Beispiel #1
0
uint8_t GBMemoryWriteHDMA5(struct GB* gb, uint8_t value) {
	gb->memory.hdmaSource = gb->memory.io[REG_HDMA1] << 8;
	gb->memory.hdmaSource |= gb->memory.io[REG_HDMA2];
	gb->memory.hdmaDest = gb->memory.io[REG_HDMA3] << 8;
	gb->memory.hdmaDest |= gb->memory.io[REG_HDMA4];
	gb->memory.hdmaSource &= 0xFFF0;
	if (gb->memory.hdmaSource >= 0x8000 && gb->memory.hdmaSource < 0xA000) {
		mLOG(GB_MEM, GAME_ERROR, "Invalid HDMA source: %04X", gb->memory.hdmaSource);
		return value | 0x80;
	}
	gb->memory.hdmaDest &= 0x1FF0;
	gb->memory.hdmaDest |= 0x8000;
	bool wasHdma = gb->memory.isHdma;
	gb->memory.isHdma = value & 0x80;
	if ((!wasHdma && !gb->memory.isHdma) || gb->video.mode == 0) {
		if (gb->memory.isHdma) {
			gb->memory.hdmaRemaining = 0x10;
		} else {
			gb->memory.hdmaRemaining = ((value & 0x7F) + 1) * 0x10;
		}
		gb->cpuBlocked = true;
		mTimingSchedule(&gb->timing, &gb->memory.hdmaEvent, 0);
	} else if (gb->memory.isHdma && !GBRegisterLCDCIsEnable(gb->memory.io[REG_LCDC])) {
		return 0x80 | ((value + 1) & 0x7F);
	}
	return value & 0x7F;
}
Beispiel #2
0
void GBVideoWriteLYC(struct GBVideo* video, uint8_t value) {
	GBRegisterSTAT oldStat = video->stat;
	if (GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC])) {
		video->stat = GBRegisterSTATSetLYC(video->stat, value == video->ly);
		if (!_statIRQAsserted(video, oldStat) && _statIRQAsserted(video, video->stat)) {
			video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
			GBUpdateIRQs(video->p);
		}
	}
	video->p->memory.io[REG_STAT] = video->stat;
}
Beispiel #3
0
void GBVideoWriteSTAT(struct GBVideo* video, GBRegisterSTAT value) {
	GBRegisterSTAT oldStat = video->stat;
	video->stat = (video->stat & 0x7) | (value & 0x78);
	if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) || video->p->model >= GB_MODEL_CGB) {
		return;
	}
	if (!_statIRQAsserted(video, oldStat) && video->mode < 3) {
		// TODO: variable for the IRQ line value?
		video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
		GBUpdateIRQs(video->p);
	}
}
Beispiel #4
0
void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) {
	if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) && GBRegisterLCDCIsEnable(value)) {
		video->mode = 2;
		video->nextMode = GB_VIDEO_MODE_2_LENGTH - 5; // TODO: Why is this fudge factor needed? Might be related to T-cycles for load/store differing
		video->nextEvent = video->nextMode;
		video->eventDiff = -video->p->cpu->cycles >> video->p->doubleSpeed;
		video->ly = 0;
		video->p->memory.io[REG_LY] = 0;
		// TODO: Does this read as 0 for 4 T-cycles?
		video->stat = GBRegisterSTATSetMode(video->stat, 2);
		video->stat = GBRegisterSTATSetLYC(video->stat, video->ly == video->p->memory.io[REG_LYC]);
		if (GBRegisterSTATIsLYCIRQ(video->stat) && video->ly == video->p->memory.io[REG_LYC]) {
			video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
			GBUpdateIRQs(video->p);
		}
		video->p->memory.io[REG_STAT] = video->stat;

		if (video->p->cpu->cycles + (video->nextEvent << video->p->doubleSpeed) < video->p->cpu->nextEvent) {
			video->p->cpu->nextEvent = video->p->cpu->cycles + (video->nextEvent << video->p->doubleSpeed);
		}
		return;
	}
Beispiel #5
0
void GBVideoWriteLCDC(struct GBVideo* video, GBRegisterLCDC value) {
	if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) && GBRegisterLCDCIsEnable(value)) {
		video->mode = 2;
		video->modeEvent.callback = _endMode2;
		int32_t next = GB_VIDEO_MODE_2_LENGTH - 5; // TODO: Why is this fudge factor needed? Might be related to T-cycles for load/store differing
		mTimingDeschedule(&video->p->timing, &video->modeEvent);
		mTimingSchedule(&video->p->timing, &video->modeEvent, next << video->p->doubleSpeed);

		video->ly = 0;
		video->p->memory.io[REG_LY] = 0;
		GBRegisterSTAT oldStat = video->stat;
		video->stat = GBRegisterSTATSetMode(video->stat, 0);
		video->stat = GBRegisterSTATSetLYC(video->stat, video->ly == video->p->memory.io[REG_LYC]);
		if (!_statIRQAsserted(video, oldStat) && _statIRQAsserted(video, video->stat)) {
			video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
			GBUpdateIRQs(video->p);
		}
		video->p->memory.io[REG_STAT] = video->stat;
		video->renderer->writePalette(video->renderer, 0, video->palette[0]);

		mTimingDeschedule(&video->p->timing, &video->frameEvent);
	}
	if (GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC]) && !GBRegisterLCDCIsEnable(value)) {
		// TODO: Fix serialization; this gets internal and visible modes out of sync
		video->mode = 0;
		video->stat = GBRegisterSTATSetMode(video->stat, 0);
		video->p->memory.io[REG_STAT] = video->stat;
		video->ly = 0;
		video->p->memory.io[REG_LY] = 0;
		video->renderer->writePalette(video->renderer, 0, video->dmgPalette[0]);
	
		mTimingDeschedule(&video->p->timing, &video->modeEvent);
		mTimingDeschedule(&video->p->timing, &video->frameEvent);
		mTimingSchedule(&video->p->timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH);
	}
	video->p->memory.io[REG_STAT] = video->stat;
}
Beispiel #6
0
void _updateFrameCount(struct mTiming* timing, void* context, uint32_t cyclesLate) {
	UNUSED(cyclesLate);
	struct GBVideo* video = context;
	if (video->p->cpu->executionState != LR35902_CORE_FETCH) {
		mTimingSchedule(timing, &video->frameEvent, 4 - ((video->p->cpu->executionState + 1) & 3));
		return;
	}

	GBFrameEnded(video->p);
	mCoreSyncPostFrame(video->p->sync);
	--video->frameskipCounter;
	if (video->frameskipCounter < 0) {
		video->renderer->finishFrame(video->renderer);
		video->frameskipCounter = video->frameskip;
	}
	++video->frameCounter;

	if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC])) {
		mTimingSchedule(timing, &video->frameEvent, GB_VIDEO_TOTAL_LENGTH);
	}
	GBFrameStarted(video->p);
}
Beispiel #7
0
void _endMode1(struct mTiming* timing, void* context, uint32_t cyclesLate) {
	struct GBVideo* video = context;
	if (!GBRegisterLCDCIsEnable(video->p->memory.io[REG_LCDC])) {
		return;
	}
	int lyc = video->p->memory.io[REG_LYC];
	// TODO: One M-cycle delay
	++video->ly;
	int32_t next;
	if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS + 1) {
		video->ly = 0;
		video->p->memory.io[REG_LY] = video->ly;
		next = GB_VIDEO_MODE_2_LENGTH;
		video->mode = 2;
		video->modeEvent.callback = _endMode2;
	} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS) {
		video->p->memory.io[REG_LY] = 0;
		next = GB_VIDEO_HORIZONTAL_LENGTH - 8;
	} else if (video->ly == GB_VIDEO_VERTICAL_TOTAL_PIXELS - 1) {
		video->p->memory.io[REG_LY] = video->ly;
		next = 8;
	} else {
		video->p->memory.io[REG_LY] = video->ly;
		next = GB_VIDEO_HORIZONTAL_LENGTH;
	}

	GBRegisterSTAT oldStat = video->stat;
	video->stat = GBRegisterSTATSetMode(video->stat, video->mode);
	video->stat = GBRegisterSTATSetLYC(video->stat, lyc == video->p->memory.io[REG_LY]);
	if (!_statIRQAsserted(video, oldStat) && _statIRQAsserted(video, video->stat)) {
		video->p->memory.io[REG_IF] |= (1 << GB_IRQ_LCDSTAT);
		GBUpdateIRQs(video->p);
	}
	video->p->memory.io[REG_STAT] = video->stat;
	mTimingSchedule(timing, &video->modeEvent, (next << video->p->doubleSpeed) - cyclesLate);
}