Beispiel #1
0
void FreeDoubleMtx( double **mtx )
{
	int i;
	for( i=0; mtx[i]; i++ )
		FreeDoubleVec( mtx[i] );
	free( mtx );
}
Beispiel #2
0
void blockAlign3( int *cut1, int *cut2, Segment **seg1, Segment **seg2, double **ocrossscore, int *ncut )
// memory complexity = O(n^3), time complexity = O(n^2)
{
	int i, j, shift, cur1, cur2, count;
	static TLS int crossscoresize = 0;
	static TLS int jumpposi, *jumppos;
	static TLS double jumpscorei, *jumpscore;
	static TLS int *result1 = NULL;
	static TLS int *result2 = NULL;
	static TLS int *ocut1 = NULL;
	static TLS int *ocut2 = NULL;
	double maximum;
	static TLS double **crossscore = NULL;
	static TLS int **track = NULL;

	if( result1 == NULL )
	{
		result1 = AllocateIntVec( MAXSEG );
		result2 = AllocateIntVec( MAXSEG );
		ocut1 = AllocateIntVec( MAXSEG );
		ocut2 = AllocateIntVec( MAXSEG );
	}
    if( crossscoresize < *ncut+2 )
    {
        crossscoresize = *ncut+2;
		if( fftkeika ) fprintf( stderr, "allocating crossscore and track, size = %d\n", crossscoresize );
		if( track ) FreeIntMtx( track );
        if( crossscore ) FreeDoubleMtx( crossscore );
        if( jumppos ) FreeIntVec( jumppos );
        if( jumpscore ) FreeDoubleVec( jumpscore );
		track = AllocateIntMtx( crossscoresize, crossscoresize );
        crossscore = AllocateDoubleMtx( crossscoresize, crossscoresize );
        jumppos = AllocateIntVec( crossscoresize );
        jumpscore = AllocateDoubleVec( crossscoresize );
    }

#if 0
	for( i=0; i<*ncut-2; i++ )
		fprintf( stderr, "%d.start = %d, score = %f\n", i, seg1[i]->start, seg1[i]->score );

	for( i=0; i<*ncut; i++ )
		fprintf( stderr, "i=%d, cut1 = %d, cut2 = %d\n", i, cut1[i], cut2[i] );
	for( i=0; i<*ncut; i++ ) 
	{
		for( j=0; j<*ncut; j++ )
			fprintf( stderr, "%#4.0f ", ocrossscore[i][j] );
		fprintf( stderr, "\n" );
	}
#endif

	for( i=0; i<*ncut; i++ ) for( j=0; j<*ncut; j++ )  /* mudadanaa */
		crossscore[i][j] = ocrossscore[i][j];
	for( i=0; i<*ncut; i++ ) 
	{
		ocut1[i] = cut1[i];
		ocut2[i] = cut2[i];
	}
	for( j=0; j<*ncut; j++ )
	{
		jumpscore[j] = -999.999;
		jumppos[j] = -1;
	}

	for( i=1; i<*ncut; i++ )
	{

		jumpscorei = -999.999;
		jumpposi = -1;

		for( j=1; j<*ncut; j++ )
		{
#if 1
			fprintf( stderr, "in blockalign3, ### i=%d, j=%d\n", i, j );
#endif


#if 0
			for( k=0; k<j-2; k++ )
			{
/*
				fprintf( stderr, "k=%d, i=%d\n", k, i );
*/
				if( k && k<*ncut-1 && j<*ncut-1 && !permit( seg1[k-1], seg1[j-1] ) ) continue;
				if( crossscore[i-1][k] > maxj )
				{
					pointi = k;
					maxi = crossscore[i-1][k];
				}
			}

			pointj = 0; maxj = 0.0;
			for( k=0; k<i-2; k++ )
			{
				if( k && k<*ncut-1 && i<*ncut-1 && !permit( seg2[k-1], seg2[i-1] ) ) continue;
				if( crossscore[k][j-1] > maxj )
				{
					pointj = k;
					maxj = crossscore[k][j-1];
				}
			}	


			maxi += penalty;
			maxj += penalty;
#endif
			maximum = crossscore[i-1][j-1];
			track[i][j] = 0;

			if( maximum < jumpscorei && permit( seg1[jumpposi], seg1[i] ) )
			{
				maximum = jumpscorei;
				track[i][j] = j - jumpposi;
			}

			if( maximum < jumpscore[j] && permit( seg2[jumppos[j]], seg2[j] ) )
			{
				maximum = jumpscore[j];
				track[i][j] = jumpscore[j] - i;
			}

			crossscore[i][j] += maximum;

			if( jumpscorei < crossscore[i-1][j] )
			{
				jumpscorei = crossscore[i-1][j];
				jumpposi = j;
			}

			if( jumpscore[j] < crossscore[i][j-1] )
			{
				jumpscore[j] = crossscore[i][j-1];
				jumppos[j] = i;
			}
		}
	}
#if 0
	for( i=0; i<*ncut; i++ ) 
	{
		for( j=0; j<*ncut; j++ )
			fprintf( stderr, "%3d ", track[i][j] );
		fprintf( stderr, "\n" );
	}
#endif


	result1[MAXSEG-1] = *ncut-1;
	result2[MAXSEG-1] = *ncut-1;

	for( i=MAXSEG-1; i>=1; i-- )
	{
		cur1 = result1[i];
		cur2 = result2[i];
		if( cur1 == 0 || cur2 == 0 ) break;
		shift = track[cur1][cur2];
		if( shift == 0 )
		{
			result1[i-1] = cur1 - 1;
			result2[i-1] = cur2 - 1;
			continue;
		}
		else if( shift > 0 )
		{
			result1[i-1] = cur1 - 1;
			result2[i-1] = cur2 - shift;
		}
		else if( shift < 0 )
		{
			result1[i-1] = cur1 + shift;
			result2[i-1] = cur2 - 1;
		}
	}

	count = 0;
	for( j=i; j<MAXSEG; j++ )
	{
		if( ocrossscore[result1[j]][result2[j]] == 0.0 ) continue;

		if( result1[j] == result1[j-1] || result2[j] == result2[j-1] )
			if( ocrossscore[result1[j]][result2[j]] > ocrossscore[result1[j-1]][result2[j-1]] )
				count--;
				
		cut1[count] = ocut1[result1[j]];
		cut2[count] = ocut2[result2[j]];

		count++;
	}

	*ncut = count;
#if 0
	for( i=0; i<*ncut; i++ )
		fprintf( stderr, "i=%d, cut1 = %d, cut2 = %d\n", i, cut1[i], cut2[i] );
#endif
}
Beispiel #3
0
int alignableReagion( int    clus1, int    clus2, 
					   char  **seq1, char  **seq2,
					   double *eff1, double *eff2,
					   Segment *seg )
{
	int i, j, k;
	int status, starttmp = 0; // by D.Mathog, a gess
	double score;
	int value = 0;
	int len, maxlen;
	int length = 0; // by D.Mathog, a gess
	static TLS double *stra = NULL;
	static TLS int alloclen = 0;
	double totaleff;
	double cumscore;
	static TLS double threshold;
	static TLS double *prf1 = NULL;
	static TLS double *prf2 = NULL;
	static TLS int *hat1 = NULL;
	static TLS int *hat2 = NULL;
	int pre1, pre2;
#if 0
	char **seq1pt;
	char **seq2pt;
	double *eff1pt;
	double *eff2pt;
#endif

#if 0
	fprintf( stderr, "### In alignableRegion, clus1=%d, clus2=%d \n", clus1, clus2 );
	fprintf( stderr, "seq1[0] = %s\n", seq1[0] );
	fprintf( stderr, "seq2[0] = %s\n", seq2[0] );
	fprintf( stderr, "eff1[0] = %f\n", eff1[0] );
	fprintf( stderr, "eff2[0] = %f\n", eff2[0] );
#endif

	if( clus1 == 0 )
	{
		if( stra ) FreeDoubleVec( stra ); stra = NULL;
		if( prf1 ) FreeDoubleVec( prf1 ); prf1 = NULL;
		if( prf2 ) FreeDoubleVec( prf2 ); prf2 = NULL;
		if( hat1 ) FreeIntVec( hat1 ); hat1 = NULL;
		if( hat2 ) FreeIntVec( hat2 ); hat2 = NULL;
		alloclen = 0;
		return( 0 );
	}

	if( prf1 == NULL )
	{
		prf1 = AllocateDoubleVec( nalphabets );
		prf2 = AllocateDoubleVec( nalphabets );
		hat1 = AllocateIntVec( nalphabets+1 );
		hat2 = AllocateIntVec( nalphabets+1 );
	}

	len = MIN( strlen( seq1[0] ), strlen( seq2[0] ) );
	maxlen = MAX( strlen( seq1[0] ), strlen( seq2[0] ) ) + fftWinSize;
	if( alloclen < maxlen )
	{
		if( alloclen )
		{
			FreeDoubleVec( stra );
		}
		else
		{
			threshold = (int)fftThreshold / 100.0 * 600.0 * fftWinSize;
		}
		stra = AllocateDoubleVec( maxlen );
		alloclen = maxlen;
	}


	totaleff = 0.0;
	for( i=0; i<clus1; i++ ) for( j=0; j<clus2; j++ ) totaleff += eff1[i] * eff2[j];
	for( i=0; i<len; i++ )
	{
		/* make prfs */
		for( j=0; j<nalphabets; j++ )
		{
			prf1[j] = 0.0;
			prf2[j] = 0.0;
		}
#if 0
		seq1pt = seq1;
		eff1pt = eff1;
		j = clus1;
		while( j-- ) prf1[amino_n[(*seq1pt++)[i]]] += *eff1pt++;
#else
		for( j=0; j<clus1; j++ ) prf1[amino_n[(int)seq1[j][i]]] += eff1[j];
#endif
		for( j=0; j<clus2; j++ ) prf2[amino_n[(int)seq2[j][i]]] += eff2[j];

		/* make hats */
		pre1 = pre2 = nalphabets;
		for( j=25; j>=0; j-- )
		{
			if( prf1[j] )
			{
				hat1[pre1] = j;
				pre1 = j;
			}
			if( prf2[j] )
			{
				hat2[pre2] = j;
				pre2 = j;
			}
		}
		hat1[pre1] = -1;
		hat2[pre2] = -1;

		/* make site score */
		stra[i] = 0.0;
		for( k=hat1[nalphabets]; k!=-1; k=hat1[k] ) 
			for( j=hat2[nalphabets]; j!=-1; j=hat2[j] ) 
//				stra[i] += n_dis[k][j] * prf1[k] * prf2[j];
				stra[i] += n_disFFT[k][j] * prf1[k] * prf2[j];
		stra[i] /= totaleff;
	}

	(seg+0)->skipForeward = 0;
	(seg+1)->skipBackward = 0;
	status = 0;
	cumscore = 0.0;
	score = 0.0;
	for( j=0; j<fftWinSize; j++ ) score += stra[j];

	for( i=1; i<len-fftWinSize; i++ )
	{
		score = score - stra[i-1] + stra[i+fftWinSize-1];
#if TMPTMPTMP
		fprintf( stderr, "%d %10.0f   ? %10.0f\n", i, score, threshold );
#endif

		if( score > threshold )
		{
#if 0
			seg->start = i;
			seg->end = i;
			seg->center = ( seg->start + seg->end + fftWinSize ) / 2 ;
			seg->score = score;
			status = 0;
			value++;
#else
			if( !status )
			{
				status = 1;
				starttmp = i;
				length = 0;
				cumscore = 0.0;
			}
			length++;
			cumscore += score;
#endif
		}
		if( score <= threshold || length > SEGMENTSIZE )
		{
			if( status )
			{
				if( length > fftWinSize )
				{
					seg->start = starttmp;
					seg->end = i;
					seg->center = ( seg->start + seg->end + fftWinSize ) / 2 ;
					seg->score = cumscore;
#if 0
					fprintf( stderr, "%d-%d length = %d, score = %f, value = %d\n", seg->start, seg->end, length, cumscore, value );
#endif
					if( length > SEGMENTSIZE )
					{
						(seg+0)->skipForeward = 1;
						(seg+1)->skipBackward = 1;
					}
					else
					{
						(seg+0)->skipForeward = 0;
						(seg+1)->skipBackward = 0;
					}
					value++;
					seg++;
				}
				length = 0;
				cumscore = 0.0;
				status = 0;
				starttmp = i;
				if( value > MAXSEG - 3 ) ErrorExit( "TOO MANY SEGMENTS!");
			}
		}
	}
	if( status && length > fftWinSize )
	{
		seg->end = i;
		seg->start = starttmp;
		seg->center = ( starttmp + i + fftWinSize ) / 2 ;
		seg->score = cumscore;
#if 0
fprintf( stderr, "%d-%d length = %d\n", seg->start, seg->end, length );
#endif
		value++;
	}
#if TMPTMPTMP
	exit( 0 );
#endif
//	fprintf( stderr, "returning %d\n", value );
	return( value );
}
Beispiel #4
0
void constants( int nseq, char **seq )
{
	int i, j, x;
//	double tmp;

	if( dorp == 'd' )  /* DNA */
	{
		int k, m;
		double average;
		double **pamx = AllocateDoubleMtx( 11,11 );
		double **pam1 = AllocateDoubleMtx( 4, 4 );
		double *freq = AllocateDoubleVec( 4 );


		scoremtx = -1;
		if( RNAppenalty == NOTSPECIFIED ) RNAppenalty = DEFAULTRNAGOP_N;
		if( RNAppenalty_ex == NOTSPECIFIED ) RNAppenalty_ex = DEFAULTRNAGEP_N;
		if( ppenalty == NOTSPECIFIED ) ppenalty = DEFAULTGOP_N;
		if( ppenalty_OP == NOTSPECIFIED ) ppenalty_OP = DEFAULTGOP_N;
		if( ppenalty_ex == NOTSPECIFIED ) ppenalty_ex = DEFAULTGEP_N;
		if( ppenalty_EX == NOTSPECIFIED ) ppenalty_EX = DEFAULTGEP_N;
		if( poffset == NOTSPECIFIED ) poffset = DEFAULTOFS_N;
		if( RNApthr == NOTSPECIFIED ) RNApthr = DEFAULTRNATHR_N;
		if( pamN == NOTSPECIFIED ) pamN = DEFAULTPAMN;
		if( kimuraR == NOTSPECIFIED ) kimuraR = 2;

		RNApenalty = (int)( 3 * 600.0 / 1000.0 * RNAppenalty + 0.5 );
		RNApenalty_ex = (int)( 3 * 600.0 / 1000.0 * RNAppenalty_ex + 0.5 );
//		fprintf( stderr, "DEFAULTRNAGOP_N = %d\n", DEFAULTRNAGOP_N );
//		fprintf( stderr, "RNAppenalty = %d\n", RNAppenalty );
//		fprintf( stderr, "RNApenalty = %d\n", RNApenalty );


		RNAthr = (int)( 3 * 600.0 / 1000.0 * RNApthr + 0.5 );
		penalty = (int)( 3 * 600.0 / 1000.0 * ppenalty + 0.5);
		penalty_OP = (int)( 3 * 600.0 / 1000.0 * ppenalty_OP + 0.5);
		penalty_ex = (int)( 3 * 600.0 / 1000.0 * ppenalty_ex + 0.5);
		penalty_EX = (int)( 3 * 600.0 / 1000.0 * ppenalty_EX + 0.5);
		offset = (int)( 3 * 600.0 / 1000.0 * poffset + 0.5);
		offsetFFT = (int)( 3 * 600.0 / 1000.0 * (-0) + 0.5);
		offsetLN = (int)( 3 * 600.0 / 1000.0 * 100 + 0.5);
		penaltyLN = (int)( 3 * 600.0 / 1000.0 * -2000 + 0.5);
		penalty_exLN = (int)( 3 * 600.0 / 1000.0 * -100 + 0.5);
		sprintf( modelname, "%s%d (%d), %6.3f (%6.3f), %6.3f (%6.3f)", rnakozo?"RNA":"DNA", pamN, kimuraR,
        -(double)ppenalty*0.001, -(double)ppenalty*0.003, -(double)poffset*0.001, -(double)poffset*0.003 );

		if( kimuraR == 9999 ) 
		{
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ ) 
				pamx[i][j] = (double)locn_disn[i][j];
#if NORMALIZE1
			average = 0.0;
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ ) 
				average += pamx[i][j];
			average /= 16.0;
	
   	     if( disp )
				fprintf( stderr, "average = %f\n", average );
	
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ ) 
				pamx[i][j] -= average;
	
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				pamx[i][j] *= 600.0 / average;
			
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				pamx[i][j] -= offset; 
#endif
		}
		else
		{
				double f = 0.99;
				double s = (double)kimuraR / ( 2 + kimuraR ) * 0.01;
				double v = (double)1       / ( 2 + kimuraR ) * 0.01;
				pam1[0][0] = f; pam1[0][1] = s; pam1[0][2] = v; pam1[0][3] = v;
				pam1[1][0] = s; pam1[1][1] = f; pam1[1][2] = v; pam1[1][3] = v;
				pam1[2][0] = v; pam1[2][1] = v; pam1[2][2] = f; pam1[2][3] = s;
				pam1[3][0] = v; pam1[3][1] = v; pam1[3][2] = s; pam1[3][3] = f;
	
				fprintf( stderr, "generating %dPAM scoring matrix for nucleotides ... ", pamN );
	
		       	if( disp )
   		    	{
   		     		fprintf( stderr, " TPM \n" );
   		        	for( i=0; i<4; i++ )
   			       	{
   		            	for( j=0; j<4; j++ )
   		                	fprintf( stderr, "%+#6.10f", pam1[i][j] );
   		            	fprintf( stderr, "\n" );
   		        	}
   		        	fprintf( stderr, "\n" );
   		     	}
	
	
				MtxuntDouble( pamx, 4 );
				for( x=0; x < pamN; x++ ) MtxmltDouble( pamx, pam1, 4 );
				for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
					pamx[i][j] /= 1.0 / 4.0;
	
				for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				{
					if( pamx[i][j] == 0.0 ) 
					{
						fprintf( stderr, "WARNING: pamx[i][j] = 0.0 ?\n" );
						pamx[i][j] = 0.00001; /* by J. Thompson */
					}
					pamx[i][j] = log10( pamx[i][j] ) * 1000.0;
				}
	
   	    		if( disp )
   	    		{
   		     		fprintf( stderr, " after log\n" );
   	        		for( i=0; i<4; i++ )
   		       		{
   	        	    	for( j=0; j<4; j++ )
   	        	        	fprintf( stderr, "%+#6.10f", pamx[i][j] );
   	        	    	fprintf( stderr, "\n" );
   	        		}
   	        		fprintf( stderr, "\n" );
   		     	}


// ?????
			for( i=0; i<26; i++ ) amino[i] = locaminon[i];
			for( i=0; i<0x80; i++ ) amino_n[i] = -1;
			for( i=0; i<26; i++ ) amino_n[(int)amino[i]] = i;
			if( fmodel == 1 )
				calcfreq_nuc( nseq, seq, freq );
			else
			{
				freq[0] = 0.25;
				freq[1] = 0.25;
				freq[2] = 0.25;
				freq[3] = 0.25;
			}
//			fprintf( stderr, "a, freq[0] = %f\n", freq[0] );
//			fprintf( stderr, "g, freq[1] = %f\n", freq[1] );
//			fprintf( stderr, "c, freq[2] = %f\n", freq[2] );
//			fprintf( stderr, "t, freq[3] = %f\n", freq[3] );

			
			average = 0.0;
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				average += pamx[i][j] * freq[i] * freq[j];
			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				pamx[i][j] -= average;

			average = 0.0;
			for( i=0; i<4; i++ )
				average += pamx[i][i] * 1.0 / 4.0;

			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				pamx[i][j] *= 600.0 / average;


			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				pamx[i][j] -= offset;        /* extending gap cost */

			for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
				pamx[i][j] = shishagonyuu( pamx[i][j] );

       		if( disp )
       		{
        		fprintf( stderr, " after shishagonyuu\n" );
           		for( i=0; i<4; i++ )
   	       		{
           	    	for( j=0; j<4; j++ )
           	        	fprintf( stderr, "%+#6.10f", pamx[i][j] );
           	    	fprintf( stderr, "\n" );
           		}
           		fprintf( stderr, "\n" );
        	}
			fprintf( stderr, "done\n" );
		}
	
		for( i=0; i<5; i++ ) 
		{
			pamx[4][i] = pamx[3][i];
			pamx[i][4] = pamx[i][3];
		}	

		for( i=5; i<10; i++ ) for( j=5; j<10; j++ )
		{
			pamx[i][j] = pamx[i-5][j-5];
		}
	
       	if( disp )
       	{
       		fprintf( stderr, " before dis\n" );
          	for( i=0; i<4; i++ )
   	       	{
           	   	for( j=0; j<4; j++ )
           	       	fprintf( stderr, "%+#6.10f", pamx[i][j] );
           	   	fprintf( stderr, "\n" );
           	}
           	fprintf( stderr, "\n" );
        }

       	if( disp )
       	{
        	fprintf( stderr, " score matrix  \n" );
           	for( i=0; i<4; i++ )
   	       	{
               	for( j=0; j<4; j++ )
                   	fprintf( stderr, "%+#6.10f", pamx[i][j] );
               	fprintf( stderr, "\n" );
           	}
           	fprintf( stderr, "\n" );
        }

		for( i=0; i<26; i++ ) amino[i] = locaminon[i];
		for( i=0; i<26; i++ ) amino_grp[(int)amino[i]] = locgrpn[i];
		for( i=0; i<26; i++ ) for( j=0; j<26; j++ ) n_dis[i][j] = 0;
		for( i=0; i<10; i++ ) for( j=0; j<10; j++ ) n_dis[i][j] = shishagonyuu( pamx[i][j] );
        if( disp )
        {
            fprintf( stderr, " score matrix  \n" );
            for( i=0; i<26; i++ )
            {
                for( j=0; j<26; j++ )
                    fprintf( stderr, "%+6d", n_dis[i][j] );
                fprintf( stderr, "\n" );
            }
            fprintf( stderr, "\n" );
        }

// RIBOSUM
#if 1
		average = 0.0;
		for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
			average += ribosum4[i][j] * freq[i] * freq[j];
		for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
			ribosum4[i][j] -= average;

		average = 0.0;
		for( i=0; i<4; i++ ) for( j=0; j<4; j++ ) for( k=0; k<4; k++ ) for( m=0; m<4; m++ )
		{
//			if( i%4==0&&j%4==3 || i%4==3&&j%4==0 || i%4==1&&j%4==2 || i%4==2&&j%4==1 || i%4==1&&j%4==3 || i%4==3&&j%4==1 )
//			if( k%4==0&&m%4==3 || k%4==3&&m%4==0 || k%4==1&&m%4==2 || k%4==2&&m%4==1 || k%4==1&&m%4==3 || k%4==3&&m%4==1 )
				average += ribosum16[i*4+j][k*4+m] * freq[i] * freq[j] * freq[k] * freq[m];
		}
		for( i=0; i<16; i++ ) for( j=0; j<16; j++ )
			ribosum16[i][j] -= average;

		average = 0.0;
		for( i=0; i<4; i++ )
			average += ribosum4[i][i] * freq[i];
		for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
			ribosum4[i][j] *= 600.0 / average;

		average = 0.0;
		average += ribosum16[0*4+3][0*4+3] * freq[0] * freq[3]; // AU
		average += ribosum16[3*4+0][3*4+0] * freq[3] * freq[0]; // UA
		average += ribosum16[1*4+2][1*4+2] * freq[1] * freq[2]; // CG
		average += ribosum16[2*4+1][2*4+1] * freq[2] * freq[1]; // GC
		average += ribosum16[1*4+3][1*4+3] * freq[1] * freq[3]; // GU
		average += ribosum16[3*4+1][3*4+1] * freq[3] * freq[1]; // UG
		for( i=0; i<16; i++ ) for( j=0; j<16; j++ )
			ribosum16[i][j] *= 600.0 / average;


#if 1
		for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
			ribosum4[i][j] -= offset;        /* extending gap cost ?????*/
		for( i=0; i<16; i++ ) for( j=0; j<16; j++ )
			ribosum16[i][j] -= offset;        /* extending gap cost ?????*/
#endif

		for( i=0; i<4; i++ ) for( j=0; j<4; j++ )
			ribosum4[i][j] = shishagonyuu( ribosum4[i][j] );
		for( i=0; i<16; i++ ) for( j=0; j<16; j++ )
			ribosum16[i][j] = shishagonyuu( ribosum16[i][j] );

  		if( disp )
   		{
     		fprintf( stderr, "ribosum after shishagonyuu\n" );
       		for( i=0; i<4; i++ )
       		{
       	    	for( j=0; j<4; j++ )
       	        	fprintf( stderr, "%+#6.10f", ribosum4[i][j] );
       	    	fprintf( stderr, "\n" );
       		}
       		fprintf( stderr, "\n" );
     		fprintf( stderr, "ribosum16 after shishagonyuu\n" );
       		for( i=0; i<16; i++ )
       		{
       	    	for( j=0; j<16; j++ )
       	        	fprintf( stderr, "%+#7.0f", ribosum16[i][j] );
       	    	fprintf( stderr, "\n" );
       		}
       		fprintf( stderr, "\n" );
      	}
		fprintf( stderr, "done\n" );

#if 1
		for( i=0; i<37; i++ ) for( j=0; j<37; j++ ) ribosumdis[i][j] = 0.0; //iru
		for( m=0; m<9; m++ ) for( i=0; i<4; i++ ) // loop
			for( k=0; k<9; k++ ) for( j=0; j<4; j++ ) ribosumdis[m*4+i][k*4+j] = ribosum4[i][j]; // loop-loop
//			for( k=0; k<9; k++ ) for( j=0; j<4; j++ ) ribosumdis[m*4+i][k*4+j] = n_dis[i][j]; // loop-loop

		for( i=0; i<16; i++ ) for( j=0; j<16; j++ ) ribosumdis[i+4][j+4] = ribosum16[i][j]; // stem5-stem5
		for( i=0; i<16; i++ ) for( j=0; j<16; j++ ) ribosumdis[i+20][j+20] = ribosum16[i][j]; // stem5-stem5
#else // do not use ribosum
		for( i=0; i<37; i++ ) for( j=0; j<37; j++ ) ribosumdis[i][j] = 0.0; //iru
		for( m=0; m<9; m++ ) for( i=0; i<4; i++ ) // loop
			for( k=0; k<9; k++ ) for( j=0; j<4; j++ ) ribosumdis[m*4+i][k*4+j] = n_dis[i][j]; // loop-loop
#endif

  		if( disp )
   		{
     		fprintf( stderr, "ribosumdis\n" );
       		for( i=0; i<37; i++ )
       		{
       	    	for( j=0; j<37; j++ )
       	        	fprintf( stderr, "%+5d", ribosumdis[i][j] );
       	    	fprintf( stderr, "\n" );
       		}
       		fprintf( stderr, "\n" );
      	}
		fprintf( stderr, "done\n" );
#endif

		FreeDoubleMtx( pam1 );
		FreeDoubleMtx( pamx );
		free( freq );

	}
	else if( dorp == 'p' && scoremtx == 1 )  /* Blosum */
	{
		double *freq;
		double *freq1;
		double *datafreq;
		double average;
//		double tmp;
		double **n_distmp;

		n_distmp = AllocateDoubleMtx( 20, 20 );
		datafreq = AllocateDoubleVec( 20 );
		freq = AllocateDoubleVec( 20 );

		if( ppenalty == NOTSPECIFIED ) ppenalty = DEFAULTGOP_B;
		if( ppenalty_OP == NOTSPECIFIED ) ppenalty_OP = DEFAULTGOP_B;
		if( ppenalty_ex == NOTSPECIFIED ) ppenalty_ex = DEFAULTGEP_B;
		if( ppenalty_EX == NOTSPECIFIED ) ppenalty_EX = DEFAULTGEP_B;
		if( poffset == NOTSPECIFIED ) poffset = DEFAULTOFS_B;
		if( pamN == NOTSPECIFIED ) pamN = 0;
		if( kimuraR == NOTSPECIFIED ) kimuraR = 1;
		penalty = (int)( 600.0 / 1000.0 * ppenalty + 0.5 );
		penalty_OP = (int)( 600.0 / 1000.0 * ppenalty_OP + 0.5 );
		penalty_ex = (int)( 600.0 / 1000.0 * ppenalty_ex + 0.5 );
		penalty_EX = (int)( 600.0 / 1000.0 * ppenalty_EX + 0.5 );
		offset = (int)( 600.0 / 1000.0 * poffset + 0.5 );
		offsetFFT = (int)( 600.0 / 1000.0 * (-0) + 0.5);
		offsetLN = (int)( 600.0 / 1000.0 * 100 + 0.5);
		penaltyLN = (int)( 600.0 / 1000.0 * -2000 + 0.5);
		penalty_exLN = (int)( 600.0 / 1000.0 * -100 + 0.5);

		BLOSUMmtx( nblosum, n_distmp, freq, amino, amino_grp );
		if( nblosum == -1 )
			sprintf( modelname, "User-defined, %6.3f, %+6.3f, %+6.3f", -(double)ppenalty/1000, -(double)poffset/1000, -(double)ppenalty_ex/1000 );
		else
			sprintf( modelname, "BLOSUM%d, %6.3f, %+6.3f, %+6.3f", nblosum, -(double)ppenalty/1000, -(double)poffset/1000, -(double)ppenalty_ex/1000 );
#if 0
		for( i=0; i<26; i++ ) amino[i] = locaminod[i];
		for( i=0; i<26; i++ ) amino_grp[(int)amino[i]] = locgrpd[i];
		for( i=0; i<0x80; i++ ) amino_n[i] = 0;
		for( i=0; i<26; i++ ) amino_n[(int)amino[i]] = i;
#endif
		for( i=0; i<0x80; i++ )amino_n[i] = -1;
		for( i=0; i<26; i++) amino_n[(int)amino[i]] = i;
		if( fmodel == 1 )
		{
			calcfreq( nseq, seq, datafreq );
			freq1 = datafreq;
		}
		else
			freq1 = freq;
#if TEST
		fprintf( stderr, "raw scoreing matrix : \n" );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ ) 
			{
				fprintf( stdout, "%6.2f", n_distmp[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif
		if( fmodel == -1 )
			average = 0.0;
		else
		{
			for( i=0; i<20; i++ )
#if TEST 
				fprintf( stdout, "freq[%c] = %f, datafreq[%c] = %f, freq1[] = %f\n", amino[i], freq[i], amino[i], datafreq[i], freq1[i] );
#endif
			average = 0.0;
			for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
				average += n_distmp[i][j] * freq1[i] * freq1[j];
		}
#if TEST
		fprintf( stdout, "####### average2  = %f\n", average );
#endif

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			n_distmp[i][j] -= average;
#if TEST
		fprintf( stdout, "average2 = %f\n", average );
		fprintf( stdout, "after average substruction : \n" );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ ) 
			{
				fprintf( stdout, "%6.2f", n_distmp[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif
		
		average = 0.0;
		for( i=0; i<20; i++ ) 
			average += n_distmp[i][i] * freq1[i];
#if TEST
		fprintf( stdout, "####### average1  = %f\n", average );
#endif

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			n_distmp[i][j] *= 600.0 / average;
#if TEST
        fprintf( stdout, "after average division : \n" );
        for( i=0; i<20; i++ )
        {
            for( j=0; j<=i; j++ )
            {
                fprintf( stdout, "%7.1f", n_distmp[i][j] );
            }
            fprintf( stdout, "\n" );
        }
#endif

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			n_distmp[i][j] -= offset;  
#if TEST
		fprintf( stdout, "after offset substruction (offset = %d): \n", offset );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<=i; j++ ) 
			{
				fprintf( stdout, "%7.1f", n_distmp[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif
#if 0
/* 注意 !!!!!!!!!! */
			penalty -= offset;
#endif


		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			n_distmp[i][j] = shishagonyuu( n_distmp[i][j] );

        if( disp )
        {
            fprintf( stdout, " scoring matrix  \n" );
            for( i=0; i<20; i++ )
            {
				fprintf( stdout, "%c    ", amino[i] );
                for( j=0; j<20; j++ )
                    fprintf( stdout, "%5.0f", n_distmp[i][j] );
                fprintf( stdout, "\n" );
            }
			fprintf( stdout, "     " );
            for( i=0; i<20; i++ )
				fprintf( stdout, "    %c", amino[i] );

			average = 0.0;
        	for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
				average += n_distmp[i][j] * freq1[i] * freq1[j];
			fprintf( stdout, "average = %f\n", average );

			average = 0.0;
        	for( i=0; i<20; i++ )
				average += n_distmp[i][i] * freq1[i];
			fprintf( stdout, "itch average = %f\n", average );
			fprintf( stderr, "parameters: %d, %d, %d\n", penalty, penalty_ex, offset );

			
  			exit( 1 );
        }

		for( i=0; i<26; i++ ) for( j=0; j<26; j++ ) n_dis[i][j] = 0;
		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) n_dis[i][j] = (int)n_distmp[i][j];

		FreeDoubleMtx( n_distmp );
		FreeDoubleVec( datafreq );
		FreeDoubleVec( freq );

		fprintf( stderr, "done.\n" );

	}
	else if( dorp == 'p' && scoremtx == 2 ) /* Miyata-Yasunaga */
	{
		fprintf( stderr, "Not supported\n" );
		exit( 1 );
		for( i=0; i<26; i++ ) for( j=0; j<26; j++ ) n_dis[i][j] = locn_dism[i][j];
		for( i=0; i<26; i++ ) if( i != 24 ) n_dis[i][24] = n_dis[24][i] = exgpm;
		n_dis[24][24] = 0;
		if( ppenalty == NOTSPECIFIED ) ppenalty = locpenaltym;
		if( poffset == NOTSPECIFIED ) poffset = -20;
		if( pamN == NOTSPECIFIED ) pamN = 0;
		if( kimuraR == NOTSPECIFIED ) kimuraR = 1;

		penalty = ppenalty;
		offset = poffset;

		sprintf( modelname, "Miyata-Yasunaga, %6.3f, %6.3f", -(double)ppenalty/1000, -(double)poffset/1000 );
		for( i=0; i<26; i++ ) amino[i] = locaminom[i];
		for( i=0; i<26; i++ ) amino_grp[(int)amino[i]] = locgrpm[i];
#if DEBUG
		fprintf( stdout, "scoreing matrix : \n" );
		for( i=0; i<26; i++ )
		{
			for( j=0; j<26; j++ ) 
			{
				fprintf( stdout, "%#5d", n_dis[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif
	}
	else         /* JTT */
	{
		double **rsr;
		double **pam1;
		double **pamx;
		double *freq;
		double *freq1;
		double *mutab;
		double *datafreq;
		double average;
		double tmp;
		double delta;

		rsr = AllocateDoubleMtx( 20, 20 );
		pam1 = AllocateDoubleMtx( 20, 20 );
		pamx = AllocateDoubleMtx( 20, 20 );
		freq = AllocateDoubleVec( 20 );
		mutab = AllocateDoubleVec( 20 );
		datafreq = AllocateDoubleVec( 20 );

		if( ppenalty == NOTSPECIFIED ) ppenalty = DEFAULTGOP_J;
		if( ppenalty_OP == NOTSPECIFIED ) ppenalty_OP = DEFAULTGOP_J;
		if( ppenalty_ex == NOTSPECIFIED ) ppenalty_ex = DEFAULTGEP_J;
		if( ppenalty_EX == NOTSPECIFIED ) ppenalty_EX = DEFAULTGEP_J;
		if( poffset == NOTSPECIFIED ) poffset = DEFAULTOFS_J;
		if( pamN == NOTSPECIFIED )    pamN    = DEFAULTPAMN;
		if( kimuraR == NOTSPECIFIED ) kimuraR = 1;

		penalty = (int)( 600.0 / 1000.0 * ppenalty + 0.5 );
		penalty_OP = (int)( 600.0 / 1000.0 * ppenalty_OP + 0.5 );
		penalty_ex = (int)( 600.0 / 1000.0 * ppenalty_ex + 0.5 );
		penalty_EX = (int)( 600.0 / 1000.0 * ppenalty_EX + 0.5 );
		offset = (int)( 600.0 / 1000.0 * poffset + 0.5 );
		offsetFFT = (int)( 600.0 / 1000.0 * (-0) + 0.5 );
		offsetLN = (int)( 600.0 / 1000.0 * 100 + 0.5);
		penaltyLN = (int)( 600.0 / 1000.0 * -2000 + 0.5);
		penalty_exLN = (int)( 600.0 / 1000.0 * -100 + 0.5);

		sprintf( modelname, "%s %dPAM, %6.3f, %6.3f", (TMorJTT==TM)?"Transmembrane":"JTT", pamN, -(double)ppenalty/1000, -(double)poffset/1000 );

		JTTmtx( rsr, freq, amino, amino_grp, (int)(TMorJTT==TM) );

#if TEST
		fprintf( stdout, "rsr = \n" );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ )
			{
				fprintf( stdout, "%9.2f ", rsr[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif

		for( i=0; i<0x80; i++ ) amino_n[i] = -1;
		for( i=0; i<26; i++ ) amino_n[(int)amino[i]] = i;

		if( fmodel == 1 )
		{
			calcfreq( nseq, seq, datafreq );
			freq1 = datafreq;
		}
		else
			freq1 = freq;

		fprintf( stderr, "generating %dPAM %s scoring matrix for amino acids ... ", pamN, (TMorJTT==TM)?"Transmembrane":"JTT" );

		tmp = 0.0;
		for( i=0; i<20; i++ )
		{
			mutab[i] = 0.0;
			for( j=0; j<20; j++ )
				mutab[i] += rsr[i][j] * freq[j];
			tmp += mutab[i] * freq[i];
		}
#if TEST
		fprintf( stdout, "mutability = \n" );
		for( i=0; i<20; i++ )
			fprintf( stdout, "%5.3f\n", mutab[i] );

		fprintf( stdout, "tmp = %f\n", tmp );
#endif
		delta = 0.01 / tmp;
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ )
			{
				if( i != j )
					pam1[i][j] = delta * rsr[i][j] * freq[i];
				else
					pam1[i][j] = 1.0 - delta * mutab[i];
			}
		}

		if( disp )
		{
			fprintf( stdout, "pam1 = \n" );
			for( i=0; i<20; i++ )
			{
				for( j=0; j<20; j++ )
				{
					fprintf( stdout, "%9.6f ", pam1[i][j] );
				}
				fprintf( stdout, "\n" );
			}
		}

		MtxuntDouble( pamx, 20 );
		for( x=0; x < pamN; x++ ) MtxmltDouble( pamx, pam1, 20 );

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			pamx[i][j] /= freq[j];

        for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
		{
			if( pamx[i][j] == 0.0 ) 
			{
				fprintf( stderr, "WARNING: pamx[%d][%d] = 0.0?\n", i, j );
				pamx[i][j] = 0.00001; /* by J. Thompson */
			}
            pamx[i][j] = log10( pamx[i][j] ) * 1000.0;
		}
 
#if TEST
		fprintf( stdout, "raw scoring matrix : \n" );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ ) 
			{
				fprintf( stdout, "%5.0f", pamx[i][j] );
			}
			fprintf( stdout, "\n" );
		}
        average = tmp = 0.0;
        for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
		{
           average += pamx[i][j] * freq1[i] * freq1[j];
		   tmp += freq1[i] * freq1[j];
		}
		average /= tmp;
		fprintf( stdout, "Zenbu average = %f, tmp = %f \n", average, tmp );
        average = tmp = 0.0;
        for( i=0; i<20; i++ ) for( j=i; j<20; j++ )
		{
           average += pamx[i][j] * freq1[i] * freq1[j];
		   tmp += freq1[i] * freq1[j];
		}
		average /= tmp;
		fprintf( stdout, "Zenbu average2 = %f, tmp = %f \n", average, tmp );
		average = tmp = 0.0;
		for( i=0; i<20; i++ )
		{
			average += pamx[i][i] * freq1[i];
			tmp += freq1[i];
		}
		average /= tmp;
		fprintf( stdout, "Itch average = %f, tmp = %f \n", average, tmp );
#endif

#if NORMALIZE1
		if( fmodel == -1 )
			average = 0.0;
		else
		{
#if TEST
			for( i=0; i<20; i++ )
				fprintf( stdout, "freq[%c] = %f, datafreq[%c] = %f, freq1[] = %f\n", amino[i], freq[i], amino[i], datafreq[i], freq1[i] );
#endif
			average = 0.0;
			for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
				average += pamx[i][j] * freq1[i] * freq1[j];
		}
#if TEST
		fprintf( stdout, "####### average2  = %f\n", average );
#endif

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			pamx[i][j] -= average;
#if TEST
		fprintf( stdout, "average2 = %f\n", average );
		fprintf( stdout, "after average substruction : \n" );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ ) 
			{
				fprintf( stdout, "%5.0f", pamx[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif
		
		average = 0.0;
		for( i=0; i<20; i++ ) 
			average += pamx[i][i] * freq1[i];
#if TEST
		fprintf( stdout, "####### average1  = %f\n", average );
#endif

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			pamx[i][j] *= 600.0 / average;
#if TEST
        fprintf( stdout, "after average division : \n" );
        for( i=0; i<20; i++ )
        {
            for( j=0; j<=i; j++ )
            {
                fprintf( stdout, "%5.0f", pamx[i][j] );
            }
            fprintf( stdout, "\n" );
        }
#endif

		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			pamx[i][j] -= offset;  
#if TEST
		fprintf( stdout, "after offset substruction (offset = %d): \n", offset );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<=i; j++ ) 
			{
				fprintf( stdout, "%5.0f", pamx[i][j] );
			}
			fprintf( stdout, "\n" );
		}
#endif
#if 0
/* 注意 !!!!!!!!!! */
			penalty -= offset;
#endif


		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) 
			pamx[i][j] = shishagonyuu( pamx[i][j] );

#else

        average = 0.0;
        for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
           average += pamx[i][j];
        average /= 400.0;

        for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
        {
            pamx[i][j] -= average;
            pamx[i][j] = shishagonyuu( pamx[i][j] );
        }
#endif
        if( disp )
        {
            fprintf( stdout, " scoring matrix  \n" );
            for( i=0; i<20; i++ )
            {
				fprintf( stdout, "%c    ", amino[i] );
                for( j=0; j<20; j++ )
                    fprintf( stdout, "%5.0f", pamx[i][j] );
                fprintf( stdout, "\n" );
            }
			fprintf( stdout, "     " );
            for( i=0; i<20; i++ )
				fprintf( stdout, "    %c", amino[i] );

			average = 0.0;
        	for( i=0; i<20; i++ ) for( j=0; j<20; j++ )
				average += pamx[i][j] * freq1[i] * freq1[j];
			fprintf( stdout, "average = %f\n", average );

			average = 0.0;
        	for( i=0; i<20; i++ )
				average += pamx[i][i] * freq1[i];
			fprintf( stdout, "itch average = %f\n", average );
			fprintf( stderr, "parameters: %d, %d, %d\n", penalty, penalty_ex, offset );

			
  			exit( 1 );
        }

		for( i=0; i<26; i++ ) for( j=0; j<26; j++ ) n_dis[i][j] = 0;
		for( i=0; i<20; i++ ) for( j=0; j<20; j++ ) n_dis[i][j] = (int)pamx[i][j];

		fprintf( stderr, "done.\n" );
		FreeDoubleMtx( rsr );
		FreeDoubleMtx( pam1 );
		FreeDoubleMtx( pamx );
		FreeDoubleVec( freq );
		FreeDoubleVec( mutab );
		FreeDoubleVec( datafreq );
	}
	fprintf( stderr, "scoremtx = %d\n", scoremtx );

#if DEBUG
	fprintf( stderr, "scoremtx = %d\n", scoremtx );
	fprintf( stderr, "amino[] = %s\n", amino );
#endif

	for( i=0; i<0x80; i++ )amino_n[i] = -1;
	for( i=0; i<26; i++) amino_n[(int)amino[i]] = i;
    for( i=0; i<0x80; i++ ) for( j=0; j<0x80; j++ ) amino_dis[i][j] = 0;
    for( i=0; i<0x80; i++ ) for( j=0; j<0x80; j++ ) amino_disLN[i][j] = 0;
    for( i=0; i<0x80; i++ ) for( j=0; j<0x80; j++ ) amino_dis_consweight_multi[i][j] = 0.0;
    for( i=0; i<26; i++) for( j=0; j<26; j++ )
	{
        amino_dis[(int)amino[i]][(int)amino[j]] = n_dis[i][j];
		n_dis_consweight_multi[i][j] = (float)n_dis[i][j] * consweight_multi;
		amino_dis_consweight_multi[(int)amino[i]][(int)amino[j]] = (double)n_dis[i][j] * consweight_multi;
	}

	if( dorp == 'd' )  /* DNA */
	{
	    for( i=0; i<5; i++) for( j=0; j<5; j++ )
        	amino_disLN[(int)amino[i]][(int)amino[j]] = n_dis[i][j] + offset - offsetLN;
	    for( i=5; i<10; i++) for( j=5; j<10; j++ )
        	amino_disLN[(int)amino[i]][(int)amino[j]] = n_dis[i][j] + offset - offsetLN;
	    for( i=0; i<5; i++) for( j=0; j<5; j++ )
        	n_disFFT[i][j] = n_dis[i][j] + offset - offsetFFT;
	    for( i=5; i<10; i++) for( j=5; j<10; j++ )
        	n_disFFT[i][j] = n_dis[i][j] + offset - offsetFFT;
	}
	else // protein
	{
	    for( i=0; i<20; i++) for( j=0; j<20; j++ )
        	amino_disLN[(int)amino[i]][(int)amino[j]] = n_dis[i][j] + offset - offsetLN;
	    for( i=0; i<20; i++) for( j=0; j<20; j++ )
        	n_disFFT[i][j] = n_dis[i][j] + offset - offsetFFT;
	}

#if 0
		fprintf( stderr, "amino_dis (offset = %d): \n", offset );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ ) 
			{
				fprintf( stderr, "%5d", amino_dis[(int)amino[i]][(int)amino[j]] );
			}
			fprintf( stderr, "\n" );
		}

		fprintf( stderr, "amino_disLN (offsetLN = %d): \n", offsetLN );
		for( i=0; i<20; i++ )
		{
			for( j=0; j<20; j++ ) 
			{
				fprintf( stderr, "%5d", amino_disLN[(int)amino[i]][(int)amino[j]] );
			}
			fprintf( stderr, "\n" );
		}

		fprintf( stderr, "n_dis (offset = %d): \n", offset );
		for( i=0; i<26; i++ )
		{
			for( j=0; j<26; j++ ) 
			{
				fprintf( stderr, "%5d", n_dis[i][j] );
			}
			fprintf( stderr, "\n" );
		}

		fprintf( stderr, "n_disFFT (offsetFFT = %d): \n", offsetFFT );
		for( i=0; i<26; i++ )
		{
			for( j=0; j<26; j++ ) 
			{
				fprintf( stderr, "%5d", n_disFFT[i][j] );
			}
			fprintf( stderr, "\n" );
		}
exit( 1 );
#endif


	ppid = 0;


	if( fftThreshold == NOTSPECIFIED )
	{
		fftThreshold = FFT_THRESHOLD;
	}
	if( fftWinSize == NOTSPECIFIED )
	{
		if( dorp == 'd' ) 
			fftWinSize = FFT_WINSIZE_D;
		else    
			fftWinSize = FFT_WINSIZE_P;
	}


	if( fftscore )
	{
		double av, sd;

		for( i=0; i<20; i++ ) polarity[i] = polarity_[i];
		for( av=0.0, i=0; i<20; i++ ) av += polarity[i];
		av /= 20.0;
		for( sd=0.0, i=0; i<20; i++ ) sd += ( polarity[i]-av ) * ( polarity[i]-av );
		sd /= 20.0; sd = sqrt( sd );
		for( i=0; i<20; i++ ) polarity[i] -= av;
		for( i=0; i<20; i++ ) polarity[i] /= sd;
	
		for( i=0; i<20; i++ ) volume[i] = volume_[i];
		for( av=0.0, i=0; i<20; i++ ) av += volume[i];
		av /= 20.0;
		for( sd=0.0, i=0; i<20; i++ ) sd += ( volume[i]-av ) * ( volume[i]-av );
		sd /= 20.0; sd = sqrt( sd );
		for( i=0; i<20; i++ ) volume[i] -= av;
		for( i=0; i<20; i++ ) volume[i] /= sd;

#if 0
		for( i=0; i<20; i++ ) fprintf( stdout, "amino=%c, pol = %f<-%f, vol = %f<-%f\n", amino[i], polarity[i], polarity_[i], volume[i], volume_[i] );
		for( i=0; i<20; i++ ) fprintf( stdout, "%c %+5.3f %+5.3f\n", amino[i], volume[i], polarity[i] );
#endif
	}
}
Beispiel #5
0
float Falign_localhom( char  **seq1, char  **seq2, 
			  double *eff1, double *eff2, 
			  int    clus1, int    clus2,
			  int alloclen, 
			   LocalHom ***localhom, float *totalimpmatch,
			   int *gapmap1, int *gapmap2,
				int *chudanpt, int chudanref, int *chudanres )
{
   // tditeration.c deha alloclen ha huhen nanode
   // prevalloclen ha iranai.
	int i, j, k, l, m, maxk;
	int nlen, nlen2, nlen4;
	static TLS int crossscoresize = 0;
	static TLS char **tmpseq1 = NULL;
	static TLS char **tmpseq2 = NULL;
	static TLS char **tmpptr1 = NULL;
	static TLS char **tmpptr2 = NULL;
	static TLS char **tmpres1 = NULL;
	static TLS char **tmpres2 = NULL;
	static TLS char **result1 = NULL;
	static TLS char **result2 = NULL;
#if RND
	static TLS char **rndseq1 = NULL;
	static TLS char **rndseq2 = NULL;
#endif
	static TLS Fukusosuu **seqVector1 = NULL;
	static TLS Fukusosuu **seqVector2 = NULL;
	static TLS Fukusosuu **naiseki = NULL;   
	static TLS Fukusosuu *naisekiNoWa = NULL; 
	static TLS double *soukan = NULL;
	static TLS double **crossscore = NULL;
	int nlentmp;
	static TLS int *kouho = NULL;
	static TLS Segment *segment = NULL;
	static TLS Segment *segment1 = NULL;
	static TLS Segment *segment2 = NULL;
	static TLS Segment **sortedseg1 = NULL;
	static TLS Segment **sortedseg2 = NULL;
	static TLS int *cut1 = NULL;
	static TLS int *cut2 = NULL;
	static TLS char *sgap1, *egap1, *sgap2, *egap2;
	static TLS int localalloclen = 0;
	int lag;
	int tmpint;
	int count, count0;
	int len1, len2;
	int totallen;
	float totalscore;
	float impmatch;

	extern Fukusosuu   *AllocateFukusosuuVec();
	extern Fukusosuu  **AllocateFukusosuuMtx();

	if( seq1 == NULL )
	{
		if( result1 ) 
		{
//			fprintf( stderr, "Freeing localarrays in Falign\n" );
			localalloclen = 0;
			mymergesort( 0, 0, NULL );
			alignableReagion( 0, 0, NULL, NULL, NULL, NULL, NULL );
			fft( 0, NULL, 1 );
			A__align( NULL, NULL, NULL, NULL, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0, NULL, 0, 0 );
			G__align11( NULL, NULL, 0, 0, 0 );
			partA__align( NULL, NULL, NULL, NULL, 0, 0, 0, NULL, NULL, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 0, NULL );
			blockAlign2( NULL, NULL, NULL, NULL, NULL, NULL );
			if( crossscore ) FreeDoubleMtx( crossscore );
			FreeCharMtx( result1 );
			FreeCharMtx( result2 );
			FreeCharMtx( tmpres1 );
			FreeCharMtx( tmpres2 );
			FreeCharMtx( tmpseq1 );
			FreeCharMtx( tmpseq2 );
			free( sgap1 );
			free( egap1 );
			free( sgap2 );
			free( egap2 );
			free( kouho );
			free( cut1 );
			free( cut2 );
			free( tmpptr1 );
			free( tmpptr2 );
			free( segment );
			free( segment1 );
			free( segment2 );
			free( sortedseg1 );
			free( sortedseg2 );
			if( !kobetsubunkatsu )
			{
				FreeFukusosuuMtx ( seqVector1 );
				FreeFukusosuuMtx ( seqVector2 );
				FreeFukusosuuVec( naisekiNoWa );
				FreeFukusosuuMtx( naiseki );
				FreeDoubleVec( soukan );
			}
		}
		else
		{
//			fprintf( stderr, "Did not allocate localarrays in Falign\n" );
		}

		return( 0.0 );
	}

	len1 = strlen( seq1[0] );
	len2 = strlen( seq2[0] );
	nlentmp = MAX( len1, len2 );

	nlen = 1;
	while( nlentmp >= nlen ) nlen <<= 1;
#if 0
	fprintf( stderr, "###   nlen    = %d\n", nlen );
#endif

	nlen2 = nlen/2; nlen4 = nlen2 / 2;

#if DEBUG
	fprintf( stderr, "len1 = %d, len2 = %d\n", len1, len2 );
	fprintf( stderr, "nlentmp = %d, nlen = %d\n", nlentmp, nlen );
#endif

	if( !localalloclen )
	{
		sgap1 = AllocateCharVec( njob ); 
		egap1 = AllocateCharVec( njob ); 
		sgap2 = AllocateCharVec( njob ); 
		egap2 = AllocateCharVec( njob ); 
		kouho = AllocateIntVec( NKOUHO );
		cut1 = AllocateIntVec( MAXSEG );
		cut2 = AllocateIntVec( MAXSEG );
		tmpptr1 = AllocateCharMtx( njob, 0 );
		tmpptr2 = AllocateCharMtx( njob, 0 );
		result1 = AllocateCharMtx( njob, alloclen );
		result2 = AllocateCharMtx( njob, alloclen );
		tmpres1 = AllocateCharMtx( njob, alloclen );
		tmpres2 = AllocateCharMtx( njob, alloclen );
//		crossscore = AllocateDoubleMtx( MAXSEG, MAXSEG );
		segment = (Segment *)calloc( MAXSEG, sizeof( Segment ) );
		segment1 = (Segment *)calloc( MAXSEG, sizeof( Segment ) );
		segment2 = (Segment *)calloc( MAXSEG, sizeof( Segment ) );
		sortedseg1 = (Segment **)calloc( MAXSEG, sizeof( Segment * ) );
		sortedseg2 = (Segment **)calloc( MAXSEG, sizeof( Segment * ) );
		if( !( segment && segment1 && segment2 && sortedseg1 && sortedseg2 ) )
			ErrorExit( "Allocation error\n" );

		if     ( scoremtx == -1 ) n20or4or2 = 4;
		else if( fftscore == 1  ) n20or4or2 = 2;
		else                      n20or4or2 = 20;
	}
	if( localalloclen < nlen )
	{
		if( localalloclen )
		{
#if 1
			if( !kobetsubunkatsu )
			{
				FreeFukusosuuMtx ( seqVector1 );
				FreeFukusosuuMtx ( seqVector2 );
				FreeFukusosuuVec( naisekiNoWa );
				FreeFukusosuuMtx( naiseki );
				FreeDoubleVec( soukan );
			}
			FreeCharMtx( tmpseq1 );
			FreeCharMtx( tmpseq2 );
#endif
#if RND
			FreeCharMtx( rndseq1 );
			FreeCharMtx( rndseq2 );
#endif
		}

		tmpseq1 = AllocateCharMtx( njob, nlen );
		tmpseq2 = AllocateCharMtx( njob, nlen );
		if( !kobetsubunkatsu )
		{
			naisekiNoWa = AllocateFukusosuuVec( nlen );
			naiseki = AllocateFukusosuuMtx( n20or4or2, nlen );
			seqVector1 = AllocateFukusosuuMtx( n20or4or2+1, nlen+1 );
			seqVector2 = AllocateFukusosuuMtx( n20or4or2+1, nlen+1 );
			soukan = AllocateDoubleVec( nlen+1 );
		}
#if RND
		rndseq1 = AllocateCharMtx( njob, nlen );
		rndseq2 = AllocateCharMtx( njob, nlen );
		for( i=0; i<njob; i++ )
		{
			generateRndSeq( rndseq1[i], nlen );
			generateRndSeq( rndseq2[i], nlen );
		}
#endif
		localalloclen = nlen;
	}
	
	for( j=0; j<clus1; j++ ) strcpy( tmpseq1[j], seq1[j] );
	for( j=0; j<clus2; j++ ) strcpy( tmpseq2[j], seq2[j] );

#if 0
fftfp = fopen( "input_of_Falign", "w" );
fprintf( fftfp, "nlen = %d\n", nlen );
fprintf( fftfp, "seq1: ( %d sequences ) \n", clus1 );
for( i=0; i<clus1; i++ )
	fprintf( fftfp, "%s\n", seq1[i] );
fprintf( fftfp, "seq2: ( %d sequences ) \n", clus2 );
for( i=0; i<clus2; i++ )
	fprintf( fftfp, "%s\n", seq2[i] );
fclose( fftfp );
system( "less input_of_Falign < /dev/tty > /dev/tty" );
#endif
	if( !kobetsubunkatsu )
	{
		fprintf( stderr,  "FFT ... " );

		for( j=0; j<n20or4or2; j++ ) vec_init( seqVector1[j], nlen );
		if( fftscore && scoremtx != -1 )
		{
			for( i=0; i<clus1; i++ )
			{
				seq_vec_2( seqVector1[0], polarity, eff1[i], tmpseq1[i] );
				seq_vec_2( seqVector1[1], volume,   eff1[i], tmpseq1[i] );
			}
		}
		else
		{
#if 0
			for( i=0; i<clus1; i++ ) for( j=0; j<n20or4or2; j++ ) 
				seq_vec( seqVector1[j], amino[j], eff1[i], tmpseq1[i] );
#else
			for( i=0; i<clus1; i++ )
				seq_vec_3( seqVector1, eff1[i], tmpseq1[i] );
#endif
		}
#if RND
		for( i=0; i<clus1; i++ )
		{
			vec_init2( seqVector1, rndseq1[i], eff1[i], len1, nlen );
		}
#endif
#if 0
fftfp = fopen( "seqVec", "w" );
fprintf( fftfp, "before transform\n" );
for( k=0; k<n20or4or2; k++ ) 
{
   fprintf( fftfp, "nlen=%d\n", nlen );
   fprintf( fftfp, "%c\n", amino[k] );
   for( l=0; l<nlen; l++ )
   fprintf( fftfp, "%f %f\n", seqVector1[k][l].R, seqVector1[k][l].I );
}
fclose( fftfp );
system( "less seqVec < /dev/tty > /dev/tty" );
#endif

		for( j=0; j<n20or4or2; j++ ) vec_init( seqVector2[j], nlen );
		if( fftscore && scoremtx != -1 )
		{
			for( i=0; i<clus2; i++ )
			{
				seq_vec_2( seqVector2[0], polarity, eff2[i], tmpseq2[i] );
				seq_vec_2( seqVector2[1], volume,   eff2[i], tmpseq2[i] );
			}
		}
		else
		{
#if 0
			for( i=0; i<clus2; i++ ) for( j=0; j<n20or4or2; j++ ) 
				seq_vec( seqVector2[j], amino[j], eff2[i], tmpseq2[i] );
#else
			for( i=0; i<clus2; i++ )
				seq_vec_3( seqVector2, eff2[i], tmpseq2[i] );
#endif
		}
#if RND
		for( i=0; i<clus2; i++ )
		{
			vec_init2( seqVector2, rndseq2[i], eff2[i], len2, nlen );
		}
#endif

#if 0
fftfp = fopen( "seqVec2", "w" );
fprintf( fftfp, "before fft\n" );
for( k=0; k<n20or4or2; k++ ) 
{
   fprintf( fftfp, "%c\n", amino[k] );
   for( l=0; l<nlen; l++ )
   fprintf( fftfp, "%f %f\n", seqVector2[k][l].R, seqVector2[k][l].I );
}
fclose( fftfp );
system( "less seqVec2 < /dev/tty > /dev/tty" );
#endif

		for( j=0; j<n20or4or2; j++ )
		{
			fft( nlen, seqVector2[j], (j==0) );
			fft( nlen, seqVector1[j], 0 );
		}
#if 0
fftfp = fopen( "seqVec2", "w" );
fprintf( fftfp, "#after fft\n" );
for( k=0; k<n20or4or2; k++ ) 
{
   fprintf( fftfp, "#%c\n", amino[k] );
   for( l=0; l<nlen; l++ )
	   fprintf( fftfp, "%f %f\n", seqVector2[k][l].R, seqVector2[k][l].I );
}
fclose( fftfp );
system( "less seqVec2 < /dev/tty > /dev/tty" );
#endif

		for( k=0; k<n20or4or2; k++ ) 
		{
			for( l=0; l<nlen; l++ ) 
				calcNaiseki( naiseki[k]+l, seqVector1[k]+l, seqVector2[k]+l );
		}
		for( l=0; l<nlen; l++ ) 
		{
			naisekiNoWa[l].R = 0.0;
			naisekiNoWa[l].I = 0.0;
			for( k=0; k<n20or4or2; k++ ) 
			{
				naisekiNoWa[l].R += naiseki[k][l].R;
				naisekiNoWa[l].I += naiseki[k][l].I;
			}
		}
	
#if 0
	fftfp = fopen( "naisekiNoWa", "w" );
	fprintf( fftfp, "#Before fft\n" );
	for( l=0; l<nlen; l++ )
		fprintf( fftfp, "%d  %f %f\n", l, naisekiNoWa[l].R, naisekiNoWa[l].I ); 
	fclose( fftfp );
	system( "less naisekiNoWa < /dev/tty > /dev/tty " );
#endif

		fft( -nlen, naisekiNoWa, 0 );
	
		for( m=0; m<=nlen2; m++ ) 
			soukan[m] = naisekiNoWa[nlen2-m].R;
		for( m=nlen2+1; m<nlen; m++ ) 
			soukan[m] = naisekiNoWa[nlen+nlen2-m].R;

#if 0
	fftfp = fopen( "naisekiNoWa", "w" );
	fprintf( fftfp, "#After fft\n" );
	for( l=0; l<nlen; l++ )
		fprintf( fftfp, "%d  %f\n", l, naisekiNoWa[l].R ); 
	fclose( fftfp );
	fftfp = fopen( "list.plot", "w"  );
	fprintf( fftfp, "plot 'naisekiNoWa'\npause -1" );
	fclose( fftfp );
	system( "/usr/bin/gnuplot list.plot &" );
#endif
#if 0
	fprintf( stderr, "frt write start\n" );
	fftfp = fopen( "frt", "w" );
	for( l=0; l<nlen; l++ )
		fprintf( fftfp, "%d  %f\n", l-nlen2, soukan[l] ); 
	fclose( fftfp );
	system( "less frt < /dev/tty > /dev/tty" );
#if 0
	fftfp = fopen( "list.plot", "w"  );
	fprintf( fftfp, "plot 'frt'\n pause +1" );
	fclose( fftfp );
	system( "/usr/bin/gnuplot list.plot" );
#endif
#endif


		getKouho( kouho, NKOUHO, soukan, nlen );

#if 0
		for( i=0; i<NKOUHO; i++ )
		{
			fprintf( stderr, "kouho[%d] = %d\n", i, kouho[i] );
		}
#endif
	}

#if KEIKA
	fprintf( stderr, "Searching anchors ... " );
#endif
	count = 0;



#define CAND 0
#if CAND
	fftfp = fopen( "cand", "w" );
	fclose( fftfp );
#endif
	if( kobetsubunkatsu )
	{
		maxk = 1;
		kouho[0] = 0;
	}
	else
	{
		maxk = NKOUHO;
	}

	for( k=0; k<maxk; k++ ) 
	{
		lag = kouho[k];
		zurasu2( lag, clus1, clus2, seq1, seq2, tmpptr1, tmpptr2 );
#if CAND
		fftfp = fopen( "cand", "a" );
		fprintf( fftfp, "Candidate No.%d lag = %d\n", k+1, lag );
		fprintf( fftfp, "%s\n", tmpptr1[0] );
		fprintf( fftfp, "%s\n", tmpptr2[0] );
		fclose( fftfp );
#endif
		tmpint = alignableReagion( clus1, clus2, tmpptr1, tmpptr2, eff1, eff2, segment+count );
		
		if( count+tmpint > MAXSEG -3 ) ErrorExit( "TOO MANY SEGMENTS.\n" );


		while( tmpint-- > 0 )
		{
			if( lag > 0 )
			{
				segment1[count].start  = segment[count].start ;
				segment1[count].end    = segment[count].end   ;
				segment1[count].center = segment[count].center;
				segment1[count].score  = segment[count].score;

				segment2[count].start  = segment[count].start  + lag;
				segment2[count].end    = segment[count].end    + lag;
				segment2[count].center = segment[count].center + lag;
				segment2[count].score  = segment[count].score       ;
			}
			else
			{
				segment1[count].start  = segment[count].start  - lag;
				segment1[count].end    = segment[count].end    - lag;
				segment1[count].center = segment[count].center - lag;
				segment1[count].score  = segment[count].score       ;

				segment2[count].start  = segment[count].start ;
				segment2[count].end    = segment[count].end   ;
				segment2[count].center = segment[count].center;
				segment2[count].score  = segment[count].score ;
			}
#if 0
			fftfp = fopen( "cand", "a" );
			fprintf( fftfp, "Goukaku=%dko\n", tmpint ); 
			fprintf( fftfp, "in 1 %d\n", segment1[count].center );
			fprintf( fftfp, "in 2 %d\n", segment2[count].center );
			fclose( fftfp );
#endif
			segment1[count].pair = &segment2[count];
			segment2[count].pair = &segment1[count];
			count++;
#if 0
			fprintf( stderr, "count=%d\n", count );
#endif
		}
	}
#if 1
	if( !kobetsubunkatsu )
		fprintf( stderr, "%d segments found\n", count );
#endif
	if( !count && fftNoAnchStop )
		ErrorExit( "Cannot detect anchor!" );
#if 0
	fftfp = fopen( "fft", "a" );
	fprintf( fftfp, "RESULT before sort:\n" );
	for( l=0; l<count; l++ )
	{
		fprintf( fftfp, "cut[%d]=%d, ", l, segment1[l].center );
		fprintf( fftfp, "%d score = %f\n", segment2[l].center, segment1[l].score );
	}
	fclose( fftfp );
#endif

#if KEIKA
	fprintf( stderr, "Aligning anchors ... " );
#endif
	for( i=0; i<count; i++ )
	{
		sortedseg1[i] = &segment1[i];
		sortedseg2[i] = &segment2[i];
	}
#if 0
	tmpsort( count, sortedseg1 ); 
	tmpsort( count, sortedseg2 ); 
	qsort( sortedseg1, count, sizeof( Segment * ), segcmp );
	qsort( sortedseg2, count, sizeof( Segment * ), segcmp );
#else
	mymergesort( 0, count-1, sortedseg1 ); 
	mymergesort( 0, count-1, sortedseg2 ); 
#endif
	for( i=0; i<count; i++ ) sortedseg1[i]->number = i;
	for( i=0; i<count; i++ ) sortedseg2[i]->number = i;


	if( kobetsubunkatsu )
	{
		for( i=0; i<count; i++ )
	    {
			cut1[i+1] = sortedseg1[i]->center;
			cut2[i+1] = sortedseg2[i]->center;
		}
		cut1[0] = 0;
		cut2[0] = 0;
		cut1[count+1] = len1;
		cut2[count+1] = len2;
		count += 2;
	}
	else
	{
		if( crossscoresize < count+2 )
		{
			crossscoresize = count+2;
#if 1
			fprintf( stderr, "######allocating crossscore, size = %d\n", crossscoresize );
#endif
			if( crossscore ) FreeDoubleMtx( crossscore );
			crossscore = AllocateDoubleMtx( crossscoresize, crossscoresize );
		}
		for( i=0; i<count+2; i++ ) for( j=0; j<count+2; j++ )
			crossscore[i][j] = 0.0;
		for( i=0; i<count; i++ )
		{
			crossscore[segment1[i].number+1][segment1[i].pair->number+1] = segment1[i].score;
			cut1[i+1] = sortedseg1[i]->center;
			cut2[i+1] = sortedseg2[i]->center;
		}

#if DEBUG
		fprintf( stderr, "AFTER SORT\n" );
		for( i=0; i<count; i++ ) fprintf( stderr, "%d, %d\n", segment1[i].start, segment2[i].start );
#endif

		crossscore[0][0] = 10000000.0;
		cut1[0] = 0; 
		cut2[0] = 0;
		crossscore[count+1][count+1] = 10000000.0;
		cut1[count+1] = len1;
		cut2[count+1] = len2;
		count += 2;
		count0 = count;
	
		blockAlign2( cut1, cut2, sortedseg1, sortedseg2, crossscore, &count );
		if( count0 > count )
		{
#if 0
			fprintf( stderr, "\7 REPEAT!? \n" ); 
#else
			fprintf( stderr, "REPEAT!? \n" ); 
#endif
			if( fftRepeatStop ) exit( 1 );
		}
#if KEIKA
		else fprintf( stderr, "done\n" );
#endif
	}

#if 0
	fftfp = fopen( "fft", "a" );
	fprintf( fftfp, "RESULT after sort:\n" );
	for( l=0; l<count; l++ )
	{
		fprintf( fftfp, "cut[%d]=%d, ", l, segment1[l].center );
		fprintf( fftfp, "%d\n", segment2[l].center );
	}
	fclose( fftfp );
#endif

#if 0
	fftfp = fopen( "fft", "a" );
	fprintf( fftfp, "RESULT after sort:\n" );
	for( l=0; l<count; l++ )
	{
		fprintf( fftfp, "cut : %d %d\n", cut1[l], cut2[l] );
	}
	fclose( fftfp );
#endif

#if KEIKA
	fprintf( trap_g, "Devided to %d segments\n", count-1 );
	fprintf( trap_g, "%d  %d forg\n", MIN( clus1, clus2 ), count-1 );
#endif

	totallen = 0;
	for( j=0; j<clus1; j++ ) result1[j][0] = 0;
	for( j=0; j<clus2; j++ ) result2[j][0] = 0;
	totalscore = 0.0;
	*totalimpmatch = 0.0;
	for( i=0; i<count-1; i++ )
	{
#if DEBUG
		fprintf( stderr, "DP %03d / %03d %4d to ", i+1, count-1, totallen );
#else
#if KEIKA
		fprintf( stderr, "DP %03d / %03d\r", i+1, count-1 );
#endif
#endif

		if( cut1[i] ) 
		{
			getkyokaigap( sgap1, seq1, cut1[i]-1, clus1 );
			getkyokaigap( sgap2, seq2, cut2[i]-1, clus2 );
		}
		else
		{
			for( j=0; j<clus1; j++ ) sgap1[j] = 'o';
			for( j=0; j<clus2; j++ ) sgap2[j] = 'o';
		}
		if( cut1[i+1] != len1 )
		{
			getkyokaigap( egap1, seq1, cut1[i+1], clus1 );
			getkyokaigap( egap2, seq2, cut2[i+1], clus2 );
		}
		else
		{
			for( j=0; j<clus1; j++ ) egap1[j] = 'o';
			for( j=0; j<clus2; j++ ) egap2[j] = 'o';
		}

		for( j=0; j<clus1; j++ )
		{
			strncpy( tmpres1[j], seq1[j]+cut1[i], cut1[i+1]-cut1[i] );
			tmpres1[j][cut1[i+1]-cut1[i]] = 0;
		}
		if( kobetsubunkatsu ) commongappick_record( clus1, tmpres1, gapmap1 );
		for( j=0; j<clus2; j++ )
		{
			strncpy( tmpres2[j], seq2[j]+cut2[i], cut2[i+1]-cut2[i] );
			tmpres2[j][cut2[i+1]-cut2[i]] = 0;
		}
		if( kobetsubunkatsu ) commongappick_record( clus2, tmpres2, gapmap2 );

#if 0
		fprintf( stderr, "count = %d\n", count );
		fprintf( stderr, "### reg1 = %d-%d\n", cut1[i], cut1[i+1]-1 );
		fprintf( stderr, "### reg2 = %d-%d\n", cut2[i], cut2[i+1]-1 );
#endif

		switch( alg )
		{
			case( 'a' ):
				totalscore += Aalign( tmpres1, tmpres2, eff1, eff2, clus1, clus2, alloclen );
				break;
			case( 'Q' ):
				totalscore += partQ__align( tmpres1, tmpres2, eff1, eff2, clus1, clus2, alloclen, localhom, &impmatch, cut1[i], cut1[i+1]-1, cut2[i], cut2[i+1]-1, gapmap1, gapmap2, sgap1, sgap2, egap1, egap2 );
				*totalimpmatch += impmatch;
//				fprintf( stderr, "*totalimpmatch in Falign_localhom = %f\n", *totalimpmatch );
				break;
			case( 'A' ):
				totalscore += partA__align( tmpres1, tmpres2, eff1, eff2, clus1, clus2, alloclen, localhom, &impmatch, cut1[i], cut1[i+1]-1, cut2[i], cut2[i+1]-1, gapmap1, gapmap2, sgap1, sgap2, egap1, egap2, chudanpt, chudanref, chudanres );
				*totalimpmatch += impmatch;
//				fprintf( stderr, "*totalimpmatch in Falign_localhom = %f\n", *totalimpmatch );


				break;
			default:
				fprintf( stderr, "alg = %c\n", alg );
				ErrorExit( "ERROR IN SOURCE FILE Falign.c" );
				break;
		}
#ifdef enablemultithread
		if( chudanres && *chudanres )
		{
//			fprintf( stderr, "\n\n## CHUUDAN!!! at Falign_localhom\n" );
			return( -1.0 );
		}
#endif

		nlen = strlen( tmpres1[0] );
		if( totallen + nlen > alloclen )
		{
			fprintf( stderr, "totallen=%d +  nlen=%d > alloclen = %d\n", totallen, nlen, alloclen );
			ErrorExit( "LENGTH OVER in Falign\n " );
		}
		for( j=0; j<clus1; j++ ) strcat( result1[j], tmpres1[j] );
		for( j=0; j<clus2; j++ ) strcat( result2[j], tmpres2[j] );
		totallen += nlen;
#if 0
		fprintf( stderr, "%4d\r", totallen );
		fprintf( stderr, "\n\n" );
		for( j=0; j<clus1; j++ ) 
		{
			fprintf( stderr, "%s\n", tmpres1[j] );
		}
		fprintf( stderr, "-------\n" );
		for( j=0; j<clus2; j++ ) 
		{
			fprintf( stderr, "%s\n", tmpres2[j] );
		}
#endif
	}
#if KEIKA
	fprintf( stderr, "DP ... done   \n" );
#endif

	for( j=0; j<clus1; j++ ) strcpy( seq1[j], result1[j] );
	for( j=0; j<clus2; j++ ) strcpy( seq2[j], result2[j] );
#if 0
	for( j=0; j<clus1; j++ ) 
	{
		fprintf( stderr, "%s\n", result1[j] );
	}
	fprintf( stderr, "- - - - - - - - - - -\n" );
	for( j=0; j<clus2; j++ ) 
	{
		fprintf( stderr, "%s\n", result2[j] );
	}
#endif
	return( totalscore );
}