Beispiel #1
0
static BOOL
openStdIO(const char* src_file, const char* dst_file, FreeImageIO* dst_io, fi_handle* src_handle, fi_handle* dst_handle) {
	*src_handle = NULL;
	*dst_handle = NULL;
	
	FreeImageIO io;
	SetDefaultIO (&io);
	
	const BOOL isSameFile = (dst_file && (strcmp(src_file, dst_file) == 0)) ? TRUE : FALSE;
	
	FILE* srcp = NULL;
	FILE* dstp = NULL;
	
	if(isSameFile) {
		srcp = fopen(src_file, "r+b");
		dstp = srcp;
	}
	else {
		srcp = fopen(src_file, "rb");
		if(dst_file) {
			dstp = fopen(dst_file, "wb");
		}
	}
	
	if(!srcp || (dst_file && !dstp)) {
		if(!srcp) {
			FreeImage_OutputMessageProc(FIF_JPEG, "Cannot open \"%s\" for reading", src_file);
		} else {
			FreeImage_OutputMessageProc(FIF_JPEG, "Cannot open \"%s\" for writing", dst_file);
		}
		closeStdIO(srcp, dstp);
		return FALSE;
	}

	if(FreeImage_GetFileTypeFromHandle(&io, srcp) != FIF_JPEG) {
		FreeImage_OutputMessageProc(FIF_JPEG, " Source file \"%s\" is not jpeg", src_file);
		closeStdIO(srcp, dstp);
		return FALSE;
	}

	*dst_io = io;
	*src_handle = srcp;
	*dst_handle = dstp;

	return TRUE;
}
Beispiel #2
0
ls_jpeg_output_message (j_common_ptr cinfo) {
	char buffer[JMSG_LENGTH_MAX];

	// create the message
	(*cinfo->err->format_message)(cinfo, buffer);
	// send it to user's message proc
	FreeImage_OutputMessageProc(FIF_JPEG, buffer);
}
Beispiel #3
0
static FIBITMAP * DLL_CALLCONV
Load(FreeImageIO *io, fi_handle handle, int page, int flags, void *data) {
	if (handle != NULL) {
		BITMAPFILEHEADER bitmapfileheader;
		DWORD type = 0;
		BYTE magic[2];

		// we use this offset value to make seemingly absolute seeks relative in the file
		
		long offset_in_file = io->tell_proc(handle);

		// read the magic

		io->read_proc(&magic, sizeof(magic), 1, handle);

		// compare the magic with the number we know

		// somebody put a comment here explaining the purpose of this loop
		while (memcmp(&magic, "BA", 2) == 0) {
			io->read_proc(&bitmapfileheader.bfSize, sizeof(DWORD), 1, handle);
			io->read_proc(&bitmapfileheader.bfReserved1, sizeof(WORD), 1, handle);
			io->read_proc(&bitmapfileheader.bfReserved2, sizeof(WORD), 1, handle);
			io->read_proc(&bitmapfileheader.bfOffBits, sizeof(DWORD), 1, handle);
			io->read_proc(&magic, sizeof(magic), 1, handle);
		}

		// read the fileheader

		io->seek_proc(handle, 0 - sizeof(magic), SEEK_CUR);
		io->read_proc(&bitmapfileheader, sizeof(BITMAPFILEHEADER), 1, handle);
#ifdef FREEIMAGE_BIGENDIAN
		SwapFileHeader(&bitmapfileheader);
#endif

		// read the first byte of the infoheader

		io->read_proc(&type, sizeof(DWORD), 1, handle);
		io->seek_proc(handle, 0 - sizeof(DWORD), SEEK_CUR);
#ifdef FREEIMAGE_BIGENDIAN
		SwapLong(&type);
#endif

		// call the appropriate load function for the found bitmap type

		if (type == 40)
			return LoadWindowsBMP(io, handle, flags, offset_in_file + bitmapfileheader.bfOffBits);
		
		if (type == 12)
			return LoadOS21XBMP(io, handle, flags, offset_in_file + bitmapfileheader.bfOffBits);

		if (type <= 64)
			return LoadOS22XBMP(io, handle, flags, offset_in_file + bitmapfileheader.bfOffBits);

		FreeImage_OutputMessageProc(s_format_id, "unknown bmp subtype with id %d", type);
	}

	return NULL;
}
Beispiel #4
0
/**
Save using EXR_LC compression (works only with RGB[A]F images)
*/
static BOOL
SaveAsEXR_LC(C_OStream& ostream, FIBITMAP *dib, Imf::Header& header, int width, int height) {
    int x, y;
    Imf::RgbaChannels rgbaChannels;

    try {

        FREE_IMAGE_TYPE image_type = FreeImage_GetImageType(dib);

        // convert from float to half
        Imf::Array2D<Imf::Rgba> pixels(height, width);
        switch(image_type) {
        case FIT_RGBF:
            rgbaChannels = Imf::WRITE_YC;
            for(y = 0; y < height; y++) {
                FIRGBF *src_bits = (FIRGBF*)FreeImage_GetScanLine(dib, height - 1 - y);
                for(x = 0; x < width; x++) {
                    Imf::Rgba &dst_bits = pixels[y][x];
                    dst_bits.r = src_bits[x].red;
                    dst_bits.g = src_bits[x].green;
                    dst_bits.b = src_bits[x].blue;
                }
            }
            break;
        case FIT_RGBAF:
            rgbaChannels = Imf::WRITE_YCA;
            for(y = 0; y < height; y++) {
                FIRGBAF *src_bits = (FIRGBAF*)FreeImage_GetScanLine(dib, height - 1 - y);
                for(x = 0; x < width; x++) {
                    Imf::Rgba &dst_bits = pixels[y][x];
                    dst_bits.r = src_bits[x].red;
                    dst_bits.g = src_bits[x].green;
                    dst_bits.b = src_bits[x].blue;
                    dst_bits.a = src_bits[x].alpha;
                }
            }
            break;
        default:
            THROW (Iex::IoExc, "Bad image type");
            break;
        }

        // write the data
        Imf::RgbaOutputFile file(ostream, header, rgbaChannels);
        file.setFrameBuffer (&pixels[0][0], 1, width);
        file.writePixels (height);

        return TRUE;

    } catch(Iex::BaseExc & e) {
        FreeImage_OutputMessageProc(s_format_id, e.what());

        return FALSE;
    }

}
Beispiel #5
0
/**
Default error routine.  change this to change error handling 
*/
static BOOL  
rgbe_Error(rgbe_error_code error_code, const char *msg) {
	switch (error_code) {
		case rgbe_read_error:
			FreeImage_OutputMessageProc(s_format_id, "RGBE read error");
			break;
		case rgbe_write_error:
			FreeImage_OutputMessageProc(s_format_id, "RGBE write error");
			break;
		case rgbe_format_error:
			FreeImage_OutputMessageProc(s_format_id, "RGBE bad file format: %s\n", msg);
			break;
		default:
		case rgbe_memory_error:
			FreeImage_OutputMessageProc(s_format_id, "RGBE error: %s\n",msg);
	}

	return FALSE;
}
Beispiel #6
0
static FIBITMAP * DLL_CALLCONV
Load(FreeImageIO *io, fi_handle handle, int page, int flags, void *data) {
	FIBITMAP *dib = NULL;

	if(!handle) {
		return NULL;
	}

	BOOL header_only = (flags & FIF_LOAD_NOPIXELS) == FIF_LOAD_NOPIXELS;

	try {

		rgbeHeaderInfo header_info;
		unsigned width, height;

		// Read the header
		if(rgbe_ReadHeader(io, handle, &width, &height, &header_info) == FALSE) {
			return NULL;
		}

		// allocate a RGBF image
		dib = FreeImage_AllocateHeaderT(header_only, FIT_RGBF, width, height);
		if(!dib) {
			throw FI_MSG_ERROR_MEMORY;
		}

		// set the metadata as comments
		rgbe_ReadMetadata(dib, &header_info);

		if(header_only) {
			// header only mode
			return dib;
		}

		// read the image pixels and fill the dib
		
		for(unsigned y = 0; y < height; y++) {
			FIRGBF *scanline = (FIRGBF*)FreeImage_GetScanLine(dib, height - 1 - y);
			if(!rgbe_ReadPixels_RLE(io, handle, scanline, width, 1)) {
				FreeImage_Unload(dib);
				return NULL;
			}
		}

	}
	catch(const char *text) {
		if(dib != NULL) {
			FreeImage_Unload(dib);
		}
		FreeImage_OutputMessageProc(s_format_id, text);
	}

	return dib;
}
Beispiel #7
0
/** 
Get the embedded JPEG preview image from RAW picture with included Exif Data. 
@param RawProcessor Libraw handle
@param flags JPEG load flags
@return Returns the loaded dib if successfull, returns NULL otherwise
*/
static FIBITMAP * 
libraw_LoadEmbeddedPreview(LibRaw *RawProcessor, int flags) {
	FIBITMAP *dib = NULL;
	libraw_processed_image_t *thumb_image = NULL;
	
	try {
		// unpack data
		if(RawProcessor->unpack_thumb() != LIBRAW_SUCCESS) {
			// run silently "LibRaw : failed to run unpack_thumb"
			return NULL;
		}

		// retrieve thumb image
		int error_code = 0;
		thumb_image = RawProcessor->dcraw_make_mem_thumb(&error_code);
		if(thumb_image) {
			if(thumb_image->type != LIBRAW_IMAGE_BITMAP) {
				// attach the binary data to a memory stream
				FIMEMORY *hmem = FreeImage_OpenMemory((BYTE*)thumb_image->data, (DWORD)thumb_image->data_size);
				// get the file type
				FREE_IMAGE_FORMAT fif = FreeImage_GetFileTypeFromMemory(hmem, 0);
				if(fif == FIF_JPEG) {
					// rotate according to Exif orientation
					flags |= JPEG_EXIFROTATE;
				}
				// load an image from the memory stream
				dib = FreeImage_LoadFromMemory(fif, hmem, flags);
				// close the stream
				FreeImage_CloseMemory(hmem);
			} else if((flags & FIF_LOAD_NOPIXELS) != FIF_LOAD_NOPIXELS) {
				// convert processed data to output dib
				dib = libraw_ConvertProcessedImageToDib(thumb_image);
			}
		} else {
			throw "LibRaw : failed to run dcraw_make_mem_thumb";
		}

		// clean-up and return
		RawProcessor->dcraw_clear_mem(thumb_image);

		return dib;

	} catch(const char *text) {
		// clean-up and return
		if(thumb_image) {
			RawProcessor->dcraw_clear_mem(thumb_image);
		}
		if(text != NULL) {
			FreeImage_OutputMessageProc(s_format_id, text);
		}
	}

	return NULL;
}
Beispiel #8
0
FITAG * DLL_CALLCONV 
FreeImage_CloneTag(FITAG *tag) {
	if(!tag) return NULL;

	// allocate a new tag
	FITAG *clone = FreeImage_CreateTag();
	if(!clone) return NULL;

	try {
		// copy the tag
		FITAGHEADER *src_tag = (FITAGHEADER *)tag->data;
		FITAGHEADER *dst_tag = (FITAGHEADER *)clone->data;

		// tag ID
		dst_tag->id = src_tag->id;
		// tag key
		if(src_tag->key) {
			dst_tag->key = (char*)malloc((strlen(src_tag->key) + 1) * sizeof(char));
			if(!dst_tag->key) {
				throw FI_MSG_ERROR_MEMORY;
			}
			strcpy(dst_tag->key, src_tag->key);
		}
		// tag description
		if(src_tag->description) {
			dst_tag->description = (char*)malloc((strlen(src_tag->description) + 1) * sizeof(char));
			if(!dst_tag->description) {
				throw FI_MSG_ERROR_MEMORY;
			}
			strcpy(dst_tag->description, src_tag->description);
		}
		// tag data type
		dst_tag->type = src_tag->type;
		// tag count
		dst_tag->count = src_tag->count;
		// tag length
		dst_tag->length = src_tag->length;
		// tag value
		dst_tag->value = (BYTE*)malloc(src_tag->length * sizeof(BYTE));
		if(!dst_tag->value) {
			throw FI_MSG_ERROR_MEMORY;
		}
		memcpy(dst_tag->value, src_tag->value, src_tag->length);

		return clone;

	} catch(const char *message) {
		FreeImage_DeleteTag(clone);
		FreeImage_OutputMessageProc(FIF_UNKNOWN, message);
		return NULL;
	}
}
Beispiel #9
0
/**
Convert a processed raw image to a FIBITMAP
@param image Processed raw image
@return Returns the converted dib if successfull, returns NULL otherwise
@see libraw_LoadEmbeddedPreview
*/
static FIBITMAP * 
libraw_ConvertProcessedImageToDib(libraw_processed_image_t *image) {
	FIBITMAP *dib = NULL;

	try {
		unsigned width = image->width;
		unsigned height = image->height;
		unsigned bpp = image->bits;
		if(bpp == 16) {
			// allocate output dib
			dib = FreeImage_AllocateT(FIT_RGB16, width, height);
			if(!dib) {
				throw FI_MSG_ERROR_DIB_MEMORY;
			}
			// write data
			WORD *raw_data = (WORD*)image->data;
			for(unsigned y = 0; y < height; y++) {
				FIRGB16 *output = (FIRGB16*)FreeImage_GetScanLine(dib, height - 1 - y);
				for(unsigned x = 0; x < width; x++) {
					output[x].red   = raw_data[0];
					output[x].green = raw_data[1];
					output[x].blue  = raw_data[2];
					raw_data += 3;
				}
			}
		} else if(bpp == 8) {
			// allocate output dib
			dib = FreeImage_AllocateT(FIT_BITMAP, width, height, 24);
			if(!dib) {
				throw FI_MSG_ERROR_DIB_MEMORY;
			}
			// write data
			BYTE *raw_data = (BYTE*)image->data;
			for(unsigned y = 0; y < height; y++) {
				RGBTRIPLE *output = (RGBTRIPLE*)FreeImage_GetScanLine(dib, height - 1 - y);
				for(unsigned x = 0; x < width; x++) {
					output[x].rgbtRed   = raw_data[0];
					output[x].rgbtGreen = raw_data[1];
					output[x].rgbtBlue  = raw_data[2];
					raw_data += 3;
				}
			}
		}
		
		return dib;

	} catch(const char *text) {
		FreeImage_Unload(dib);
		FreeImage_OutputMessageProc(s_format_id, text);
		return NULL;
	}
}
Beispiel #10
0
/**
	Read JPEG_APP1 marker (Exif profile)
	@param dib Input FIBITMAP
	@param dataptr Pointer to the APP1 marker
	@param datalen APP1 marker length
	@return Returns TRUE if successful, FALSE otherwise
*/
BOOL  
jpeg_read_exif_profile(FIBITMAP *dib, const BYTE *dataptr, unsigned int datalen) {
    // marker identifying string for Exif = "Exif\0\0"
    BYTE exif_signature[6] = { 0x45, 0x78, 0x69, 0x66, 0x00, 0x00 };
	BYTE lsb_first[4] = { 0x49, 0x49, 0x2A, 0x00 };		// Intel order
	BYTE msb_first[4] = { 0x4D, 0x4D, 0x00, 0x2A };		// Motorola order

	unsigned int length = datalen;
	BYTE *profile = (BYTE*)dataptr;

	// verify the identifying string

	if(memcmp(exif_signature, profile, sizeof(exif_signature)) == 0) {
		// Exif profile

		profile += sizeof(exif_signature);
		length  -= sizeof(exif_signature);

		// check the endianess order
		
		BOOL bMotorolaOrder = TRUE;

		if(memcmp(profile, lsb_first, sizeof(lsb_first)) == 0) {
			// Exif section in Intel order
			bMotorolaOrder = FALSE;
		} else {
			if(memcmp(profile, msb_first, sizeof(msb_first)) == 0) {
				// Exif section in Motorola order
				bMotorolaOrder = TRUE;
			} else {
				// Invalid Exif alignment marker
				return FALSE;
			}
		}

		// this is the offset to the first IFD
		unsigned long first_offset = ReadUint32(bMotorolaOrder, profile + 4);

		if (first_offset < 8 || first_offset > 16) {
			// This is usually set to 8
			// but PENTAX Optio 230 has it set differently, and uses it as offset. 
			FreeImage_OutputMessageProc(FIF_JPEG, "Exif: Suspicious offset of first IFD value");
			return FALSE;
		}

		// process Exif directories
		return jpeg_read_exif_dir(dib, profile, first_offset, length, bMotorolaOrder);
	}

	return FALSE;
}
Beispiel #11
0
FIBITMAP* psdParser::Load(FreeImageIO *io, fi_handle handle, int s_format_id) {
	FIBITMAP *Bitmap = NULL;
		
	try {
		if (NULL == handle) {
			throw("Cannot open file");
		}
		
		if (!_headerInfo.Read(io, handle)) {
			throw("Error in header");
		}

		if (!_colourModeData.Read(io, handle)) {
			throw("Error in ColourMode Data");
		}
		
		if (!ReadImageResource(io, handle)) {
			throw("Error in Image Resource");
		}
		
		if (!ReadLayerAndMaskInfoSection(io, handle)) {
			throw("Error in Mask Info");
		}
		
		Bitmap = ReadImageData(io, handle);
		if (NULL == Bitmap) {
			throw("Error in Image Data");
		}

		// set resolution info
		if(NULL != Bitmap) {
			unsigned res_x = 2835;	// 72 dpi
			unsigned res_y = 2835;	// 72 dpi
			if (_bResolutionInfoFilled) {
				_resolutionInfo.GetResolutionInfo(res_x, res_y);
			}
			FreeImage_SetDotsPerMeterX(Bitmap, res_x);
			FreeImage_SetDotsPerMeterY(Bitmap, res_y);	
		}

		// set ICC profile
		if(NULL != _iccProfile._ProfileData) {
			FreeImage_CreateICCProfile(Bitmap, _iccProfile._ProfileData, _iccProfile._ProfileSize);
		}
		
	} catch(const char *text) {
		FreeImage_OutputMessageProc(s_format_id, text);
	}

	return Bitmap;
} 
Beispiel #12
0
/**
Convert a processed raw data array to a FIBITMAP
@param RawProcessor LibRaw handle containing the processed raw image
@return Returns the converted dib if successfull, returns NULL otherwise
*/
static FIBITMAP * 
libraw_ConvertProcessedRawToDib(LibRaw *RawProcessor) {
	FIBITMAP *dib = NULL;
    int width, height, colors, bpp;

	try {
		int bgr = 0;	// pixel copy order: RGB if (bgr == 0) and BGR otherwise

		// get image info
		RawProcessor->get_mem_image_format(&width, &height, &colors, &bpp);

		// only 3-color images supported...
		if(colors != 3) {
			throw "LibRaw : only 3-color images supported";
		}

		if(bpp == 16) {
			// allocate output dib
			dib = FreeImage_AllocateT(FIT_RGB16, width, height);
			if(!dib) {
				throw FI_MSG_ERROR_DIB_MEMORY;
			}

		} else if(bpp == 8) {
#if FREEIMAGE_COLORORDER == FREEIMAGE_COLORORDER_BGR
			bgr = 1;	// only useful for FIT_BITMAP types
#endif

			// allocate output dib
			dib = FreeImage_AllocateT(FIT_BITMAP, width, height, 24);
			if(!dib) {
				throw FI_MSG_ERROR_DIB_MEMORY;
			}
		}

		// copy post-processed bitmap data into FIBITMAP buffer
		if(RawProcessor->copy_mem_image(FreeImage_GetBits(dib), FreeImage_GetPitch(dib), bgr) != LIBRAW_SUCCESS) {
			throw "LibRaw : failed to copy data into dib";
		}

		// flip vertically
		FreeImage_FlipVertical(dib);

		return dib;

	} catch(const char *text) {
		FreeImage_Unload(dib);
		FreeImage_OutputMessageProc(s_format_id, text);
		return NULL;
	}
}
Beispiel #13
0
/**
Load raw data and convert to FIBITMAP
@param RawProcessor Libraw handle
@param bitspersample Output bitdepth (8- or 16-bit)
@return Returns the loaded dib if successfull, returns NULL otherwise
*/
static FIBITMAP * 
libraw_LoadRawData(LibRaw *RawProcessor, int bitspersample) {
	FIBITMAP *dib = NULL;

	try {
		// set decoding parameters
		// -----------------------
		
		// (-6) 16-bit or 8-bit
		RawProcessor->imgdata.params.output_bps = bitspersample;
		// (-g power toe_slope)
		if(bitspersample == 16) {
			// set -g 1 1 for linear curve
			RawProcessor->imgdata.params.gamm[0] = 1;
			RawProcessor->imgdata.params.gamm[1] = 1;
		} else if(bitspersample == 8) {
			// by default settings for rec. BT.709 are used: power 2.222 (i.e. gamm[0]=1/2.222) and slope 4.5
			RawProcessor->imgdata.params.gamm[0] = 1/2.222;
			RawProcessor->imgdata.params.gamm[1] = 4.5;
		}
		// (-W) Don't use automatic increase of brightness by histogram
		RawProcessor->imgdata.params.no_auto_bright = 1;
		// (-a) Use automatic white balance obtained after averaging over the entire image
		RawProcessor->imgdata.params.use_auto_wb = 1;
		// (-q 3) Adaptive homogeneity-directed demosaicing algorithm (AHD)
		RawProcessor->imgdata.params.user_qual = 3;

		// -----------------------

		// unpack data
		if(RawProcessor->unpack() != LIBRAW_SUCCESS) {
			throw "LibRaw : failed to unpack data";
		}

		// process data (... most consuming task ...)
		if(RawProcessor->dcraw_process() != LIBRAW_SUCCESS) {
			throw "LibRaw : failed to process data";
		}

		// retrieve processed image
		dib = libraw_ConvertProcessedRawToDib(RawProcessor);
	
		return dib;

	} catch(const char *text) {
		FreeImage_OutputMessageProc(s_format_id, text);
		return NULL;
	}
}
Beispiel #14
0
mng_bool
mymngerror(mng_handle mng, mng_int32 code, mng_int8 severity, mng_chunkid chunktype, mng_uint32 chunkseq, mng_int32 extra1, mng_int32 extra2, mng_pchar text) {
	char msg[256];
	if((code == MNG_SEQUENCEERROR) && (chunktype == MNG_UINT_TERM)) {
		// ignore sequence error for TERM
		return MNG_TRUE;
	}
	if(text) {
		// text can be null depending on compiler options
		sprintf(msg, "Error reported by libmng (%d)\r\n\r\n%s", code, text);
	} else {
		sprintf(msg, "Error %d reported by libmng", code);
	}
	FreeImage_OutputMessageProc(s_format_id, msg);
	return MNG_FALSE;
}
Beispiel #15
0
/**
Compresses a source buffer into a target buffer, using the ZLib library. 
Upon entry, target_size is the total size of the destination buffer, 
which must be at least 0.1% larger than source_size plus 12 bytes. 

@param target Destination buffer
@param target_size Size of the destination buffer, in bytes
@param source Source buffer
@param source_size Size of the source buffer, in bytes
@return Returns the actual size of the compressed buffer, returns 0 if an error occured
@see FreeImage_ZLibUncompress
*/
DWORD DLL_CALLCONV 
FreeImage_ZLibCompress(BYTE *target, DWORD target_size, BYTE *source, DWORD source_size) {
	uLongf dest_len = (uLongf)target_size;

	int zerr = compress(target, &dest_len, source, source_size);
	switch(zerr) {
		case Z_MEM_ERROR:	// not enough memory
		case Z_BUF_ERROR:	// not enough room in the output buffer
			FreeImage_OutputMessageProc(FIF_UNKNOWN, "Zlib error : %s", zError(zerr));
			return 0;
		case Z_OK:
			return dest_len;
	}

	return 0;
}
/**
Decompresses a source buffer into a target buffer, using the ZLib library. 
Upon entry, target_size is the total size of the destination buffer, 
which must be large enough to hold the entire uncompressed data. 
The size of the uncompressed data must have been saved previously by the compressor 
and transmitted to the decompressor by some mechanism outside the scope of this 
compression library.

@param target Destination buffer
@param target_size Size of the destination buffer, in bytes
@param source Source buffer
@param source_size Size of the source buffer, in bytes
@return Returns the actual size of the uncompressed buffer, returns 0 if an error occured
@see FreeImage_ZLibCompress
*/
DWORD DLL_CALLCONV 
FreeImage_ZLibUncompress(BYTE *target, DWORD target_size, BYTE *source, DWORD source_size) {
	DWORD dest_len = target_size;

	int zerr = uncompress(target, &dest_len, source, source_size);
	switch(zerr) {
		case Z_MEM_ERROR:	// not enough memory
		case Z_BUF_ERROR:	// not enough room in the output buffer
		case Z_DATA_ERROR:	// input data was corrupted
			FreeImage_OutputMessageProc(FIF_UNKNOWN, "Zlib error : %s", zError(zerr));
			return 0;
		case Z_OK:
			return dest_len;
	}

	return 0;
}
Beispiel #17
0
/**
Set the preview image using the dib embedded thumbnail
*/
static BOOL
SetPreviewImage(FIBITMAP *dib, Imf::Header& header) {
    if(!FreeImage_GetThumbnail(dib)) {
        return FALSE;
    }
    FIBITMAP* thumbnail = FreeImage_GetThumbnail(dib);

    if((FreeImage_GetImageType(thumbnail) != FIT_BITMAP) || (FreeImage_GetBPP(thumbnail) != 32)) {
        // invalid thumbnail - ignore it
        FreeImage_OutputMessageProc(s_format_id, FI_MSG_WARNING_INVALID_THUMBNAIL);
    } else {
        const unsigned thWidth = FreeImage_GetWidth(thumbnail);
        const unsigned thHeight = FreeImage_GetHeight(thumbnail);

        Imf::PreviewImage preview(thWidth, thHeight);

        // copy thumbnail to 32-bit RGBA preview image

        const BYTE* src_line = FreeImage_GetScanLine(thumbnail, thHeight - 1);
        Imf::PreviewRgba* dst_line = preview.pixels();
        const unsigned srcPitch = FreeImage_GetPitch(thumbnail);

        for (unsigned y = 0; y < thHeight; y++) {
            const RGBQUAD* src_pixel = (RGBQUAD*)src_line;
            Imf::PreviewRgba* dst_pixel = dst_line;

            for(unsigned x = 0; x < thWidth; x++) {
                dst_pixel->r = src_pixel->rgbRed;
                dst_pixel->g = src_pixel->rgbGreen;
                dst_pixel->b = src_pixel->rgbBlue;
                dst_pixel->a = src_pixel->rgbReserved;

                src_pixel++;
                dst_pixel++;
            }

            src_line -= srcPitch;
            dst_line += thWidth;
        }

        header.setPreviewImage(preview);
    }

    return TRUE;
}
Beispiel #18
0
BOOL DLL_CALLCONV
FreeImage_SaveToMemory(FREE_IMAGE_FORMAT fif, FIBITMAP *dib, FIMEMORY *stream, int flags) {
	if (stream) {
		FreeImageIO io;
		SetMemoryIO(&io);

		FIMEMORYHEADER *mem_header = (FIMEMORYHEADER*)(stream->data);

		if(mem_header->delete_me == TRUE) {
			return FreeImage_SaveToHandle(fif, dib, &io, (fi_handle)stream, flags);
		} else {
			// do not save in a user buffer
			FreeImage_OutputMessageProc(fif, "Memory buffer is read only");
		}
	}

	return FALSE;
}
Beispiel #19
0
/**
Writes data to a memory stream.
@param buffer Pointer to data to be written
@param size Item size in bytes
@param count Maximum number of items to be written
@param stream Pointer to FIMEMORY structure
@return Returns the number of full items actually written, which may be less than count if an error occurs
*/
unsigned DLL_CALLCONV 
FreeImage_WriteMemory(const void *buffer, unsigned size, unsigned count, FIMEMORY *stream) {
	if (stream != NULL) {
		FreeImageIO io;
		SetMemoryIO(&io);

		FIMEMORYHEADER *mem_header = (FIMEMORYHEADER*)(((FIMEMORY*)stream)->data);

		if(mem_header->delete_me == TRUE) {
			return io.write_proc((void *)buffer, size, count, stream);
		} else {
			// do not write in a user buffer
			FreeImage_OutputMessageProc(FIF_UNKNOWN, "Memory buffer is read only");
		}
	}

	return 0;
}
static FIBITMAP * DLL_CALLCONV
Load(FreeImageIO *io, fi_handle handle, int page, int flags, void *data) {
	FIBITMAP *dib = NULL;

	if(handle) {
		try {

			rgbeHeaderInfo header_info;
			unsigned width, height;

			// Read the header
			if(rgbe_ReadHeader(io, handle, &width, &height, &header_info) == FALSE)
				return NULL;

			// allocate a RGBF image
			dib = FreeImage_AllocateT(FIT_RGBF, width, height);
			if(!dib) {
				throw "Memory allocation failed";
			}

			// read the image pixels and fill the dib
			
			for(unsigned y = 0; y < height; y++) {
				FIRGBF *scanline = (FIRGBF*)FreeImage_GetScanLine(dib, height - 1 - y);
				if(!rgbe_ReadPixels_RLE(io, handle, scanline, width, 1)) {
					FreeImage_Unload(dib);
					return NULL;
				}
			}

			// set the metadata as comments
			rgbe_ReadMetadata(dib, &header_info);

		}
		catch(const char *text) {
			if(dib != NULL) {
				FreeImage_Unload(dib);
			}
			FreeImage_OutputMessageProc(s_format_id, text);
		}
	}	

	return dib;
}
FIBITMAP* DLL_CALLCONV
FIA_FFT(FIBITMAP *src)
{
	if(!src)
		return NULL;

	// Convert from src_type to FIT_BITMAP
	FREE_IMAGE_TYPE src_type = FreeImage_GetImageType(src);

	switch (src_type)
    {
		case FIT_BITMAP:	// standard image: 1-, 4-, 8-, 16-, 24-, 32-bit
			if(FreeImage_GetBPP(src) == 8)
				return fftUCharImage.FFT(src);				
			break;
			
		case FIT_UINT16:	// array of unsigned short: unsigned 16-bit
			return fftUShortImage.FFT(src);
	
		case FIT_INT16:		// array of short: signed 16-bit
			return fftShortImage.FFT(src);
		
		case FIT_UINT32:	// array of unsigned long: unsigned 32-bit
			return fftULongImage.FFT(src);
		
		case FIT_INT32:		// array of long: signed 32-bit
			return fftLongImage.FFT(src);
		
		case FIT_FLOAT:		// array of float: 32-bit
			return fftFloatImage.FFT(src);
		
		case FIT_DOUBLE:	// array of double: 64-bit
			return fftDoubleImage.FFT(src);
				
		default:
			break;
	}

	FreeImage_OutputMessageProc(FIF_UNKNOWN, "FREE_IMAGE_TYPE: Unable to perform FFT for type %d.", src_type);

	return NULL;
}
Beispiel #22
0
BOOL fipWinImage::copyFromBitmap(HBITMAP hbmp) {
	if(hbmp) { 
		int Success;
        BITMAP bm;
		// Get informations about the bitmap
        GetObject(hbmp, sizeof(BITMAP), (LPSTR) &bm);
		// Create the image
        setSize(FIT_BITMAP, (WORD)bm.bmWidth, (WORD)bm.bmHeight, (WORD)bm.bmBitsPixel);

		// The GetDIBits function clears the biClrUsed and biClrImportant BITMAPINFO members (dont't know why) 
		// So we save these infos below. This is needed for palettized images only. 
		int nColors = FreeImage_GetColorsUsed(_dib);

		// Create a device context for the bitmap
        HDC dc = GetDC(NULL);
		// Copy the pixels
		Success = GetDIBits(dc,								// handle to DC
								hbmp,						// handle to bitmap
								0,							// first scan line to set
								FreeImage_GetHeight(_dib),	// number of scan lines to copy
								FreeImage_GetBits(_dib),	// array for bitmap bits
								FreeImage_GetInfo(_dib),	// bitmap data buffer
								DIB_RGB_COLORS				// RGB 
								);
		if(Success == 0) {
			FreeImage_OutputMessageProc(FIF_UNKNOWN, "Error : GetDIBits failed");
			ReleaseDC(NULL, dc);
			return FALSE;
        }
        ReleaseDC(NULL, dc);

		// restore BITMAPINFO members
		
		FreeImage_GetInfoHeader(_dib)->biClrUsed = nColors;
		FreeImage_GetInfoHeader(_dib)->biClrImportant = nColors;

		return TRUE;
    }

	return FALSE;
}
Beispiel #23
0
BOOL DLL_CALLCONV 
FreeImage_JPEGTransform(const char *src_file, const char *dst_file, FREE_IMAGE_JPEG_OPERATION operation, BOOL perfect) {
	try {
		// check the src file format
		if(FreeImage_GetFileType(src_file) != FIF_JPEG) {
			throw FI_MSG_ERROR_MAGIC_NUMBER;
		}

		// setup IO
		FilenameIO filenameIO;
		memset(&filenameIO, 0, sizeof(FilenameIO));
		filenameIO.src_file = src_file;
		filenameIO.dst_file = dst_file;

		// perform the transformation
		return LosslessTransform(&filenameIO, operation, NULL, perfect);

	} catch(const char *text) {
		FreeImage_OutputMessageProc(FIF_JPEG, text);
		return FALSE;
	}
}
Beispiel #24
0
static BOOL
getMemIO(FIMEMORY* src_stream, FIMEMORY* dst_stream, FreeImageIO* dst_io, fi_handle* src_handle, fi_handle* dst_handle) {
	*src_handle = NULL;
	*dst_handle = NULL;

	FreeImageIO io;
	SetMemoryIO (&io);

	if(dst_stream) {
		FIMEMORYHEADER *mem_header = (FIMEMORYHEADER*)(dst_stream->data);
		if(mem_header->delete_me != TRUE) {
			// do not save in a user buffer
			FreeImage_OutputMessageProc(FIF_JPEG, "Destination memory buffer is read only");
			return FALSE;
		}
	}

	*dst_io = io;
	*src_handle = src_stream;
	*dst_handle = dst_stream;

	return TRUE;
}
Beispiel #25
0
static BOOL DLL_CALLCONV
Save(FreeImageIO *io, FIBITMAP *dib, fi_handle handle, int page, int flags, void *data) {
	if(!dib) return FALSE;

	FREE_IMAGE_TYPE src_type = FreeImage_GetImageType(dib);
	if(src_type != FIT_RGBF) {
		FreeImage_OutputMessageProc(s_format_id, "FREE_IMAGE_TYPE: Unable to convert from type %d to type %d.\n No such conversion exists.", src_type, FIT_RGBF);
		return FALSE;
	}

	unsigned width  = FreeImage_GetWidth(dib);
	unsigned height = FreeImage_GetHeight(dib);

	// write the header

	rgbeHeaderInfo header_info;
	memset(&header_info, 0, sizeof(rgbeHeaderInfo));
	// fill the header with correct gamma and exposure
	rgbe_WriteMetadata(dib, &header_info);
	// fill a comment
	sprintf(header_info.comment, "# Made with FreeImage %s", FreeImage_GetVersion());
	if(!rgbe_WriteHeader(io, handle, width, height, &header_info)) {
		return FALSE;
	}

	// write each scanline

	for(unsigned y = 0; y < height; y++) {
		FIRGBF *scanline = (FIRGBF*)FreeImage_GetScanLine(dib, height - 1 - y);
		if(!rgbe_WritePixels_RLE(io, handle, scanline, width, 1)) {
			return FALSE;
		}
	}

	return TRUE;
}
Beispiel #26
0
static BOOL
JPEGTransformFromHandle(FreeImageIO* src_io, fi_handle src_handle, FreeImageIO* dst_io, fi_handle dst_handle, FREE_IMAGE_JPEG_OPERATION operation, int* left, int* top, int* right, int* bottom, BOOL perfect) {
	const BOOL onlyReturnCropRect = (dst_io == NULL) || (dst_handle == NULL);
	const long stream_start = onlyReturnCropRect ? 0 : dst_io->tell_proc(dst_handle);
	BOOL swappedDim = FALSE;
	BOOL trimH = FALSE;
	BOOL trimV = FALSE;

	// Set up the jpeglib structures
	jpeg_decompress_struct srcinfo;
	jpeg_compress_struct dstinfo;
	jpeg_error_mgr jsrcerr, jdsterr;
	jvirt_barray_ptr *src_coef_arrays = NULL;
	jvirt_barray_ptr *dst_coef_arrays = NULL;
	// Support for copying optional markers from source to destination file
	JCOPY_OPTION copyoption;
	// Image transformation options
	jpeg_transform_info transfoptions;

	// Initialize structures
	memset(&srcinfo, 0, sizeof(srcinfo));
	memset(&jsrcerr, 0, sizeof(jsrcerr));
	memset(&jdsterr, 0, sizeof(jdsterr));
	memset(&dstinfo, 0, sizeof(dstinfo));
	memset(&transfoptions, 0, sizeof(transfoptions));

	// Copy all extra markers from source file
	copyoption = JCOPYOPT_ALL;

	// Set up default JPEG parameters
	transfoptions.force_grayscale = FALSE;
	transfoptions.crop = FALSE;

	// Select the transform option
	switch(operation) {
		case FIJPEG_OP_FLIP_H:		// horizontal flip
			transfoptions.transform = JXFORM_FLIP_H;
			trimH = TRUE;
			break;
		case FIJPEG_OP_FLIP_V:		// vertical flip
			transfoptions.transform = JXFORM_FLIP_V;
			trimV = TRUE;
			break;
		case FIJPEG_OP_TRANSPOSE:	// transpose across UL-to-LR axis
			transfoptions.transform = JXFORM_TRANSPOSE;
			swappedDim = TRUE;
			break;
		case FIJPEG_OP_TRANSVERSE:	// transpose across UR-to-LL axis
			transfoptions.transform = JXFORM_TRANSVERSE;
			trimH = TRUE;
			trimV = TRUE;
			swappedDim = TRUE;
			break;
		case FIJPEG_OP_ROTATE_90:	// 90-degree clockwise rotation
			transfoptions.transform = JXFORM_ROT_90;
			trimH = TRUE;
			swappedDim = TRUE;
			break;
		case FIJPEG_OP_ROTATE_180:	// 180-degree rotation
			trimH = TRUE;
			trimV = TRUE;
			transfoptions.transform = JXFORM_ROT_180;
			break;
		case FIJPEG_OP_ROTATE_270:	// 270-degree clockwise (or 90 ccw)
			transfoptions.transform = JXFORM_ROT_270;
			trimV = TRUE;
			swappedDim = TRUE;
			break;
		default:
		case FIJPEG_OP_NONE:		// no transformation
			transfoptions.transform = JXFORM_NONE;
			break;
	}
	// (perfect == TRUE) ==> fail if there is non-transformable edge blocks
	transfoptions.perfect = (perfect == TRUE) ? TRUE : FALSE;
	// Drop non-transformable edge blocks: trim off any partial edge MCUs that the transform can't handle.
	transfoptions.trim = TRUE;

	try {

		// Initialize the JPEG decompression object with default error handling
		srcinfo.err = jpeg_std_error(&jsrcerr);
		srcinfo.err->error_exit = ls_jpeg_error_exit;
		srcinfo.err->output_message = ls_jpeg_output_message;
		jpeg_create_decompress(&srcinfo);

		// Initialize the JPEG compression object with default error handling
		dstinfo.err = jpeg_std_error(&jdsterr);
		dstinfo.err->error_exit = ls_jpeg_error_exit;
		dstinfo.err->output_message = ls_jpeg_output_message;
		jpeg_create_compress(&dstinfo);

		// Specify data source for decompression
		jpeg_freeimage_src(&srcinfo, src_handle, src_io);

		// Enable saving of extra markers that we want to copy
		jcopy_markers_setup(&srcinfo, copyoption);

		// Read the file header
		jpeg_read_header(&srcinfo, TRUE);

		// crop option
		char crop[64];
		const BOOL hasCrop = getCropString(crop, left, top, right, bottom, swappedDim ? srcinfo.image_height : srcinfo.image_width, swappedDim ? srcinfo.image_width : srcinfo.image_height);

		if(hasCrop) {
			if(!jtransform_parse_crop_spec(&transfoptions, crop)) {
				FreeImage_OutputMessageProc(FIF_JPEG, "Bogus crop argument %s", crop);
				throw(1);
			}
		}

		// Any space needed by a transform option must be requested before
		// jpeg_read_coefficients so that memory allocation will be done right

		// Prepare transformation workspace
		// Fails right away if perfect flag is TRUE and transformation is not perfect
		if( !jtransform_request_workspace(&srcinfo, &transfoptions) ) {
			FreeImage_OutputMessageProc(FIF_JPEG, "Transformation is not perfect");
			throw(1);
		}

		if(left || top) {
			// compute left and top offsets, it's a bit tricky, taking into account both
			// transform, which might have trimed the image,
			// and crop itself, which is adjusted to lie on a iMCU boundary

			const int fullWidth = swappedDim ? srcinfo.image_height : srcinfo.image_width;
			const int fullHeight = swappedDim ? srcinfo.image_width : srcinfo.image_height;

			int transformedFullWidth = fullWidth;
			int transformedFullHeight = fullHeight;

			if(trimH && transformedFullWidth/transfoptions.iMCU_sample_width > 0) {
				transformedFullWidth = (transformedFullWidth/transfoptions.iMCU_sample_width) * transfoptions.iMCU_sample_width;
			}
			if(trimV && transformedFullHeight/transfoptions.iMCU_sample_height > 0) {
				transformedFullHeight = (transformedFullHeight/transfoptions.iMCU_sample_height) * transfoptions.iMCU_sample_height;
			}

			const int trimmedWidth = fullWidth - transformedFullWidth;
			const int trimmedHeight = fullHeight - transformedFullHeight;

			if(left) {
				*left = trimmedWidth + transfoptions.x_crop_offset * transfoptions.iMCU_sample_width;
			}
			if(top) {
				*top = trimmedHeight + transfoptions.y_crop_offset * transfoptions.iMCU_sample_height;
			}
		}

		if(right) {
			*right = (left ? *left : 0) + transfoptions.output_width;
		}
		if(bottom) {
			*bottom = (top ? *top : 0) + transfoptions.output_height;
		}

		// if only the crop rect is requested, we are done

		if(onlyReturnCropRect) {
			jpeg_destroy_compress(&dstinfo);
			jpeg_destroy_decompress(&srcinfo);
			return TRUE;
		}

		// Read source file as DCT coefficients
		src_coef_arrays = jpeg_read_coefficients(&srcinfo);

		// Initialize destination compression parameters from source values
		jpeg_copy_critical_parameters(&srcinfo, &dstinfo);

		// Adjust destination parameters if required by transform options;
		// also find out which set of coefficient arrays will hold the output
		dst_coef_arrays = jtransform_adjust_parameters(&srcinfo, &dstinfo, src_coef_arrays, &transfoptions);

		// Note: we assume that jpeg_read_coefficients consumed all input
		// until JPEG_REACHED_EOI, and that jpeg_finish_decompress will
		// only consume more while (! cinfo->inputctl->eoi_reached).
		// We cannot call jpeg_finish_decompress here since we still need the
		// virtual arrays allocated from the source object for processing.

		if(src_handle == dst_handle) {
			dst_io->seek_proc(dst_handle, stream_start, SEEK_SET);
		}

		// Specify data destination for compression
		jpeg_freeimage_dst(&dstinfo, dst_handle, dst_io);

		// Start compressor (note no image data is actually written here)
		jpeg_write_coefficients(&dstinfo, dst_coef_arrays);

		// Copy to the output file any extra markers that we want to preserve
		jcopy_markers_execute(&srcinfo, &dstinfo, copyoption);

		// Execute image transformation, if any
		jtransform_execute_transformation(&srcinfo, &dstinfo, src_coef_arrays, &transfoptions);

		// Finish compression and release memory
		jpeg_finish_compress(&dstinfo);
		jpeg_destroy_compress(&dstinfo);
		jpeg_finish_decompress(&srcinfo);
		jpeg_destroy_decompress(&srcinfo);

	}
	catch(...) {
		jpeg_destroy_compress(&dstinfo);
		jpeg_destroy_decompress(&srcinfo);
		return FALSE;
	}

	return TRUE;
}
Beispiel #27
0
FIBITMAP* DLL_CALLCONV
FreeImage_ConvertToType(FIBITMAP *src, FREE_IMAGE_TYPE dst_type, BOOL scale_linear) {
	FIBITMAP *dst = NULL;

	if(!FreeImage_HasPixels(src)) return NULL;

	// convert from src_type to dst_type

	const FREE_IMAGE_TYPE src_type = FreeImage_GetImageType(src);

	if(src_type == dst_type) {
		return FreeImage_Clone(src);
	}

	const unsigned src_bpp = FreeImage_GetBPP(src);

	switch(src_type) {
		case FIT_BITMAP:
			switch(dst_type) {
				case FIT_UINT16:
					dst = FreeImage_ConvertToUINT16(src);
					break;
				case FIT_INT16:
					dst = (src_bpp == 8) ? convertByteToShort.convert(src, dst_type) : NULL;
					break;
				case FIT_UINT32:
					dst = (src_bpp == 8) ? convertByteToULong.convert(src, dst_type) : NULL;
					break;
				case FIT_INT32:
					dst = (src_bpp == 8) ? convertByteToLong.convert(src, dst_type) : NULL;
					break;
				case FIT_FLOAT:
					dst = FreeImage_ConvertToFloat(src);
					break;
				case FIT_DOUBLE:
					dst = (src_bpp == 8) ? convertByteToDouble.convert(src, dst_type) : NULL;
					break;
				case FIT_COMPLEX:
					dst = (src_bpp == 8) ? convertByteToComplex.convert(src) : NULL;
					break;
				case FIT_RGB16:
					dst = FreeImage_ConvertToRGB16(src);
					break;
				case FIT_RGBA16:
					dst = FreeImage_ConvertToRGBA16(src);
					break;
				case FIT_RGBF:
					dst = FreeImage_ConvertToRGBF(src);
					break;
				case FIT_RGBAF:
					dst = FreeImage_ConvertToRGBAF(src);
					break;
			}
			break;
		case FIT_UINT16:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertToStandardType(src, scale_linear);
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = FreeImage_ConvertToFloat(src);
					break;
				case FIT_DOUBLE:
					dst = convertUShortToDouble.convert(src, dst_type);
					break;
				case FIT_COMPLEX:
					dst = convertUShortToComplex.convert(src);
					break;
				case FIT_RGB16:
					dst = FreeImage_ConvertToRGB16(src);
					break;
				case FIT_RGBA16:
					dst = FreeImage_ConvertToRGBA16(src);
					break;
				case FIT_RGBF:
					dst = FreeImage_ConvertToRGBF(src);
					break;
				case FIT_RGBAF:
					dst = FreeImage_ConvertToRGBAF(src);
					break;
			}
			break;
		case FIT_INT16:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertToStandardType(src, scale_linear);
					break;
				case FIT_UINT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = convertShortToFloat.convert(src, dst_type);
					break;
				case FIT_DOUBLE:
					dst = convertShortToDouble.convert(src, dst_type);
					break;
				case FIT_COMPLEX:
					dst = convertShortToComplex.convert(src);
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					break;
				case FIT_RGBAF:
					break;
			}
			break;
		case FIT_UINT32:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertToStandardType(src, scale_linear);
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = convertULongToFloat.convert(src, dst_type);
					break;
				case FIT_DOUBLE:
					dst = convertULongToDouble.convert(src, dst_type);
					break;
				case FIT_COMPLEX:
					dst = convertULongToComplex.convert(src);
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					break;
				case FIT_RGBAF:
					break;
			}
			break;
		case FIT_INT32:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertToStandardType(src, scale_linear);
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_FLOAT:
					dst = convertLongToFloat.convert(src, dst_type);
					break;
				case FIT_DOUBLE:
					dst = convertLongToDouble.convert(src, dst_type);
					break;
				case FIT_COMPLEX:
					dst = convertLongToComplex.convert(src);
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					break;
				case FIT_RGBAF:
					break;
			}
			break;
		case FIT_FLOAT:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertToStandardType(src, scale_linear);
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_DOUBLE:
					dst = convertFloatToDouble.convert(src, dst_type);
					break;
				case FIT_COMPLEX:
					dst = convertFloatToComplex.convert(src);
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					dst = FreeImage_ConvertToRGBF(src);
					break;
				case FIT_RGBAF:
					dst = FreeImage_ConvertToRGBAF(src);
					break;
			}
			break;
		case FIT_DOUBLE:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertToStandardType(src, scale_linear);
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					break;
				case FIT_COMPLEX:
					dst = convertDoubleToComplex.convert(src);
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					break;
				case FIT_RGBAF:
					break;
			}
			break;
		case FIT_COMPLEX:
			switch(dst_type) {
				case FIT_BITMAP:
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					break;
				case FIT_DOUBLE:
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					break;
				case FIT_RGBAF:
					break;
			}
			break;
		case FIT_RGB16:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertTo24Bits(src);
					break;
				case FIT_UINT16:
					dst = FreeImage_ConvertToUINT16(src);
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = FreeImage_ConvertToFloat(src);
					break;
				case FIT_DOUBLE:
					break;
				case FIT_COMPLEX:
					break;
				case FIT_RGBA16:
					dst = FreeImage_ConvertToRGBA16(src);
					break;
				case FIT_RGBF:
					dst = FreeImage_ConvertToRGBF(src);
					break;
				case FIT_RGBAF:
					dst = FreeImage_ConvertToRGBAF(src);
					break;
			}
			break;
		case FIT_RGBA16:
			switch(dst_type) {
				case FIT_BITMAP:
					dst = FreeImage_ConvertTo32Bits(src);
					break;
				case FIT_UINT16:
					dst = FreeImage_ConvertToUINT16(src);
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = FreeImage_ConvertToFloat(src);
					break;
				case FIT_DOUBLE:
					break;
				case FIT_COMPLEX:
					break;
				case FIT_RGB16:
					dst = FreeImage_ConvertToRGB16(src);
					break;
				case FIT_RGBF:
					dst = FreeImage_ConvertToRGBF(src);
					break;
				case FIT_RGBAF:
					dst = FreeImage_ConvertToRGBAF(src);
					break;
			}
			break;
		case FIT_RGBF:
			switch(dst_type) {
				case FIT_BITMAP:
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = FreeImage_ConvertToFloat(src);
					break;
				case FIT_DOUBLE:
					break;
				case FIT_COMPLEX:
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBAF:
					dst = FreeImage_ConvertToRGBAF(src);
					break;
			}
			break;
		case FIT_RGBAF:
			switch(dst_type) {
				case FIT_BITMAP:
					break;
				case FIT_UINT16:
					break;
				case FIT_INT16:
					break;
				case FIT_UINT32:
					break;
				case FIT_INT32:
					break;
				case FIT_FLOAT:
					dst = FreeImage_ConvertToFloat(src);
					break;
				case FIT_DOUBLE:
					break;
				case FIT_COMPLEX:
					break;
				case FIT_RGB16:
					break;
				case FIT_RGBA16:
					break;
				case FIT_RGBF:
					dst = FreeImage_ConvertToRGBF(src);
					break;
			}
			break;
	}

	if(NULL == dst) {
		FreeImage_OutputMessageProc(FIF_UNKNOWN, "FREE_IMAGE_TYPE: Unable to convert from type %d to type %d.\n No such conversion exists.", src_type, dst_type);
	}

	return dst;
}
Beispiel #28
0
/**
OpenJPEG Warning callback 
*/
static void jp2_warning_callback(const char *msg, void *client_data) {
	FreeImage_OutputMessageProc(s_format_id, "Warning: %s", msg);
}
Beispiel #29
0
/**
OpenJPEG Error callback 
*/
static void jp2_error_callback(const char *msg, void *client_data) {
	FreeImage_OutputMessageProc(s_format_id, "Error: %s", msg);
}
Beispiel #30
0
static BOOL DLL_CALLCONV
Save(FreeImageIO *io, FIBITMAP *dib, fi_handle handle, int page, int flags, void *data) {
	if ((dib) && (handle)) {
		BOOL bSuccess;
		opj_cparameters_t parameters;		// compression parameters 
		opj_event_mgr_t event_mgr;			// event manager 
		opj_image_t *image = NULL;			// image to encode
		opj_cinfo_t* cinfo = NULL;			// codec context
		opj_cio_t *cio = NULL;				// memory byte stream

		// configure the event callbacks
		memset(&event_mgr, 0, sizeof(opj_event_mgr_t));
		event_mgr.error_handler = jp2_error_callback;
		event_mgr.warning_handler = jp2_warning_callback;
		event_mgr.info_handler = NULL;

		// set encoding parameters to default values
		opj_set_default_encoder_parameters(&parameters);

		parameters.tcp_numlayers = 0;
		// if no rate entered, apply a 16:1 rate by default
		if(flags == JP2_DEFAULT) {
			parameters.tcp_rates[0] = (float)16;
		} else {
			// for now, the flags parameter is only used to specify the rate
			parameters.tcp_rates[0] = (float)flags;
		}
		parameters.tcp_numlayers++;
		parameters.cp_disto_alloc = 1;

		try {
			// convert the dib to a OpenJPEG image
			image = FIBITMAPToJ2KImage(s_format_id, dib, &parameters);
			if(!image) return FALSE;

			// encode the destination image

			// get a J2K compressor handle
			cinfo = opj_create_compress(CODEC_JP2);

			// catch events using our callbacks
			opj_set_event_mgr((opj_common_ptr)cinfo, &event_mgr, NULL);			

			// setup the encoder parameters using the current image and using user parameters
			opj_setup_encoder(cinfo, &parameters, image);

			// open a byte stream for writing, allocate memory for all tiles
			cio = opj_cio_open((opj_common_ptr)cinfo, NULL, 0);

			// encode the image
			bSuccess = opj_encode(cinfo, cio, image, NULL/*parameters.index*/);
			if (!bSuccess) {
				throw "Failed to encode image";
			}
			int codestream_length = cio_tell(cio);

			// write the buffer to user's IO handle
			io->write_proc(cio->buffer, 1, codestream_length, handle);

			// close and free the byte stream 
			opj_cio_close(cio);

			// free remaining compression structures
			opj_destroy_compress(cinfo);
			
			// free image data
			opj_image_destroy(image);

			return TRUE;

		} catch (const char *text) {
			if(cio) opj_cio_close(cio);
			if(cinfo) opj_destroy_compress(cinfo);
			if(image) opj_image_destroy(image);
			FreeImage_OutputMessageProc(s_format_id, text);
			return FALSE;
		}
	}

	return FALSE;
}