( f - dt/2 * ( f'(q)*( f_x+g_y ) // + dt^2/6 ( \pd2{f}{q} \cdot (f_x+g_y,f_x+g_y) + // \pd{f}{q} ( f_x + g_y )_t ) + \cdots // // G: = ( g - dt/2 * ( g'(q)*( f_x+g_y ) // + dt^2/6 ( \pd2{g}{q} \cdot (f_x+g_y,f_x+g_y) + // \pd{g}{q} ( f_x + g_y )_t ) + \cdots // // where the final ingredient is // // (f_x+g_y)_t = \pd2{f}{q} \cdot (q_x, f_x+g_y ) + \pd{f}{q} ( f_xx + g_xy ) + // \pd2{g}{q} \cdot (q_y, f_x+g_y ) + \pd{g}{q} ( f_xy + g_yy ). // // At the end of the day, we set // // L(q) := -F_x - G_y. // // See also: ConstructL. void LaxWendroff(double dt, const dTensorBC4& aux, const dTensorBC4& q, // set bndy values modifies these dTensorBC4& Lstar, dTensorBC3& smax) { printf("This call hasn't been tested \n"); if ( !dogParams.get_flux_term() ) { return; } const edge_data& edgeData = Legendre2d::get_edgeData(); const int space_order = dogParams.get_space_order(); const int mx = q.getsize(1); const int my = q.getsize(2); const int meqn = q.getsize(3); const int kmax = q.getsize(4); const int mbc = q.getmbc(); const int maux = aux.getsize(3); // Flux values // // Space-order = number of quadrature points needed for 1D integration // along cell edges. // dTensorBC4 Fm(mx, my, meqn, space_order, mbc); dTensorBC4 Fp(mx, my, meqn, space_order, mbc); dTensorBC4 Gm(mx, my, meqn, space_order, mbc); dTensorBC4 Gp(mx, my, meqn, space_order, mbc); // Flux function void FluxFunc(const dTensor2& xpts, const dTensor2& Q, const dTensor2& Aux, dTensor3& flux); // Jacobian of the flux function: void DFluxFunc(const dTensor2& xpts, const dTensor2& Q, const dTensor2& Aux, dTensor4& Dflux ); // Hessian of the flux function: void D2FluxFunc(const dTensor2& xpts, const dTensor2& Q, const dTensor2& Aux, dTensor5& D2flux ); // Riemann solver that relies on the fact that we already have // f(ql) and f(qr) already computed: double RiemannSolveLxW(const dTensor1& nvec, const dTensor1& xedge, const dTensor1& Ql, const dTensor1& Qr, const dTensor1& Auxl, const dTensor1& Auxr, const dTensor1& ffl, const dTensor1& ffr, dTensor1& Fl, dTensor1& Fr); void LstarExtra(const dTensorBC4*, const dTensorBC4*, dTensorBC4*); void ArtificialViscosity(const dTensorBC4* aux, const dTensorBC4* q, dTensorBC4* Lstar); // Grid information const double xlower = dogParamsCart2.get_xlow(); const double ylower = dogParamsCart2.get_ylow(); const double dx = dogParamsCart2.get_dx(); const double dy = dogParamsCart2.get_dy(); // --------------------------------------------------------------------- // // Boundary data: // --------------------------------------------------------------------- // // TODO - call this routine before calling this function. // void SetBndValues(dTensorBC4& q, dTensorBC4& aux); // SetBndValues(q, aux); // --------------------------------------------------------- // --------------------------------------------------------------------- // // Part 0: Compute the Lax-Wendroff "flux" function: // // Here, we include the extra information about time derivatives. // --------------------------------------------------------------------- // dTensorBC4 F(mx, my, meqn, kmax, mbc); F.setall(0.); dTensorBC4 G(mx, my, meqn, kmax, mbc); G.setall(0.); void L2ProjectLxW( const int mterms, const double alpha, const double beta_dt, const double charlie_dt, const int istart, const int iend, const int jstart, const int jend, const int QuadOrder, const int BasisOrder_auxin, const int BasisOrder_fout, const dTensorBC4* qin, const dTensorBC4* auxin, dTensorBC4* F, dTensorBC4* G, void FluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& Aux, dTensor3& flux), void DFluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& aux, dTensor4& Dflux), void D2FluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& aux, dTensor5& D2flux) ); printf("hello\n"); L2ProjectLxW( 3, 1.0, 0.5*dt, dt*dt/6.0, 1-mbc, mx+mbc, 1-mbc, my+mbc, space_order, space_order, space_order, &q, &aux, &F, &G, &FluxFunc, &DFluxFunc, D2FluxFunc ); // --------------------------------------------------------- // Part I: compute source term // --------------------------------------------------------- if( dogParams.get_source_term() > 0 ) { // eprintf("error: have not implemented source term for LxW solver."); printf("Source term has not been implemented for LxW solver. Terminating program."); exit(1); } Lstar.setall( 0. ); // --------------------------------------------------------- // Part II: compute inter-element interaction fluxes // // N = int( F(q,x,t) * phi_x, x ) / dA // // --------------------------------------------------------- // 1-direction: loop over interior edges and solve Riemann problems dTensor1 nvec(2); nvec.set(1, 1.0e0 ); nvec.set(2, 0.0e0 ); #pragma omp parallel for for (int i=(2-mbc); i<=(mx+mbc); i++) { dTensor1 Ql(meqn), Qr(meqn); dTensor1 ffl(meqn), ffr(meqn); dTensor1 Fl(meqn), Fr(meqn); dTensor1 DFl(meqn), DFr(meqn); dTensor1 Auxl(maux), Auxr(maux); dTensor1 xedge(2); for (int j=(2-mbc); j<=(my+mbc-1); j++) { // ell indexes Riemann point along the edge for (int ell=1; ell<=space_order; ell++) { // Riemann data - q and f (from basis functions/q) for (int m=1; m<=meqn; m++) { Ql.set (m, 0.0 ); Qr.set (m, 0.0 ); ffl.set(m, 0.0 ); ffr.set(m, 0.0 ); for (int k=1; k<=kmax; k++) { // phi_xl( xi=1.0, eta ), phi_xr( xi=-1.0, eta ) Ql.fetch(m) += edgeData.phi_xl->get(ell,k)*q.get(i-1, j, m, k ); Qr.fetch(m) += edgeData.phi_xr->get(ell,k)*q.get(i, j, m, k ); ffl.fetch(m) += edgeData.phi_xl->get(ell,k)*F.get(i-1, j, m, k ); ffr.fetch(m) += edgeData.phi_xr->get(ell,k)*F.get(i, j, m, k ); } } // Riemann data - aux for (int m=1; m<=maux; m++) { Auxl.set(m, 0.0 ); Auxr.set(m, 0.0 ); for (int k=1; k<=kmax; k++) { Auxl.fetch(m) += edgeData.phi_xl->get(ell,k)*aux.get(i-1, j, m, k); Auxr.fetch(m) += edgeData.phi_xr->get(ell,k)*aux.get(i, j, m, k); } } // Solve Riemann problem xedge.set(1, xlower + (double(i)-1.0)*dx ); xedge.set(2, ylower + (double(j)-0.5)*dy ); const double smax_edge = RiemannSolveLxW( nvec, xedge, Ql, Qr, Auxl, Auxr, ffl, ffr, Fl, Fr); smax.set(i-1, j, 1, Max(dy*smax_edge,smax.get(i-1, j, 1)) ); smax.set(i, j, 1, Max(dy*smax_edge,smax.get(i, j, 1)) ); // Construct fluxes for (int m=1; m<=meqn; m++) { Fm.set(i , j, m, ell, Fr.get(m) ); Fp.set(i-1, j, m, ell, Fl.get(m) ); } } } } // 2-direction: loop over interior edges and solve Riemann problems nvec.set(1, 0.0e0 ); nvec.set(2, 1.0e0 ); #pragma omp parallel for for (int i=(2-mbc); i<=(mx+mbc-1); i++) { dTensor1 Ql(meqn), Qr(meqn); dTensor1 Fl(meqn), Fr(meqn); dTensor1 ffl(meqn), ffr(meqn); dTensor1 Auxl(maux),Auxr(maux); dTensor1 xedge(2); for (int j=(2-mbc); j<=(my+mbc); j++) for (int ell=1; ell<=space_order; ell++) { // Riemann data - q for (int m=1; m<=meqn; m++) { Ql.set (m, 0.0 ); Qr.set (m, 0.0 ); ffl.set (m, 0.0 ); ffr.set (m, 0.0 ); for (int k=1; k<=kmax; k++) { Ql.fetch(m) += edgeData.phi_yl->get(ell, k)*q.get(i, j-1, m, k ); Qr.fetch(m) += edgeData.phi_yr->get(ell, k)*q.get(i, j, m, k ); ffl.fetch(m) += edgeData.phi_yl->get(ell, k)*G.get(i, j-1, m, k ); ffr.fetch(m) += edgeData.phi_yr->get(ell, k)*G.get(i, j, m, k ); } } // Riemann data - aux for (int m=1; m<=maux; m++) { Auxl.set(m, 0.0 ); Auxr.set(m, 0.0 ); for (int k=1; k<=kmax; k++) { Auxl.fetch(m) += edgeData.phi_yl->get(ell,k)*aux.get(i,j-1,m,k); Auxr.fetch(m) += edgeData.phi_yr->get(ell,k)*aux.get(i,j,m,k); } } // Solve Riemann problem xedge.set(1, xlower + (double(i)-0.5)*dx ); xedge.set(2, ylower + (double(j)-1.0)*dy ); const double smax_edge = RiemannSolveLxW( nvec, xedge, Ql, Qr, Auxl, Auxr, ffl, ffr, Fl, Fr); smax.set(i, j-1, 2, Max(dx*smax_edge, smax.get(i, j-1, 2)) ); smax.set(i, j, 2, Max(dx*smax_edge, smax.get(i, j, 2)) ); // Construct fluxes for (int m=1; m<=meqn; m++) { Gm.set(i, j, m, ell, Fr.get(m) ); Gp.set(i, j-1, m, ell, Fl.get(m) ); } } } // Compute ``flux differences'' dF and dG const double half_dx_inv = 0.5/dx; const double half_dy_inv = 0.5/dy; const int mlength = Lstar.getsize(3); assert_eq( meqn, mlength ); // Use the four values, Gm, Gp, Fm, Fp to construct the boundary integral: #pragma omp parallel for for (int i=(2-mbc); i<=(mx+mbc-1); i++) for (int j=(2-mbc); j<=(my+mbc-1); j++) for (int m=1; m<=mlength; m++) for (int k=1; k<=kmax; k++) { // 1-direction: dF double F1 = 0.0; double F2 = 0.0; for (int ell=1; ell<=space_order; ell++) { F1 = F1 + edgeData.wght_phi_xr->get(ell,k)*Fm.get(i,j,m,ell); F2 = F2 + edgeData.wght_phi_xl->get(ell,k)*Fp.get(i,j,m,ell); } // 2-direction: dG double G1 = 0.0; double G2 = 0.0; for (int ell=1; ell<=space_order; ell++) { G1 = G1 + edgeData.wght_phi_yr->get(ell,k)*Gm.get(i,j,m,ell); G2 = G2 + edgeData.wght_phi_yl->get(ell,k)*Gp.get(i,j,m,ell); } Lstar.fetch(i,j,m,k) -= (half_dx_inv*(F2-F1) + half_dy_inv*(G2-G1)); } // --------------------------------------------------------- // --------------------------------------------------------- // Part III: compute intra-element contributions // --------------------------------------------------------- // No need to call this if first-order in space if(dogParams.get_space_order()>1) { dTensorBC4 Ltmp( mx, my, meqn, kmax, mbc ); void L2ProjectGradAddLegendre(const int istart, const int iend, const int jstart, const int jend, const int QuadOrder, const dTensorBC4* F, const dTensorBC4* G, dTensorBC4* fout ); L2ProjectGradAddLegendre( 1-mbc, mx+mbc, 1-mbc, my+mbc, space_order, &F, &G, &Lstar ); } // --------------------------------------------------------- // --------------------------------------------------------- // Part IV: add extra contributions to Lstar // --------------------------------------------------------- // Call LstarExtra LstarExtra(&q,&aux,&Lstar); // --------------------------------------------------------- // --------------------------------------------------------- // Part V: artificial viscosity limiter // --------------------------------------------------------- if (dogParams.get_space_order()>1 && dogParams.using_viscosity_limiter()) { ArtificialViscosity(&aux,&q,&Lstar); } // --------------------------------------------------------- }
bool operator==(const Fp& me, const int rhs){ return me == Fp(rhs); }
Fp operator*(const Fp& me, const Fp& rhs) { return Fp(me.x * rhs.x); }
Fp operator-(const Fp& me) { return Fp(-me.x) + Fp::p; }
void VelocityPenaltyAdjointStabilization<Mu>::element_constraint( bool compute_jacobian, AssemblyContext& context, CachedValues& /*cache*/ ) { #ifdef GRINS_USE_GRVY_TIMERS this->_timer->BeginTimer("VelocityPenaltyAdjointStabilization::element_constraint"); #endif // The number of local degrees of freedom in each variable. const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size(); const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size(); // Element Jacobian * quadrature weights for interior integration. const std::vector<libMesh::Real> &JxW = context.get_element_fe(this->_flow_vars.u())->get_JxW(); const std::vector<libMesh::Point>& u_qpoint = context.get_element_fe(this->_flow_vars.u())->get_xyz(); const std::vector<std::vector<libMesh::Real> >& u_phi = context.get_element_fe(this->_flow_vars.u())->get_phi(); const std::vector<std::vector<libMesh::RealGradient> >& p_dphi = context.get_element_fe(this->_press_var.p())->get_dphi(); libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p} libMesh::DenseSubMatrix<libMesh::Number> &Kpu = context.get_elem_jacobian(this->_press_var.p(), this->_flow_vars.u()); // J_{pu} libMesh::DenseSubMatrix<libMesh::Number> &Kpv = context.get_elem_jacobian(this->_press_var.p(), this->_flow_vars.v()); // J_{pv} libMesh::DenseSubMatrix<libMesh::Number> *Kpw = NULL; if(this->mesh_dim(context) == 3) { Kpw = &context.get_elem_jacobian (this->_press_var.p(), this->_flow_vars.w()); // J_{pw} } // Now we will build the element Jacobian and residual. // Constructing the residual requires the solution and its // gradient from the previous timestep. This must be // calculated at each quadrature point by summing the // solution degree-of-freedom values by the appropriate // weight functions. unsigned int n_qpoints = context.get_element_qrule().n_points(); libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u()); for (unsigned int qp=0; qp != n_qpoints; qp++) { libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp ); libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp ); libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ), context.interior_value( this->_flow_vars.v(), qp ) ); if( this->mesh_dim(context) == 3 ) { U(2) = context.interior_value( this->_flow_vars.w(), qp ); } // Compute the viscosity at this qp libMesh::Real mu_qp = this->_mu(context, qp); libMesh::Real tau_M; libMesh::Real d_tau_M_d_rho; libMesh::Gradient d_tau_M_dU; if (compute_jacobian) this->_stab_helper.compute_tau_momentum_and_derivs ( context, qp, g, G, this->_rho, U, mu_qp, tau_M, d_tau_M_d_rho, d_tau_M_dU, this->_is_steady ); else tau_M = this->_stab_helper.compute_tau_momentum ( context, qp, g, G, this->_rho, U, mu_qp, this->_is_steady ); libMesh::NumberVectorValue F; libMesh::NumberTensorValue dFdU; libMesh::NumberTensorValue* dFdU_ptr = compute_jacobian ? &dFdU : NULL; if (!this->compute_force(u_qpoint[qp], context, U, F, dFdU_ptr)) continue; // First, an i-loop over the velocity degrees of freedom. // We know that n_u_dofs == n_v_dofs so we can compute contributions // for both at the same time. for (unsigned int i=0; i != n_p_dofs; i++) { Fp(i) += -tau_M*F*p_dphi[i][qp]*JxW[qp]; if (compute_jacobian) { for (unsigned int j=0; j != n_u_dofs; ++j) { Kpu(i,j) += -d_tau_M_dU(0)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative(); Kpv(i,j) += -d_tau_M_dU(1)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative(); for (unsigned int d=0; d != 3; ++d) { Kpu(i,j) += -tau_M*dFdU(d,0)*u_phi[j][qp]*p_dphi[i][qp](d)*JxW[qp]*context.get_elem_solution_derivative(); Kpv(i,j) += -tau_M*dFdU(d,1)*u_phi[j][qp]*p_dphi[i][qp](d)*JxW[qp]*context.get_elem_solution_derivative(); } } if( this->mesh_dim(context) == 3 ) for (unsigned int j=0; j != n_u_dofs; ++j) { (*Kpw)(i,j) += -d_tau_M_dU(2)*u_phi[j][qp]*F*p_dphi[i][qp]*JxW[qp]*context.get_elem_solution_derivative(); for (unsigned int d=0; d != 3; ++d) { (*Kpw)(i,j) += -tau_M*dFdU(d,2)*u_phi[j][qp]*p_dphi[i][qp](d)*JxW[qp]*context.get_elem_solution_derivative(); } } } } } // End quadrature loop #ifdef GRINS_USE_GRVY_TIMERS this->_timer->EndTimer("VelocityPenaltyAdjointStabilization::element_constraint"); #endif return; }
void assemble_postvars_rhs (EquationSystems& es, const std::string& system_name) { const Real E = es.parameters.get<Real>("E"); const Real NU = es.parameters.get<Real>("NU"); const Real KPERM = es.parameters.get<Real>("KPERM"); Real sum_jac_postvars=0; Real av_pressure=0; Real total_volume=0; #include "assemble_preamble_postvars.cpp" for ( ; el != end_el; ++el) { const Elem* elem = *el; dof_map.dof_indices (elem, dof_indices); dof_map.dof_indices (elem, dof_indices_u, u_var); dof_map.dof_indices (elem, dof_indices_v, v_var); dof_map.dof_indices (elem, dof_indices_p, p_var); dof_map.dof_indices (elem, dof_indices_x, x_var); dof_map.dof_indices (elem, dof_indices_y, y_var); #if THREED dof_map.dof_indices (elem, dof_indices_w, w_var); dof_map.dof_indices (elem, dof_indices_z, z_var); #endif const unsigned int n_dofs = dof_indices.size(); const unsigned int n_u_dofs = dof_indices_u.size(); const unsigned int n_v_dofs = dof_indices_v.size(); const unsigned int n_p_dofs = dof_indices_p.size(); const unsigned int n_x_dofs = dof_indices_x.size(); const unsigned int n_y_dofs = dof_indices_y.size(); #if THREED const unsigned int n_w_dofs = dof_indices_w.size(); const unsigned int n_z_dofs = dof_indices_z.size(); #endif fe_disp->reinit (elem); fe_vel->reinit (elem); fe_pres->reinit (elem); Ke.resize (n_dofs, n_dofs); Fe.resize (n_dofs); Kuu.reposition (u_var*n_u_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs); Kuv.reposition (u_var*n_u_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs); Kup.reposition (u_var*n_u_dofs, p_var*n_u_dofs, n_u_dofs, n_p_dofs); Kux.reposition (u_var*n_u_dofs, p_var*n_u_dofs + n_p_dofs , n_u_dofs, n_x_dofs); Kuy.reposition (u_var*n_u_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_u_dofs, n_y_dofs); #if THREED Kuw.reposition (u_var*n_u_dofs, w_var*n_u_dofs, n_u_dofs, n_w_dofs); Kuz.reposition (u_var*n_u_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_u_dofs, n_z_dofs); #endif Kvu.reposition (v_var*n_v_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs); Kvv.reposition (v_var*n_v_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs); Kvp.reposition (v_var*n_v_dofs, p_var*n_v_dofs, n_v_dofs, n_p_dofs); Kvx.reposition (v_var*n_v_dofs, p_var*n_u_dofs + n_p_dofs , n_v_dofs, n_x_dofs); Kvy.reposition (v_var*n_v_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_v_dofs, n_y_dofs); #if THREED Kvw.reposition (v_var*n_u_dofs, w_var*n_u_dofs, n_v_dofs, n_w_dofs); Kuz.reposition (v_var*n_u_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_u_dofs, n_z_dofs); #endif #if THREED Kwu.reposition (w_var*n_w_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs); Kwv.reposition (w_var*n_w_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs); Kwp.reposition (w_var*n_w_dofs, p_var*n_v_dofs, n_v_dofs, n_p_dofs); Kwx.reposition (w_var*n_w_dofs, p_var*n_u_dofs + n_p_dofs , n_v_dofs, n_x_dofs); Kwy.reposition (w_var*n_w_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_v_dofs, n_y_dofs); Kww.reposition (w_var*n_w_dofs, w_var*n_u_dofs, n_v_dofs, n_w_dofs); Kwz.reposition (w_var*n_w_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_u_dofs, n_z_dofs); #endif Kpu.reposition (p_var*n_u_dofs, u_var*n_u_dofs, n_p_dofs, n_u_dofs); Kpv.reposition (p_var*n_u_dofs, v_var*n_u_dofs, n_p_dofs, n_v_dofs); Kpp.reposition (p_var*n_u_dofs, p_var*n_u_dofs, n_p_dofs, n_p_dofs); Kpx.reposition (p_var*n_v_dofs, p_var*n_u_dofs + n_p_dofs , n_p_dofs, n_x_dofs); Kpy.reposition (p_var*n_v_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_p_dofs, n_y_dofs); #if THREED Kpw.reposition (p_var*n_u_dofs, w_var*n_u_dofs, n_p_dofs, n_w_dofs); Kpz.reposition (p_var*n_u_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_p_dofs, n_z_dofs); #endif Kxu.reposition (p_var*n_u_dofs + n_p_dofs, u_var*n_u_dofs, n_x_dofs, n_u_dofs); Kxv.reposition (p_var*n_u_dofs + n_p_dofs, v_var*n_u_dofs, n_x_dofs, n_v_dofs); Kxp.reposition (p_var*n_u_dofs + n_p_dofs, p_var*n_u_dofs, n_x_dofs, n_p_dofs); Kxx.reposition (p_var*n_u_dofs + n_p_dofs, p_var*n_u_dofs + n_p_dofs , n_x_dofs, n_x_dofs); Kxy.reposition (p_var*n_u_dofs + n_p_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_x_dofs, n_y_dofs); #if THREED Kxw.reposition (p_var*n_u_dofs + n_p_dofs, w_var*n_u_dofs, n_x_dofs, n_w_dofs); Kxz.reposition (p_var*n_u_dofs + n_p_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_x_dofs, n_z_dofs); #endif Kyu.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, u_var*n_u_dofs, n_y_dofs, n_u_dofs); Kyv.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, v_var*n_u_dofs, n_y_dofs, n_v_dofs); Kyp.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, p_var*n_u_dofs, n_y_dofs, n_p_dofs); Kyx.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, p_var*n_u_dofs + n_p_dofs , n_y_dofs, n_x_dofs); Kyy.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_y_dofs, n_y_dofs); #if THREED Kyw.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, w_var*n_u_dofs, n_x_dofs, n_w_dofs); Kyz.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_x_dofs, n_z_dofs); #endif #if THREED Kzu.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, u_var*n_u_dofs, n_y_dofs, n_u_dofs); Kzv.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, v_var*n_u_dofs, n_y_dofs, n_v_dofs); Kzp.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, p_var*n_u_dofs, n_y_dofs, n_p_dofs); Kzx.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, p_var*n_u_dofs + n_p_dofs , n_y_dofs, n_x_dofs); Kzy.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, p_var*n_u_dofs + n_p_dofs+n_x_dofs , n_y_dofs, n_y_dofs); Kzw.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, w_var*n_u_dofs, n_x_dofs, n_w_dofs); Kzz.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, p_var*n_u_dofs + n_p_dofs+2*n_x_dofs , n_x_dofs, n_z_dofs); #endif Fu.reposition (u_var*n_u_dofs, n_u_dofs); Fv.reposition (v_var*n_u_dofs, n_v_dofs); Fp.reposition (p_var*n_u_dofs, n_p_dofs); Fx.reposition (p_var*n_u_dofs + n_p_dofs, n_x_dofs); Fy.reposition (p_var*n_u_dofs + n_p_dofs+n_x_dofs, n_y_dofs); #if THREED Fw.reposition (w_var*n_u_dofs, n_w_dofs); Fz.reposition (p_var*n_u_dofs + n_p_dofs+2*n_x_dofs, n_y_dofs); #endif std::vector<unsigned int> undefo_index; PoroelasticConfig material(dphi,psi); // Now we will build the element matrix. for (unsigned int qp=0; qp<qrule.n_points(); qp++) { Number p_solid = 0.; grad_u_mat(0) = grad_u_mat(1) = grad_u_mat(2) = 0; for (unsigned int d = 0; d < dim; ++d) { std::vector<Number> u_undefo; std::vector<Number> u_undefo_ref; //Fills the vector di with the global degree of freedom indices for the element. :dof_indicies Last_non_linear_soln.get_dof_map().dof_indices(elem, undefo_index,d); Last_non_linear_soln.current_local_solution->get(undefo_index, u_undefo); reference.current_local_solution->get(undefo_index, u_undefo_ref); for (unsigned int l = 0; l != n_u_dofs; l++){ grad_u_mat(d).add_scaled(dphi[l][qp], u_undefo[l]+u_undefo_ref[l]); } } for (unsigned int l=0; l<n_p_dofs; l++) { p_solid += psi[l][qp]*Last_non_linear_soln.current_local_solution->el(dof_indices_p[l]); } Point rX; material.init_for_qp(rX,grad_u_mat, p_solid, qp,0, p_solid,es); Real J=material.J; Real I_1=material.I_1; Real I_2=material.I_2; Real I_3=material.I_3; RealTensor sigma=material.sigma; av_pressure=av_pressure + p_solid*JxW[qp]; /* std::cout<<"grad_u_mat(0)" << grad_u_mat(0) <<std::endl; std::cout<<" J " << J <<std::endl; std::cout<<" sigma " << sigma <<std::endl; */ Real sigma_sum_sq=pow(sigma(0,0)*sigma(0,0)+sigma(0,1)*sigma(0,1)+sigma(0,2)*sigma(0,2)+sigma(1,0)*sigma(1,0)+sigma(1,1)*sigma(1,1)+sigma(1,2)*sigma(1,2)+sigma(2,0)*sigma(2,0)+sigma(2,1)*sigma(2,1)+sigma(2,2)*sigma(2,2),0.5); // std::cout<<" J " << J <<std::endl; sum_jac_postvars=sum_jac_postvars+JxW[qp]; for (unsigned int i=0; i<n_u_dofs; i++){ Fu(i) += I_1*JxW[qp]*phi[i][qp]; Fv(i) += I_2*JxW[qp]*phi[i][qp]; Fw(i) += I_3*JxW[qp]*phi[i][qp]; Fx(i) += sigma_sum_sq*JxW[qp]*phi[i][qp]; Fy(i) += J*JxW[qp]*phi[i][qp]; Fz(i) += 0*JxW[qp]*phi[i][qp]; } for (unsigned int i=0; i<n_p_dofs; i++){ Fp(i) += J*JxW[qp]*psi[i][qp]; } } // end qp system.rhs->add_vector(Fe, dof_indices); system.matrix->add_matrix (Ke, dof_indices); } // end of element loop system.matrix->close(); system.rhs->close(); std::cout<<"Assemble postvars rhs->l2_norm () "<<system.rhs->l2_norm ()<<std::endl; std::cout<<"sum_jac "<< sum_jac_postvars <<std::endl; std::cout<<"av_pressure "<< av_pressure/sum_jac_postvars <<std::endl; return; }
void testGeometry() { cout << "running testGeometry" << endl; cout << "Creating Variables" << endl; // Variable Declarations // Points const Point a = Point(0, 0), b = Point(100, 100), c = Point(0, 100); const Point e = Point(200, 0), d = Point(100, 0), f = Point(100, 200); // Poly's const cnt tri {a, e, b}; // non-equal sides const cnt square {a, c, b, d}; const cnt rect {a, c*2, f, d}; const cnt bigSquare {a*2-b, c*2-b, b*2-b, d*2-b}; // Fp's const Fp testFp1 = Fp({bigSquare, square}); const Fp testFp2 = Fp({bigSquare}); // not a valid Fp const Fp testFp3 = Fp({square}); // not a valid Fp cout << "Creating Vectors" << endl; // Vectors // Poly's const vector<cnt> vpoly1 {tri, square, bigSquare}; const vector<cnt> vpoly2 {tri, square}; const vector<cnt> vpoly3 {square, bigSquare}; const vector<cnt> vpoly4 {tri, bigSquare}; const vector<cnt> vpoly5 {tri}; const vector<cnt> vpoly6 {square}; const vector<cnt> vpoly7 {bigSquare}; // Fp's const vector<Fp> vfp1 {testFp1, testFp2, testFp3}; const vector<Fp> vfp2 {testFp1, testFp2}; const vector<Fp> vfp3 {testFp2, testFp3}; const vector<Fp> vfp4 {testFp1, testFp3}; const vector<Fp> vfp5 {testFp1}; const vector<Fp> vfp6 {testFp2}; const vector<Fp> vfp7 {testFp3}; cout << "Test Methods..." << endl; // Test Methods // Centroid Point tric = centroid(tri); Point squarec = centroid(square); Point bigsc = centroid(bigSquare); cout << "Triangle" << tostr(tri) << tostr(tric) << endl; cout << "Square" << tostr(square) << tostr(squarec) << endl; cout << "Big Square" << tostr(bigSquare) << tostr(bigsc) << endl; cout << "Square & BigSquare Centroid: " << tostr(centroid(vpoly3)) << endl; // Dist & Angs vector<double> dts = dists(tri); vector<double> ans = angles(tri); cout << "Triangle lengths: " << vtostr(dts) << endl; cout << "Triangle angles: " << vtostr(ans) << endl; cout << "Unit Angle: " << "Origin - " << tostr(a) << "; Point - " << tostr(b) << "; Ang - " << angle(a,b) << endl; // All same length cout << "Triangle all same length? " << allSameLength(tri, (double)0.0) << endl; cout << "Square all same length? " << allSameLength(square, (double)0.0) << endl; // isPoly bool test1 = isPoly(tri, 3, false, false, 0, 0); // True bool test2 = isPoly(tri, 3, true, true, 0, 0); // False bool test3 = isPoly(tri, 4, false, false, 0, 0); // False bool test4 = isRectangle(rect, false, 0, 0); // True bool test5 = isRectangle(rect, true, 0, 0); // False bool test6 = isSquare(square, 0, 0); // True cout << test1 << test2 << test3 << test4 << test5 << test6 << endl; }
int main(int argc, char* argv[]) { programname = copystring(Basename(argv[0])); argc--, argv++; while (argc && argv[0][0] == '-') { while (*++*argv) switch(**argv) { case 'p': pflag++; break; case 'e': eflag++; epsfwidth = WidthInPoints(*argv + 1); goto nextarg; case 'd': dflag++; goto nextarg; case 'i': switch( *(*argv + 1) ) { case '-': iflag = -1; case '+': default: iflag = 1; } goto nextarg; case 'g': gflag++; goto nextarg; case 'y': yflag++; goto nextarg; case 'b': bflag++; goto nextarg; case 's': sflag++; goto nextarg; case 'm': mflag++; TWENTY = atoi(*argv + 1); if (TWENTY > DEFAULT_TWENTY) Usage(*argv-1); goto nextarg; case 't': tflag++; THRESHOLD_PERCENT = (floatish) atof(*argv + 1); if (THRESHOLD_PERCENT < 0 || THRESHOLD_PERCENT > 5) Usage(*argv-1); goto nextarg; case 'c': cflag++; goto nextarg; case '?': default: Usage(*argv-1); } nextarg: ; argc--, argv++; } hpfile = "stdin"; psfile = "stdout"; hpfp = stdin; psfp = stdout; filter = argc < 1; if (!filter) { pathName = copystring(argv[0]); DropSuffix(pathName, ".hp"); baseName = copystring(Basename(pathName)); hpfp = Fp(pathName, &hpfile, ".hp", "r"); // I changed these two lines to use 'pathName' instead of // 'baseName'. This means that the .ps and .aux files get put in // the same directory as the .hp file. This solved Valgrind bugt // #117686. --njn // psfp = Fp(baseName, &psfile, ".ps", "w"); psfp = Fp(pathName, &psfile, ".ps", "w"); // if (pflag) auxfp = Fp(baseName, &auxfile, ".aux", "r"); if (pflag) auxfp = Fp(pathName, &auxfile, ".aux", "r"); } GetHpFile(hpfp); if (!filter && pflag) GetAuxFile(auxfp); TraceElement(); /* Orders on total, Removes trace elements (tflag) */ if (dflag) Deviation(); /* ReOrders on deviation */ if (iflag) Identorder(iflag); /* ReOrders on identifier */ if (pflag) Reorder(); /* ReOrders on aux file */ if (TWENTY) TopTwenty(); /* Selects top twenty (mflag) */ Dimensions(); areabelow = AreaBelow(); Scale(); PutPsFile(); if (!filter) { auxfp = Fp(baseName, &auxfile, ".aux", "w"); PutAuxFile(auxfp); } return(0); }
// The matrix assembly function to be called at each time step to // prepare for the linear solve. void assemble_solid (EquationSystems& es, const std::string& system_name) { //es.print_info(); #if LOG_ASSEMBLE_PERFORMANCE PerfLog perf_log("Assemble"); perf_log.push("assemble stiffness"); #endif // Get a reference to the auxiliary system //TransientExplicitSystem& aux_system = es.get_system<TransientExplicitSystem>("Newton-update"); // It is a good idea to make sure we are assembling // the proper system. libmesh_assert (system_name == "Newton-update"); // Get a constant reference to the mesh object. const MeshBase& mesh = es.get_mesh(); // The dimension that we are running const unsigned int dim = mesh.mesh_dimension(); // Get a reference to the Stokes system object. TransientLinearImplicitSystem & newton_update = es.get_system<TransientLinearImplicitSystem> ("Newton-update"); // New TransientLinearImplicitSystem & last_non_linear_soln = es.get_system<TransientLinearImplicitSystem> ("Last-non-linear-soln"); TransientLinearImplicitSystem & fluid_system_vel = es.get_system<TransientLinearImplicitSystem> ("fluid-system-vel"); #if VELOCITY TransientLinearImplicitSystem& velocity = es.get_system<TransientLinearImplicitSystem>("velocity-system"); #endif #if UN_MINUS_ONE TransientLinearImplicitSystem & unm1 = es.get_system<TransientLinearImplicitSystem> ("unm1-system"); #endif test(62); const System & ref_sys = es.get_system("Reference-Configuration"); test(63); // Numeric ids corresponding to each variable in the system const unsigned int u_var = last_non_linear_soln .variable_number ("u"); const unsigned int v_var = last_non_linear_soln .variable_number ("v"); const unsigned int w_var = last_non_linear_soln .variable_number ("w"); #if INCOMPRESSIBLE const unsigned int p_var = last_non_linear_soln .variable_number ("p"); #endif #if FLUID_P_CONST const unsigned int m_var = fluid_system_vel.variable_number ("fluid_M"); std::vector<unsigned int> dof_indices_m; #endif // Get the Finite Element type for "u". Note this will be // the same as the type for "v". FEType fe_vel_type = last_non_linear_soln.variable_type(u_var); test(64); #if INCOMPRESSIBLE // Get the Finite Element type for "p". FEType fe_pres_type = last_non_linear_soln .variable_type(p_var); #endif // Build a Finite Element object of the specified type for // the velocity variables. AutoPtr<FEBase> fe_vel (FEBase::build(dim, fe_vel_type)); #if INCOMPRESSIBLE // Build a Finite Element object of the specified type for // the pressure variables. AutoPtr<FEBase> fe_pres (FEBase::build(dim, fe_pres_type)); #endif // A Gauss quadrature rule for numerical integration. // Let the \p FEType object decide what order rule is appropriate. QGauss qrule (dim, fe_vel_type.default_quadrature_order()); // Tell the finite element objects to use our quadrature rule. fe_vel->attach_quadrature_rule (&qrule); test(65); // AutoPtr<QBase> qrule2(fe_vel_type.default_quadrature_rule(dim)); // fe_vel->attach_quadrature_rule (qrule2.get()); #if INCOMPRESSIBLE fe_pres->attach_quadrature_rule (&qrule); #endif // The element Jacobian * quadrature weight at each integration point. const std::vector<Real>& JxW = fe_vel->get_JxW(); // The element shape functions evaluated at the quadrature points. const std::vector<std::vector<Real> >& phi = fe_vel->get_phi(); // The element shape function gradients for the velocity // variables evaluated at the quadrature points. const std::vector<std::vector<RealGradient> >& dphi = fe_vel->get_dphi(); test(66); #if INCOMPRESSIBLE // The element shape functions for the pressure variable // evaluated at the quadrature points. const std::vector<std::vector<Real> >& psi = fe_pres->get_phi(); #endif const std::vector<Point>& coords = fe_vel->get_xyz(); // A reference to the \p DofMap object for this system. The \p DofMap // object handles the index translation from node and element numbers // to degree of freedom numbers. We will talk more about the \p DofMap // in future examples. const DofMap & dof_map = last_non_linear_soln .get_dof_map(); #if FLUID_P_CONST const DofMap & dof_map_fluid = fluid_system_vel .get_dof_map(); #endif // K will be the jacobian // F will be the Residual DenseMatrix<Number> Ke; DenseVector<Number> Fe; DenseSubMatrix<Number> Kuu(Ke), Kuv(Ke), Kuw(Ke), Kvu(Ke), Kvv(Ke), Kvw(Ke), Kwu(Ke), Kwv(Ke), Kww(Ke); #if INCOMPRESSIBLE DenseSubMatrix<Number> Kup(Ke),Kvp(Ke),Kwp(Ke), Kpu(Ke), Kpv(Ke), Kpw(Ke), Kpp(Ke); #endif; DenseSubVector<Number> Fu(Fe), Fv(Fe), Fw(Fe); #if INCOMPRESSIBLE DenseSubVector<Number> Fp(Fe); #endif // This vector will hold the degree of freedom indices for // the element. These define where in the global system // the element degrees of freedom get mapped. std::vector<unsigned int> dof_indices; std::vector<unsigned int> dof_indices_u; std::vector<unsigned int> dof_indices_v; std::vector<unsigned int> dof_indices_w; #if INCOMPRESSIBLE std::vector<unsigned int> dof_indices_p; #endif #if INERTIA test(67); const unsigned int a_var = last_non_linear_soln.variable_number ("a"); const unsigned int b_var = last_non_linear_soln.variable_number ("b"); const unsigned int c_var = last_non_linear_soln.variable_number ("c"); //B block DenseSubMatrix<Number> Kua(Ke), Kub(Ke), Kuc(Ke), Kva(Ke), Kvb(Ke), Kvc(Ke), Kwa(Ke), Kwb(Ke), Kwc(Ke); //C block DenseSubMatrix<Number> Kau(Ke), Kav(Ke), Kaw(Ke), Kbu(Ke), Kbv(Ke), Kbw(Ke), Kcu(Ke), Kcv(Ke), Kcw(Ke); //D block DenseSubMatrix<Number> Kaa(Ke), Kab(Ke), Kac(Ke), Kba(Ke), Kbb(Ke), Kbc(Ke), Kca(Ke), Kcb(Ke), Kcc(Ke); DenseSubVector<Number> Fa(Fe), Fb(Fe), Fc(Fe); std::vector<unsigned int> dof_indices_a; std::vector<unsigned int> dof_indices_b; std::vector<unsigned int> dof_indices_c; test(68); #endif DenseMatrix<Real> stiff; DenseVector<Real> res; VectorValue<Gradient> grad_u_mat; VectorValue<Gradient> grad_u_mat_old; const Real dt = es.parameters.get<Real>("dt"); const Real progress = es.parameters.get<Real>("progress"); #if PORO DenseVector<Real> p_stiff; DenseVector<Real> p_res; PoroelasticConfig material(dphi,psi); #endif // Just calculate jacobian contribution when we need to material.calculate_linearized_stiffness = true; MeshBase::const_element_iterator el = mesh.active_local_elements_begin(); const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end(); for ( ; el != end_el; ++el) { test(69); const Elem* elem = *el; dof_map.dof_indices (elem, dof_indices); dof_map.dof_indices (elem, dof_indices_u, u_var); dof_map.dof_indices (elem, dof_indices_v, v_var); dof_map.dof_indices (elem, dof_indices_w, w_var); #if INCOMPRESSIBLE dof_map.dof_indices (elem, dof_indices_p, p_var); #endif const unsigned int n_dofs = dof_indices.size(); const unsigned int n_u_dofs = dof_indices_u.size(); const unsigned int n_v_dofs = dof_indices_v.size(); const unsigned int n_w_dofs = dof_indices_w.size(); #if INCOMPRESSIBLE const unsigned int n_p_dofs = dof_indices_p.size(); #endif #if FLUID_P_CONST dof_map_fluid.dof_indices (elem, dof_indices_m, m_var); #endif //elem->print_info(); fe_vel->reinit (elem); #if INCOMPRESSIBLE fe_pres->reinit (elem); #endif Ke.resize (n_dofs, n_dofs); Fe.resize (n_dofs); Kuu.reposition (u_var*n_u_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs); Kuv.reposition (u_var*n_u_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs); Kuw.reposition (u_var*n_u_dofs, w_var*n_u_dofs, n_u_dofs, n_w_dofs); #if INCOMPRESSIBLE Kup.reposition (u_var*n_u_dofs, p_var*n_u_dofs, n_u_dofs, n_p_dofs); #endif Kvu.reposition (v_var*n_v_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs); Kvv.reposition (v_var*n_v_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs); Kvw.reposition (v_var*n_v_dofs, w_var*n_v_dofs, n_v_dofs, n_w_dofs); #if INCOMPRESSIBLE Kvp.reposition (v_var*n_v_dofs, p_var*n_v_dofs, n_v_dofs, n_p_dofs); #endif Kwu.reposition (w_var*n_w_dofs, u_var*n_w_dofs, n_w_dofs, n_u_dofs); Kwv.reposition (w_var*n_w_dofs, v_var*n_w_dofs, n_w_dofs, n_v_dofs); Kww.reposition (w_var*n_w_dofs, w_var*n_w_dofs, n_w_dofs, n_w_dofs); #if INCOMPRESSIBLE Kwp.reposition (w_var*n_w_dofs, p_var*n_w_dofs, n_w_dofs, n_p_dofs); Kpu.reposition (p_var*n_u_dofs, u_var*n_u_dofs, n_p_dofs, n_u_dofs); Kpv.reposition (p_var*n_u_dofs, v_var*n_u_dofs, n_p_dofs, n_v_dofs); Kpw.reposition (p_var*n_u_dofs, w_var*n_u_dofs, n_p_dofs, n_w_dofs); Kpp.reposition (p_var*n_u_dofs, p_var*n_u_dofs, n_p_dofs, n_p_dofs); #endif Fu.reposition (u_var*n_u_dofs, n_u_dofs); Fv.reposition (v_var*n_u_dofs, n_v_dofs); Fw.reposition (w_var*n_u_dofs, n_w_dofs); #if INCOMPRESSIBLE Fp.reposition (p_var*n_u_dofs, n_p_dofs); #endif #if INERTIA //B block Kua.reposition (u_var*n_u_dofs, 3*n_u_dofs + n_p_dofs, n_u_dofs, n_u_dofs); Kub.reposition (u_var*n_u_dofs, 4*n_u_dofs + n_p_dofs, n_u_dofs, n_v_dofs); Kuc.reposition (u_var*n_u_dofs, 5*n_u_dofs + n_p_dofs, n_u_dofs, n_w_dofs); Kva.reposition (v_var*n_v_dofs, 3*n_u_dofs + n_p_dofs, n_v_dofs, n_u_dofs); Kvb.reposition (v_var*n_v_dofs, 4*n_u_dofs + n_p_dofs, n_v_dofs, n_v_dofs); Kvc.reposition (v_var*n_v_dofs, 5*n_u_dofs + n_p_dofs, n_v_dofs, n_w_dofs); Kwa.reposition (w_var*n_w_dofs, 3*n_u_dofs + n_p_dofs, n_w_dofs, n_u_dofs); Kwb.reposition (w_var*n_w_dofs, 4*n_u_dofs + n_p_dofs, n_w_dofs, n_v_dofs); Kwc.reposition (w_var*n_w_dofs, 5*n_u_dofs + n_p_dofs, n_w_dofs, n_w_dofs); test(701); //C block Kau.reposition (3*n_u_dofs + n_p_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs); Kav.reposition (3*n_u_dofs + n_p_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs); Kaw.reposition (3*n_u_dofs + n_p_dofs, w_var*n_u_dofs, n_u_dofs, n_w_dofs); Kbu.reposition (4*n_u_dofs + n_p_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs); Kbv.reposition (4*n_u_dofs + n_p_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs); Kbw.reposition (4*n_u_dofs + n_p_dofs, w_var*n_v_dofs, n_v_dofs, n_w_dofs); Kcu.reposition (5*n_u_dofs + n_p_dofs, u_var*n_w_dofs, n_w_dofs, n_u_dofs); Kcv.reposition (5*n_u_dofs + n_p_dofs, v_var*n_w_dofs, n_w_dofs, n_v_dofs); Kcw.reposition (5*n_u_dofs + n_p_dofs, w_var*n_w_dofs, n_w_dofs, n_w_dofs); //D block Kaa.reposition (3*n_u_dofs + n_p_dofs, 3*n_u_dofs + n_p_dofs, n_u_dofs, n_u_dofs); Kab.reposition (3*n_u_dofs + n_p_dofs, 4*n_u_dofs + n_p_dofs, n_u_dofs, n_v_dofs); Kac.reposition (3*n_u_dofs + n_p_dofs, 5*n_u_dofs + n_p_dofs, n_u_dofs, n_w_dofs); Kba.reposition (4*n_u_dofs + n_p_dofs, 3*n_u_dofs + n_p_dofs, n_v_dofs, n_u_dofs); Kbb.reposition (4*n_u_dofs + n_p_dofs, 4*n_u_dofs + n_p_dofs, n_v_dofs, n_v_dofs); Kbc.reposition (4*n_u_dofs + n_p_dofs, 5*n_u_dofs + n_p_dofs, n_v_dofs, n_w_dofs); Kca.reposition (5*n_u_dofs + n_p_dofs, 3*n_u_dofs + n_p_dofs, n_w_dofs, n_u_dofs); Kcb.reposition (5*n_u_dofs + n_p_dofs, 4*n_u_dofs + n_p_dofs, n_w_dofs, n_v_dofs); Kcc.reposition (5*n_u_dofs + n_p_dofs, 5*n_u_dofs + n_p_dofs, n_w_dofs, n_w_dofs); Fa.reposition (3*n_u_dofs + n_p_dofs, n_u_dofs); Fb.reposition (4*n_u_dofs + n_p_dofs, n_v_dofs); Fc.reposition (5*n_u_dofs + n_p_dofs, n_w_dofs); dof_map.dof_indices (elem, dof_indices_a, a_var); dof_map.dof_indices (elem, dof_indices_b, b_var); dof_map.dof_indices (elem, dof_indices_c, c_var); test(71); #endif System& aux_system = es.get_system<System>("Reference-Configuration"); std::vector<unsigned int> undefo_index; std::vector<unsigned int> vel_index; for (unsigned int qp=0; qp<qrule.n_points(); qp++) { Point rX; for (unsigned int l=0; l<n_u_dofs; l++) { rX(0) += phi[l][qp]*ref_sys.current_local_solution->el(dof_indices_u[l]); rX(1) += phi[l][qp]*ref_sys.current_local_solution->el(dof_indices_v[l]); rX(2) += phi[l][qp]*ref_sys.current_local_solution->el(dof_indices_w[l]); } #if INERTIA || DT test(72); Real rho_s=15; Point current_x; for (unsigned int l=0; l<n_u_dofs; l++) { current_x(0) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_u[l]); current_x(1) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_v[l]); current_x(2) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_w[l]); } Point old_x; for (unsigned int l=0; l<n_u_dofs; l++) { old_x(0) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_u[l]); old_x(1) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_v[l]); old_x(2) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_w[l]); } #if INERTIA Point old_vel; for (unsigned int l=0; l<n_u_dofs; l++) { old_vel(0) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_a[l]); old_vel(1) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_b[l]); old_vel(2) += phi[l][qp]*last_non_linear_soln.old_local_solution->el(dof_indices_c[l]); } Point current_vel; for (unsigned int l=0; l<n_u_dofs; l++) { current_vel(0) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_a[l]); current_vel(1) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_b[l]); current_vel(2) += phi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_c[l]); } #endif #if UN_MINUS_ONE Point unm1_x; for (unsigned int l=0; l<n_u_dofs; l++) { unm1_x(0) += phi[l][qp]*unm1.old_local_solution->el(dof_indices_u[l]); unm1_x(1) += phi[l][qp]*unm1.old_local_solution->el(dof_indices_v[l]); unm1_x(2) += phi[l][qp]*unm1.old_local_solution->el(dof_indices_w[l]); } #endif Point value_acc; Point value_acc_alt; #if DT for (unsigned int d = 0; d < dim; ++d) { value_acc_alt(d) = (rho_s)*( ((current_x(d)-rX(d))-(old_x(d)-rX(d)))-((old_x(d)-rX(d))- (unm1_x(d)-rX(d))) ); value_acc(d) = (rho_s)*((current_x(d))-2*(old_x(d))+ (unm1_x(d))); value_acc(d) = (rho_s)*((current_x(d))-(old_x(d))); } #endif Point res_1; Point res_2; #if INERTIA for (unsigned int d = 0; d < dim; ++d) { res_1(d) = (rho_s)*((current_vel(d))-(old_vel(d))); res_2(d) = current_x(d)-dt*current_vel(d)-old_x(d); } /* std::cout<<" current_vel "<<current_vel<<std::endl; std::cout<<" res_1 "<<res_1<<std::endl; std::cout<<" res_2 "<<res_2<<std::endl; */ #endif test(73); #endif Number p_solid = 0.; #if MOVING_MESH grad_u_mat(0) = grad_u_mat(1) = grad_u_mat(2) = 0; for (unsigned int d = 0; d < dim; ++d) { std::vector<Number> u_undefo; //Fills the vector di with the global degree of freedom indices for the element. :dof_indicies aux_system.get_dof_map().dof_indices(elem, undefo_index,d); aux_system.current_local_solution->get(undefo_index, u_undefo); for (unsigned int l = 0; l != n_u_dofs; l++) grad_u_mat(d).add_scaled(dphi[l][qp], u_undefo[l]); } #endif //#include "fixed_mesh_in_solid_assemble_code.txt" #if INCOMPRESSIBLE for (unsigned int l=0; l<n_p_dofs; l++) { p_solid += psi[l][qp]*last_non_linear_soln.current_local_solution->el(dof_indices_p[l]); } #endif #if INCOMPRESSIBLE Real m=0; Real p_fluid=0; #if FLUID_VEL for (unsigned int l=0; l<n_p_dofs; l++) { p_fluid += psi[l][qp]*fluid_system_vel.current_local_solution->el(dof_indices_p[l]); } //As outlined in Chappel p=(p_curr-p_old)/2 Real p_fluid_old=0; for (unsigned int l=0; l<n_p_dofs; l++) { p_fluid_old += psi[l][qp]*fluid_system_vel.old_local_solution->el(dof_indices_p[l]); } p_fluid=0.5*p_fluid+0.5*p_fluid_old; Real m_old=0; #if FLUID_P_CONST for (unsigned int l=0; l<n_p_dofs; l++) { m += psi[l][qp]*fluid_system_vel.current_local_solution->el(dof_indices_m[l]); } for (unsigned int l=0; l<n_p_dofs; l++) { m_old += psi[l][qp]*fluid_system_vel.old_local_solution->el(dof_indices_m[l]); } #endif material.init_for_qp(grad_u_mat, p_solid, qp, 1.0*m+0.0*m_old, p_fluid); #endif #endif //#if INCOMPRESSIBLE #if INCOMPRESSIBLE && ! PORO material.init_for_qp(grad_u_mat, p_solid, qp); #endif for (unsigned int i=0; i<n_u_dofs; i++) { res.resize(dim); material.get_residual(res, i); res.scale(JxW[qp]); #if INERTIA res.scale(dt); #endif #if DT res.scale(dt); #endif //std::cout<< "res "<<res<<std::endl; Fu(i) += res(0); Fv(i) += res(1) ; Fw(i) += res(2); #if GRAVITY Real grav=0.0; Fu(i) += progress*grav*JxW[qp]*phi[i][qp]; #endif #if INERTIA Fu(i) += JxW[qp]*phi[i][qp]*res_1(0); Fv(i) += JxW[qp]*phi[i][qp]*res_1(1); Fw(i) += JxW[qp]*phi[i][qp]*res_1(2); Fa(i) += JxW[qp]*phi[i][qp]*res_2(0); Fb(i) += JxW[qp]*phi[i][qp]*res_2(1); Fc(i) += JxW[qp]*phi[i][qp]*res_2(2); #endif // Matrix contributions for the uu and vv couplings. for (unsigned int j=0; j<n_u_dofs; j++) { material.get_linearized_stiffness(stiff, i, j); stiff.scale(JxW[qp]); #if DT res.scale(dt); #endif #if INERTIA stiff.scale(dt); Kua(i,j)+= rho_s*JxW[qp]*phi[i][qp]*phi[j][qp]; Kvb(i,j)+= rho_s*JxW[qp]*phi[i][qp]*phi[j][qp]; Kwc(i,j)+= rho_s*JxW[qp]*phi[i][qp]*phi[j][qp]; Kau(i,j)+= JxW[qp]*phi[i][qp]*phi[j][qp]; Kbv(i,j)+= JxW[qp]*phi[i][qp]*phi[j][qp]; Kcw(i,j)+= JxW[qp]*phi[i][qp]*phi[j][qp]; Kaa(i,j)+= -dt*JxW[qp]*phi[i][qp]*phi[j][qp]; Kbb(i,j)+= -dt*JxW[qp]*phi[i][qp]*phi[j][qp]; Kcc(i,j)+= -dt*JxW[qp]*phi[i][qp]*phi[j][qp]; #endif Kuu(i,j)+= stiff(u_var, u_var); Kuv(i,j)+= stiff(u_var, v_var); Kuw(i,j)+= stiff(u_var, w_var); Kvu(i,j)+= stiff(v_var, u_var); Kvv(i,j)+= stiff(v_var, v_var); Kvw(i,j)+= stiff(v_var, w_var); Kwu(i,j)+= stiff(w_var, u_var); Kwv(i,j)+= stiff(w_var, v_var); Kww(i,j)+= stiff(w_var, w_var); #if GRAVITY Kuu(i,j)+= 1*JxW[qp]*phi[i][qp]*phi[j][qp]; #endif } } #if INCOMPRESSIBLE && FLUID_P_CONST for (unsigned int i = 0; i < n_p_dofs; i++) { material.get_p_residual(p_res, i); p_res.scale(JxW[qp]); Fp(i) += p_res(0); } for (unsigned int i = 0; i < n_u_dofs; i++) { for (unsigned int j = 0; j < n_p_dofs; j++) { material.get_linearized_uvw_p_stiffness(p_stiff, i, j); p_stiff.scale(JxW[qp]); Kup(i, j) += p_stiff(0); Kvp(i, j) += p_stiff(1); Kwp(i, j) += p_stiff(2); } } for (unsigned int i = 0; i < n_p_dofs; i++) { for (unsigned int j = 0; j < n_u_dofs; j++) { material.get_linearized_p_uvw_stiffness(p_stiff, i, j); p_stiff.scale(JxW[qp]); Kpu(i, j) += p_stiff(0); Kpv(i, j) += p_stiff(1); Kpw(i, j) += p_stiff(2); } } #endif #if CHAP && ! FLUID_P_CONST for (unsigned int i = 0; i < n_p_dofs; i++) { Fp(i) += 0*JxW[qp]*psi[i][qp]; } for (unsigned int i = 0; i < n_p_dofs; i++) { for (unsigned int j = 0; j < n_p_dofs; j++) { Kpp(i, j) += 1*JxW[qp]*psi[i][qp]*psi[j][qp]; } } #endif }//end of qp loop newton_update.matrix->add_matrix (Ke, dof_indices); newton_update.rhs->add_vector (Fe, dof_indices); } // end of element loop // dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices); newton_update.rhs->close(); newton_update.matrix->close(); #if LOG_ASSEMBLE_PERFORMANCE perf_log.pop("assemble stiffness"); #endif #if LOG_ASSEMBLE_PERFORMANCE perf_log.push("assemble bcs"); #endif //Assemble the boundary conditions. assemble_bcs(es); #if LOG_ASSEMBLE_PERFORMANCE perf_log.pop("assemble bcs"); #endif std::ofstream lhs_out("lhsoutS3.dat"); Ke.print(lhs_out); lhs_out.close(); return; }
void BoussinesqBuoyancyAdjointStabilization<Mu>::element_constraint( bool compute_jacobian, AssemblyContext& context, CachedValues& /*cache*/ ) { #ifdef GRINS_USE_GRVY_TIMERS this->_timer->BeginTimer("BoussinesqBuoyancyAdjointStabilization::element_constraint"); #endif // The number of local degrees of freedom in each variable. const unsigned int n_p_dofs = context.get_dof_indices(_flow_vars.p_var()).size(); const unsigned int n_u_dofs = context.get_dof_indices(_flow_vars.u_var()).size(); const unsigned int n_T_dofs = context.get_dof_indices(_temp_vars.T_var()).size(); // Element Jacobian * quadrature weights for interior integration. const std::vector<libMesh::Real> &JxW = context.get_element_fe(_flow_vars.u_var())->get_JxW(); const std::vector<std::vector<libMesh::Real> >& T_phi = context.get_element_fe(this->_temp_vars.T_var())->get_phi(); const std::vector<std::vector<libMesh::Real> >& u_phi = context.get_element_fe(this->_flow_vars.u_var())->get_phi(); const std::vector<std::vector<libMesh::RealGradient> >& p_dphi = context.get_element_fe(this->_flow_vars.p_var())->get_dphi(); libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_flow_vars.p_var()); // R_{p} libMesh::DenseSubMatrix<libMesh::Number> &KpT = context.get_elem_jacobian(_flow_vars.p_var(), _temp_vars.T_var()); // J_{pT} libMesh::DenseSubMatrix<libMesh::Number> &Kpu = context.get_elem_jacobian(_flow_vars.p_var(), _flow_vars.u_var()); // J_{pu} libMesh::DenseSubMatrix<libMesh::Number> &Kpv = context.get_elem_jacobian(_flow_vars.p_var(), _flow_vars.v_var()); // J_{pv} libMesh::DenseSubMatrix<libMesh::Number> *Kpw = NULL; if(this->_dim == 3) { Kpw = &context.get_elem_jacobian (_flow_vars.p_var(), _flow_vars.w_var()); // J_{pw} } // Now we will build the element Jacobian and residual. // Constructing the residual requires the solution and its // gradient from the previous timestep. This must be // calculated at each quadrature point by summing the // solution degree-of-freedom values by the appropriate // weight functions. unsigned int n_qpoints = context.get_element_qrule().n_points(); libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u_var()); for (unsigned int qp=0; qp != n_qpoints; qp++) { libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp ); libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp ); libMesh::RealGradient U( context.interior_value( this->_flow_vars.u_var(), qp ), context.interior_value( this->_flow_vars.v_var(), qp ) ); if( this->_dim == 3 ) { U(2) = context.interior_value( this->_flow_vars.w_var(), qp ); } // Compute the viscosity at this qp libMesh::Real mu_qp = this->_mu(context, qp); libMesh::Real tau_M; libMesh::Real d_tau_M_d_rho; libMesh::Gradient d_tau_M_dU; if (compute_jacobian) this->_stab_helper.compute_tau_momentum_and_derivs ( context, qp, g, G, this->_rho, U, mu_qp, tau_M, d_tau_M_d_rho, d_tau_M_dU, this->_is_steady ); else tau_M = this->_stab_helper.compute_tau_momentum ( context, qp, g, G, this->_rho, U, mu_qp, this->_is_steady ); // Compute the solution & its gradient at the old Newton iterate. libMesh::Number T; T = context.interior_value(_temp_vars.T_var(), qp); libMesh::RealGradient d_residual_dT = _rho_ref*_beta_T*_g; // d_residual_dU = 0 libMesh::RealGradient residual = (T-_T_ref)*d_residual_dT; // First, an i-loop over the velocity degrees of freedom. // We know that n_u_dofs == n_v_dofs so we can compute contributions // for both at the same time. for (unsigned int i=0; i != n_p_dofs; i++) { Fp(i) += tau_M*residual*p_dphi[i][qp]*JxW[qp]; if (compute_jacobian) { for (unsigned int j=0; j != n_T_dofs; ++j) { KpT(i,j) += tau_M*d_residual_dT*T_phi[j][qp]*p_dphi[i][qp]*JxW[qp] * context.get_elem_solution_derivative(); } for (unsigned int j=0; j != n_u_dofs; ++j) { Kpu(i,j) += d_tau_M_dU(0)*u_phi[j][qp]*residual*p_dphi[i][qp]*JxW[qp] * context.get_elem_solution_derivative(); Kpv(i,j) += d_tau_M_dU(1)*u_phi[j][qp]*residual*p_dphi[i][qp]*JxW[qp] * context.get_elem_solution_derivative(); } if( this->_dim == 3 ) for (unsigned int j=0; j != n_u_dofs; ++j) { (*Kpw)(i,j) += d_tau_M_dU(2)*u_phi[j][qp]*residual*p_dphi[i][qp]*JxW[qp] * context.get_elem_solution_derivative(); } } } } // End quadrature loop #ifdef GRINS_USE_GRVY_TIMERS this->_timer->EndTimer("BoussinesqBuoyancyAdjointStabilization::element_constraint"); #endif return; }
void DislocationDensity<EvalT, Traits>:: evaluateFields(typename Traits::EvalData workset) { Teuchos::SerialDenseMatrix<int, double> A; Teuchos::SerialDenseMatrix<int, double> X; Teuchos::SerialDenseMatrix<int, double> B; Teuchos::SerialDenseSolver<int, double> solver; A.shape(numNodes,numNodes); X.shape(numNodes,numNodes); B.shape(numNodes,numNodes); // construct Identity for RHS for (int i = 0; i < numNodes; ++i) B(i,i) = 1.0; for (int i=0; i < G.size() ; i++) G[i] = 0.0; // construct the node --> point operator for (std::size_t cell=0; cell < workset.numCells; ++cell) { for (std::size_t node=0; node < numNodes; ++node) for (std::size_t qp=0; qp < numQPs; ++qp) A(qp,node) = BF(cell,node,qp); X = 0.0; solver.setMatrix( Teuchos::rcp( &A, false) ); solver.setVectors( Teuchos::rcp( &X, false ), Teuchos::rcp( &B, false ) ); // Solve the system A X = B to find A_inverse int status = 0; status = solver.factor(); status = solver.solve(); // compute nodal Fp nodalFp.initialize(0.0); for (std::size_t node=0; node < numNodes; ++node) for (std::size_t qp=0; qp < numQPs; ++qp) for (std::size_t i=0; i < numDims; ++i) for (std::size_t j=0; j < numDims; ++j) nodalFp(node,i,j) += X(node,qp) * Fp(cell,qp,i,j); // compute the curl using nodalFp curlFp.initialize(0.0); for (std::size_t node=0; node < numNodes; ++node) { for (std::size_t qp=0; qp < numQPs; ++qp) { curlFp(qp,0,0) += nodalFp(node,0,2) * GradBF(cell,node,qp,1) - nodalFp(node,0,1) * GradBF(cell,node,qp,2); curlFp(qp,0,1) += nodalFp(node,1,2) * GradBF(cell,node,qp,1) - nodalFp(node,1,1) * GradBF(cell,node,qp,2); curlFp(qp,0,2) += nodalFp(node,2,2) * GradBF(cell,node,qp,1) - nodalFp(node,2,1) * GradBF(cell,node,qp,2); curlFp(qp,1,0) += nodalFp(node,0,0) * GradBF(cell,node,qp,2) - nodalFp(node,0,2) * GradBF(cell,node,qp,0); curlFp(qp,1,1) += nodalFp(node,1,0) * GradBF(cell,node,qp,2) - nodalFp(node,1,2) * GradBF(cell,node,qp,0); curlFp(qp,1,2) += nodalFp(node,2,0) * GradBF(cell,node,qp,2) - nodalFp(node,2,2) * GradBF(cell,node,qp,0); curlFp(qp,2,0) += nodalFp(node,0,1) * GradBF(cell,node,qp,0) - nodalFp(node,0,0) * GradBF(cell,node,qp,1); curlFp(qp,2,1) += nodalFp(node,1,1) * GradBF(cell,node,qp,0) - nodalFp(node,1,0) * GradBF(cell,node,qp,1); curlFp(qp,2,2) += nodalFp(node,2,1) * GradBF(cell,node,qp,0) - nodalFp(node,2,0) * GradBF(cell,node,qp,1); } } for (std::size_t qp=0; qp < numQPs; ++qp) for (std::size_t i=0; i < numDims; ++i) for (std::size_t j=0; j < numDims; ++j) for (std::size_t k=0; k < numDims; ++k) G(cell,qp,i,j) += Fp(cell,qp,i,k) * curlFp(qp,k,j); } }
int main() { SystemInit(); const Ec1 g1(-1, 1); const Ec2 g2( Fp2(Fp(g2c.aa), Fp(g2c.ab)), Fp2(Fp(g2c.ba), Fp(g2c.bb)) ); // assertBool g2 and g1 on curve assertBool("g1 is on EC", g1.isValid()); assertBool("g2 is on twist EC", g2.isValid()); puts("order of group"); const Mpz& r = GetParamR(); PUT(r); { Ec1 t = g1; t.mul(r); assertBool("orgder of g1 == r", t.isZero()); } { Ec2 t = g2; t.mul(r); assertBool("order of g2 == r", t.isZero()); } const Mpz a("123456789012345"); const Mpz b("998752342342342342424242421"); // scalar-multiplication sample { Mpz c = a; c.add(b); Ec1 Pa = g1; Pa.mul(a); Ec1 Pb = g1; Pb.mul(b); Ec1 Pc = g1; Pc.mul(c); Ec1 out = Pa; out.add(Pb); assertEqual("check g1 * c = g1 * a + g1 * b", Pc, out); } Fp12 e; // calc e : G2 x G1 -> G3 pairing e.pairing(g2, g1); // e = e(g2, g1) PUT(e); { Fp12 t = e; t.power(r); assertEqual("order of e == r", t, Fp12(1)); } Ec2 g2a = g2; g2a.mul(a); Fp12 ea1; ea1.pairing(g2a, g1); Fp12 ea2 = e; ea2.power(a); // ea2 = e^a assertEqual("e(g2 * a, g1) = e(g2, g1)^a", ea1, ea2); Ec1 g1b = g1; g1b.mul(b); Fp12 eb1; eb1.pairing(g2, g1b); // eb1 = e(g2, g1b) Fp12 eb2 = e; eb2.power(b); // eb2 = e^b assertEqual("e(g2a, g1 * b) = e(g2, g1)^b", eb1, eb2); Ec1 q1 = g1; q1.mul(12345); assertBool("q1 is on EC", q1.isValid()); Fp12 e1, e2; e1.pairing(g2, g1); // e1 = e(g2, g1) e2.pairing(g2, q1); // e2 = e(g2, q1) Ec1 q2 = g1; q2.add(q1); e.pairing(g2, q2); // e = e(g2, q2) e1.mul(e2); assertEqual("e = e1 * e2", e, e1); /* reduce one copy as the following */ g2a = g2; g2a.mul(a); g1b = g1; g1b.mul(b); Ec2 g2at = g2; g2at.mul(a); Ec1 g1bt = g1; g1bt.mul(b); assertEqual("g2a == g2 * a", g2a, g2at); assertEqual("g1b == g1 * b", g1b, g1bt); printf("errNum = %d\n", errNum); }
Fp PublicParams::getFp(long x) const { return Fp(x); }
Fp operator+(const Fp& me, const Fp& rhs) { return Fp(me.x + rhs.x); }
int main(int argc, char *argv[]) { programname = copystring(Basename(argv[0])); argc--, argv++; while (argc && argv[0][0] == '-') { while (*++*argv) switch(**argv) { case 'p': pflag++; break; case 'e': eflag++; epsfwidth = WidthInPoints(*argv + 1); goto nextarg; case 'd': dflag++; goto nextarg; case 'i': switch( *(*argv + 1) ) { case '-': iflag = -1; break; case '+': default: iflag = 1; } goto nextarg; case 'g': gflag++; goto nextarg; case 'y': yflag++; goto nextarg; case 'b': bflag++; goto nextarg; case 's': sflag++; goto nextarg; case 'm': mflag++; TWENTY = atoi(*argv + 1); // only 20 keys fit on a page if (TWENTY > DEFAULT_TWENTY) multipageflag++; goto nextarg; case 'M': multipageflag++; goto nextarg; case 't': tflag++; THRESHOLD_PERCENT = (floatish) atof(*argv + 1); if (THRESHOLD_PERCENT < 0 || THRESHOLD_PERCENT > 5) Usage(*argv-1); goto nextarg; case 'c': cflag++; goto nextarg; case '?': default: Usage(*argv-1); } nextarg: ; argc--, argv++; } hpfile = "stdin"; psfile = "stdout"; hpfp = stdin; psfp = stdout; filter = argc < 1; if (!filter) { pathName = copystring(argv[0]); DropSuffix(pathName, ".hp"); #if defined(_WIN32) DropSuffix(pathName, ".exe"); #endif baseName = copystring(Basename(pathName)); hpfp = Fp(pathName, &hpfile, ".hp", "r"); psfp = Fp(baseName, &psfile, ".ps", "w"); if (pflag) auxfp = Fp(baseName, &auxfile, ".aux", "r"); } GetHpFile(hpfp); if (!filter && pflag) GetAuxFile(auxfp); TraceElement(); /* Orders on total, Removes trace elements (tflag) */ if (dflag) Deviation(); /* ReOrders on deviation */ if (iflag) Identorder(iflag); /* ReOrders on identifier */ if (pflag) Reorder(); /* ReOrders on aux file */ /* Selects top bands (mflag) - can be more than 20 now */ if (TWENTY != 0) TopTwenty(); Dimensions(); areabelow = AreaBelow(); Scale(); PutPsFile(); if (!filter) { auxfp = Fp(baseName, &auxfile, ".aux", "w"); PutAuxFile(auxfp); } return(0); }