static void ser_phy_init_gpiote(void)
{
    if (!nrf_drv_gpiote_is_init())
    {
        (void)nrf_drv_gpiote_init();
    }
    NVIC_SetPriority(GPIOTE_IRQn, APP_IRQ_PRIORITY_HIGH);

    nrf_drv_gpiote_in_config_t config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
    /* Enable pullup to ensure high state while connectivity device is reset */
    config.pull = NRF_GPIO_PIN_PULLUP;
    (void)nrf_drv_gpiote_in_init(SER_PHY_SPI_MASTER_PIN_SLAVE_REQUEST, &config,
        ser_phy_spi_master_request);
    nrf_drv_gpiote_in_event_enable(SER_PHY_SPI_MASTER_PIN_SLAVE_REQUEST,true);
    m_slave_request_flag = !(nrf_gpio_pin_read(SER_PHY_SPI_MASTER_PIN_SLAVE_REQUEST));

#ifdef _SPI_5W_
    m_slave_ready_flag = true;
#else
    (void)nrf_drv_gpiote_in_init(SER_PHY_SPI_MASTER_PIN_SLAVE_READY, &config,
        ser_phy_spi_master_ready);
    nrf_drv_gpiote_in_event_enable(SER_PHY_SPI_MASTER_PIN_SLAVE_READY,true);
    m_slave_ready_flag = !(nrf_gpio_pin_read(SER_PHY_SPI_MASTER_PIN_SLAVE_READY));
#endif

    NVIC_ClearPendingIRQ(SW_IRQn);
}
Beispiel #2
0
void BSP_init(void) {
	uint32_t err_code;
    err_code = nrf_drv_timer_init(&TIMER1, NULL, Timer1_handler);
    APP_ERROR_CHECK(err_code);
    nrf_drv_timer_extended_compare(&TIMER1, NRF_TIMER_CC_CHANNEL0
    		, nrf_drv_timer_ms_to_ticks(&TIMER1, 1000/BSP_TICKS_PER_SEC)
			, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);

    // Configure button 1 for low accuracy (why not high accuracy?)
    Q_ALLEGE(nrf_drv_gpiote_init() == NRF_SUCCESS);

    nrf_drv_gpiote_in_config_t config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
    config.pull = NRF_GPIO_PIN_PULLUP;

    Q_ALLEGE(nrf_drv_gpiote_in_init(BTN_PIN, &config, btn1_event_handler)
    		== NRF_SUCCESS);
    nrf_drv_gpiote_in_event_enable(BTN_PIN, /* int enable = */ true);

    NRF_GPIO->DIRSET = 1 << GPIO_TP;

    /* initialize the QS software tracing... */
    if (QS_INIT((void *)0) == 0) {
        Q_ERROR();
    }
}
Beispiel #3
0
IOEventFlags jshPinWatch(Pin pin, bool shouldWatch) {
  if (!jshIsPinValid(pin)) return EV_NONE;
  uint32_t p = (uint32_t)pinInfo[pin].pin;
  if (shouldWatch) {
    nrf_drv_gpiote_in_config_t cls_1_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
    nrf_drv_gpiote_in_init(p, &cls_1_config, jsvPinWatchHandler);
    nrf_drv_gpiote_in_event_enable(p, true);
    return jshGetEventFlagsForWatchedPin(p);
  } else {
    nrf_drv_gpiote_in_event_disable(p);
    return EV_NONE;
  }
} // start watching pin - return the EXTI associated with it
void nrf_gpiote_init(void){

    uint32_t err_code;
    if(!nrf_drv_gpiote_is_init())
      {
        err_code = nrf_drv_gpiote_init();
      }
    APP_ERROR_CHECK(err_code);

    nrf_drv_gpiote_in_config_t rfid_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(false);
    rfid_config.pull = NRF_GPIO_PIN_PULLDOWN;

    nrf_drv_gpiote_in_init(RFID_INTERRUPT_PIN, &rfid_config, pin_event_handler);

    nrf_drv_gpiote_in_event_enable(RFID_INTERRUPT_PIN, true);
}
uint32_t app_button_init(app_button_cfg_t *             p_buttons,
                         uint8_t                        button_count,
                         uint32_t                       detection_delay)
{
    uint32_t err_code;
    
    if (detection_delay < APP_TIMER_MIN_TIMEOUT_TICKS)
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    if (!nrf_drv_gpiote_is_init())
    {
        err_code = nrf_drv_gpiote_init();
        if (err_code != NRF_SUCCESS)
        {
            return err_code;
        }
    }

    // Save configuration.
    mp_buttons          = p_buttons;
    m_button_count      = button_count;
    m_detection_delay   = detection_delay;

    m_pin_state      = 0;
    m_pin_transition = 0;
    
    while (button_count--)
    {
        app_button_cfg_t * p_btn = &p_buttons[button_count];

        nrf_drv_gpiote_in_config_t config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(false);
        config.pull = p_btn->pull_cfg;
        
        err_code = nrf_drv_gpiote_in_init(p_btn->pin_no, &config, gpiote_event_handler);
        if (err_code != NRF_SUCCESS)
        {
            return err_code;
        }
    }

    // Create polling timer.
    return app_timer_create(&m_detection_delay_timer_id,
                            APP_TIMER_MODE_SINGLE_SHOT,
                            detection_delay_timeout_handler);
}
Beispiel #6
0
uint32_t app_gpiote_user_register(app_gpiote_user_id_t     * p_user_id,
                                  uint32_t                   pins_low_to_high_mask,
                                  uint32_t                   pins_high_to_low_mask,
                                  app_gpiote_event_handler_t event_handler)
{
    uint32_t user_pin_mask;
    uint32_t ret_val = NRF_SUCCESS;

    // Check state and parameters.
    VERIFY_MODULE_INITIALIZED();

    if (event_handler == NULL)
    {
        return NRF_ERROR_INVALID_PARAM;
    }
    if (m_user_count >= m_user_array_size)
    {
        return NRF_ERROR_NO_MEM;
    }

    user_pin_mask = pins_low_to_high_mask | pins_high_to_low_mask;
    // Allocate new user.
    mp_users[m_user_count].pins_mask             = user_pin_mask;
    mp_users[m_user_count].pins_low_to_high_mask = pins_low_to_high_mask;
    mp_users[m_user_count].pins_high_to_low_mask = pins_high_to_low_mask;
    mp_users[m_user_count].event_handler         = event_handler;
    mp_users[m_user_count].enabled               = false;

    *p_user_id = m_user_count++;

    uint32_t mask = 1;
    uint32_t i;
    const nrf_drv_gpiote_in_config_t config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(false);
    for (i = 0; i < 32; i++)
    {
        if ((mask & user_pin_mask) & ~m_pins)
        {
            ret_val = nrf_drv_gpiote_in_init(i, &config, gpiote_handler);
            VERIFY_SUCCESS(ret_val);
            m_pins |= mask;
        }
        mask <<= 1;
    }
    return ret_val;
}
Beispiel #7
0
static void gpio_init(void)
{
    ret_code_t err_code;

    err_code = nrf_drv_gpiote_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(false);

    err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config);
    APP_ERROR_CHECK(err_code);

    nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(true);
    in_config.pull = NRF_GPIO_PIN_PULLUP;

    err_code = nrf_drv_gpiote_in_init(PIN_IN, &in_config, in_pin_handler);
    APP_ERROR_CHECK(err_code);

    nrf_drv_gpiote_in_event_enable(PIN_IN, true);
}
Beispiel #8
0
uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params,
                       app_uart_buffers_t           * p_buffers,
                       app_uart_event_handler_t       event_handler,
                       app_irq_priority_t             irq_priority,
                       uint16_t                     * p_app_uart_uid)
{
    uint32_t err_code;

    m_current_state = UART_OFF;
    m_event_handler = event_handler;
    m_rx_byte       = BYTE_INVALID;


    // Configure RX and TX pins.
    nrf_gpio_pin_set(p_comm_params->tx_pin_no);
    nrf_gpio_cfg_output(p_comm_params->tx_pin_no);
    nrf_gpio_cfg_input(p_comm_params->rx_pin_no, NRF_GPIO_PIN_PULLUP);


    NRF_UART0->PSELTXD = p_comm_params->tx_pin_no;
    NRF_UART0->PSELRXD = p_comm_params->rx_pin_no;

    // Configure baud rate and parity.
    NRF_UART0->BAUDRATE = (p_comm_params->baud_rate << UART_BAUDRATE_BAUDRATE_Pos);

    if (p_comm_params->use_parity)
    {
        NRF_UART0->CONFIG = (UART_CONFIG_PARITY_Included << UART_CONFIG_PARITY_Pos);
    }
    else
    {
        NRF_UART0->CONFIG = (UART_CONFIG_PARITY_Excluded << UART_CONFIG_PARITY_Pos);
    }

    if (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_LOW_POWER)
    {
        if (!nrf_drv_gpiote_is_init())
        {
            err_code = nrf_drv_gpiote_init();
            if (err_code != NRF_SUCCESS)
            {
                return err_code;
            }
        }

        // Configure hardware flow control.
        nrf_drv_gpiote_out_config_t rts_config = GPIOTE_CONFIG_OUT_SIMPLE(true);
        err_code = nrf_drv_gpiote_out_init(p_comm_params->rts_pin_no, &rts_config);
        if (err_code != NRF_SUCCESS)
        {
            return err_code;
        }

        NRF_UART0->PSELCTS = UART_PIN_DISCONNECTED;
        NRF_UART0->PSELRTS = p_comm_params->rts_pin_no;
        NRF_UART0->CONFIG |= (UART_CONFIG_HWFC_Enabled << UART_CONFIG_HWFC_Pos);

        // Setup the gpiote to handle pin events on cts-pin.
        // For the UART we want to detect both low->high and high->low transitions in order to
        // know when to activate/de-activate the TX/RX in the UART.
        // Configure pin.
        nrf_drv_gpiote_in_config_t cts_config = GPIOTE_CONFIG_IN_SENSE_TOGGLE(false);
        err_code = nrf_drv_gpiote_in_init(p_comm_params->cts_pin_no, &cts_config, gpiote_uart_event_handler);
        if (err_code != NRF_SUCCESS)
        {
            return err_code;
        }

        nrf_drv_gpiote_in_event_enable(p_comm_params->cts_pin_no, true);

        // UART CTS pin is active when low.
        if (nrf_drv_gpiote_in_is_set(p_comm_params->cts_pin_no))
        {
            on_uart_event(ON_CTS_HIGH);
        }
        else
        {
            on_uart_event(ON_CTS_LOW);
        }
    }
    else if (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_ENABLED)
    {
        uart_standard_flow_control_init(p_comm_params);
        m_current_state = UART_READY;
    }
    else
    {
        uart_no_flow_control_init();
        m_current_state = UART_READY;
    }
    if (*p_app_uart_uid == UART_INSTANCE_ID_INVALID)
    {
        *p_app_uart_uid = m_instance_counter++;
    }

    // Enable UART interrupt
    NRF_UART0->INTENCLR = 0xffffffffUL;
    NRF_UART0->INTENSET = (UART_INTENSET_RXDRDY_Set << UART_INTENSET_RXDRDY_Pos) |
                          (UART_INTENSET_TXDRDY_Set << UART_INTENSET_TXDRDY_Pos) |
                          (UART_INTENSET_ERROR_Set << UART_INTENSET_ERROR_Pos);

    NVIC_ClearPendingIRQ(UART_IRQ);
    NVIC_SetPriority(UART_IRQ, irq_priority);
    NVIC_EnableIRQ(UART_IRQ);

    return NRF_SUCCESS;
}