Beispiel #1
0
static gboolean
twirl_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstTwirl *twirl = GST_TWIRL_CAST (gt);
  gdouble distance;
  gdouble dx, dy;

  dx = x - cgt->precalc_x_center;
  dy = y - cgt->precalc_y_center;
  distance = dx * dx + dy * dy;

  if (distance > cgt->precalc_radius2) {
    *in_x = x;
    *in_y = y;
  } else {
    gdouble d = sqrt (distance);
    gdouble a = atan2 (dy,
        dx) + twirl->angle * (cgt->precalc_radius - d) / cgt->precalc_radius;

    *in_x = cgt->precalc_x_center + d * cos (a);
    *in_y = cgt->precalc_y_center + d * sin (a);
  }

  GST_DEBUG_OBJECT (twirl, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
static gboolean
water_ripple_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstWaterRipple *water = GST_WATER_RIPPLE_CAST (gt);
  gdouble distance;
  gdouble dx, dy;

  dx = x - cgt->precalc_x_center;
  dy = y - cgt->precalc_y_center;
  distance = dx * dx + dy * dy;

  if (distance > cgt->precalc_radius2) {
    *in_x = x;
    *in_y = y;
  } else {
    gdouble d = sqrt (distance);
    gdouble amount =
        water->amplitude * sin (d / water->wavelength * G_PI * 2 -
        water->phase);

    amount *= (cgt->precalc_radius - d) / cgt->precalc_radius;
    if (d != 0)
      amount *= water->wavelength / d;
    *in_x = x + dx * amount;
    *in_y = y + dy * amount;
  }


  GST_DEBUG_OBJECT (water, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
static gboolean
circle_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstCircle *circle = GST_CIRCLE_CAST (gt);
  gdouble distance;
  gdouble dx, dy;
  gdouble theta;

  dx = x - cgt->precalc_x_center;
  dy = y - cgt->precalc_y_center;
  distance = sqrt (dx * dx + dy * dy);
  theta = atan2 (-dy, -dx) + circle->angle;

  theta = mod_float (theta, 2 * G_PI);

  *in_x = gt->width * theta / (circle->spread_angle + 0.0001);
  *in_y =
      gt->height * (1 - (distance - cgt->precalc_radius) / (circle->height +
          0.0001));

  GST_DEBUG_OBJECT (circle, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
static gboolean
kaleidoscope_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstKaleidoscope *kaleidoscope = GST_KALEIDOSCOPE_CAST (gt);
  gdouble dx, dy;
  gdouble distance;
  gdouble theta;

  dx = x - cgt->precalc_x_center;
  dy = y - cgt->precalc_y_center;
  distance = sqrt (dx * dx + dy * dy);
  theta = atan2 (dy, dx) - kaleidoscope->angle - kaleidoscope->angle2;

  theta = geometric_math_triangle (theta / G_PI * kaleidoscope->sides * 0.5);

  if (cgt->precalc_radius != 0) {
    gdouble radiusc = cgt->precalc_radius / cos (theta);

    distance = radiusc * geometric_math_triangle (distance / radiusc);
  }
  theta += kaleidoscope->angle;

  *in_x = cgt->precalc_x_center + distance * cos (theta);
  *in_y = cgt->precalc_y_center + distance * sin (theta);

  GST_DEBUG_OBJECT (kaleidoscope, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
Beispiel #5
0
/* TODO we could have horizontal and vertical 'radius' */
static gboolean
sphere_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstSphere *sphere = GST_SPHERE_CAST (gt);
  gdouble dx, dy;
  gdouble dx2, dy2;

  dx = x - cgt->precalc_x_center;
  dy = y - cgt->precalc_y_center;
  dx2 = dx * dx;
  dy2 = dy * dy;

  if (dy2 >=
      (cgt->precalc_radius2 -
          (cgt->precalc_radius2 * dx2) / cgt->precalc_radius2)) {
    *in_x = x;
    *in_y = y;
  } else {
    gdouble r_refraction = 1.0 / sphere->refraction;
    gdouble z;
    gdouble z2;
    gdouble angle;
    gdouble angle1;
    gdouble angle2;

    z = sqrt ((1.0 - dx2 / cgt->precalc_radius2 -
            dy2 / cgt->precalc_radius2) * (cgt->precalc_radius2));
    z2 = z * z;

    /* x */
    angle = acos (dx / sqrt (dx2 + z2));
    angle1 = G_PI / 2 - angle;
    angle2 = asin (sin (angle1) * r_refraction);
    angle2 = G_PI / 2 - angle - angle2;
    *in_x = x - tan (angle2) * z;

    /* y */
    angle = acos (dy / sqrt (dy2 + z2));
    angle1 = G_PI / 2 - angle;
    angle2 = asin (sin (angle1) * r_refraction);
    angle2 = G_PI / 2 - angle - angle2;
    *in_y = y - tan (angle2) * z;
  }

  GST_DEBUG_OBJECT (sphere, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
static gboolean
circle_geometric_transform_precalc (GstGeometricTransform * gt)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);

  cgt->precalc_x_center = cgt->x_center * gt->width;
  cgt->precalc_y_center = cgt->y_center * gt->height;
  cgt->precalc_radius =
      cgt->radius * 0.5 * sqrt (gt->width * gt->width +
      gt->height * gt->height);
  cgt->precalc_radius2 = cgt->precalc_radius * cgt->precalc_radius;

  return TRUE;
}
Beispiel #7
0
static gboolean
stretch_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstStretch *stretch = GST_STRETCH_CAST (gt);

  gdouble norm_x, norm_y;
  gdouble r;

  gdouble width = gt->width;
  gdouble height = gt->height;
  gdouble a, b;

  /* normalize in ((-1.0, -1.0), (1.0, 1.0) and traslate the center */
  norm_x = 2.0 * (x / width - cgt->x_center);
  norm_y = 2.0 * (y / height - cgt->y_center);

  /* calculate radius, normalize to 1 for future convenience */
  r = sqrt (0.5 * (norm_x * norm_x + norm_y * norm_y));

  /* actually "stretch" name is a bit misleading, what the transform
   * really does is shrink the center and gradually return to normal
   * size while r increases. The shrink thing drags pixels giving
   * stretching the image around the center */

  /* a is the current maximum shrink amount, it goes from 1.0 to
   * MAX_SHRINK_AMOUNT * intensity */
  /* smoothstep goes from 0.0 when r == 0 to b when r == radius */
  /* total shrink factor is MAX_SHRINK_AMOUNT at center and gradually
   * decreases while r goes to radius */
  a = 1.0 + (MAX_SHRINK_AMOUNT - 1.0) * stretch->intensity;
  b = a - 1.0;

  norm_x *= a - b * smoothstep (0.0, cgt->radius, r);
  norm_y *= a - b * smoothstep (0.0, cgt->radius, r);

  /* unnormalize */
  *in_x = (0.5 * norm_x + cgt->x_center) * width;
  *in_y = (0.5 * norm_y + cgt->y_center) * height;

  GST_DEBUG_OBJECT (stretch, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
Beispiel #8
0
static gboolean
bulge_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstBulge *bulge = GST_BULGE_CAST (gt);

  gdouble norm_x, norm_y;
  gdouble r;
  gdouble scale;

  gdouble width = gt->width;
  gdouble height = gt->height;

  /* normalize in ((-1.0, -1.0), (1.0, 1.0) and traslate the center */
  norm_x = 2.0 * (x / width - cgt->x_center);
  norm_y = 2.0 * (y / height - cgt->y_center);

  /* calculate radius, normalize to 1 for future convenience */
  r = sqrt (0.5 * (norm_x * norm_x + norm_y * norm_y));

  /* zoom in the center region and smoothly get back to no zoom while
   * r increases */

  /* the scale factor goes from bulge->zoom when r == 0 to 1.0
   * when r == cgt->radius using Hermite interpolation */
  /* scale is inverted because we're doing an inverse transform so
   * zoom is achieved dividing */

  scale =
      1.0 / (bulge->zoom + ((1.0 - bulge->zoom) * smoothstep (0, cgt->radius,
              r)));

  norm_x *= scale;
  norm_y *= scale;

  /* unnormalize */
  *in_x = (0.5 * norm_x + cgt->x_center) * width;
  *in_y = (0.5 * norm_y + cgt->y_center) * height;

  GST_DEBUG_OBJECT (bulge, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
static void
gst_circle_geometric_transform_set_property (GObject * object, guint prop_id,
    const GValue * value, GParamSpec * pspec)
{
  GstCircleGeometricTransform *cgt;
  GstGeometricTransform *gt;
  gdouble v;

  gt = GST_GEOMETRIC_TRANSFORM_CAST (object);
  cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (object);

  GST_OBJECT_LOCK (cgt);
  switch (prop_id) {
    case PROP_X_CENTER:
      v = g_value_get_double (value);
      if (v != cgt->x_center) {
        cgt->x_center = v;
        gst_geometric_transform_set_need_remap (gt);
      }
      break;
    case PROP_Y_CENTER:
      v = g_value_get_double (value);
      if (v != cgt->y_center) {
        cgt->y_center = v;
        gst_geometric_transform_set_need_remap (gt);
      }
      break;
    case PROP_RADIUS:
      v = g_value_get_double (value);
      if (v != cgt->radius) {
        cgt->radius = v;
        gst_geometric_transform_set_need_remap (gt);
      }
      break;
    default:
      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
      break;
  }
  GST_OBJECT_UNLOCK (cgt);
}
Beispiel #10
0
static gboolean
pinch_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
  GstPinch *pinch = GST_PINCH_CAST (gt);
  gdouble distance;
  gdouble dx, dy;

  dx = x - cgt->precalc_x_center;
  dy = y - cgt->precalc_y_center;
  distance = dx * dx + dy * dy;

  GST_LOG_OBJECT (pinch, "Center %0.5lf (%0.2lf) %0.5lf (%0.2lf)",
      cgt->precalc_x_center, cgt->x_center, cgt->precalc_y_center,
      cgt->y_center);
  GST_LOG_OBJECT (pinch, "Input %d %d, distance=%lf, radius2=%lf, dx=%lf"
      ", dy=%lf", x, y, distance, cgt->precalc_radius2, dx, dy);

  if (distance > cgt->precalc_radius2 || distance == 0) {
    *in_x = x;
    *in_y = y;
  } else {
    gdouble d = sqrt (distance / cgt->precalc_radius2);
    gdouble t = pow (sin (G_PI * 0.5 * d), -pinch->intensity);

    dx *= t;
    dy *= t;

    GST_LOG_OBJECT (pinch, "D=%lf, t=%lf, dx=%lf" ", dy=%lf", d, t, dx, dy);

    *in_x = cgt->precalc_x_center + dx;
    *in_y = cgt->precalc_y_center + dy;
  }

  GST_DEBUG_OBJECT (pinch, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
Beispiel #11
0
static gboolean
tunnel_map (GstGeometricTransform * gt, gint x, gint y, gdouble * in_x,
    gdouble * in_y)
{
  GstCircleGeometricTransform *cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (gt);
#ifndef GST_DISABLE_GST_DEBUG
  GstTunnel *tunnel = GST_TUNNEL_CAST (gt);
#endif

  gdouble norm_x, norm_y;
  gdouble width = gt->width;
  gdouble height = gt->height;
  gdouble r;


  /* normalize in ((-1.0, -1.0), (1.0, 1.0) and traslate the center */
  /* plus a little trick to obtain a perfect circle, normalize in a
   * square with sides equal to MAX(width, height) */
  norm_x = 2.0 * (x - cgt->x_center * width) / MAX (width, height);
  norm_y = 2.0 * (y - cgt->y_center * height) / MAX (width, height);

  /* calculate radius, normalize to 1 for future convenience */
  r = sqrt (0.5 * (norm_x * norm_x + norm_y * norm_y));

  /* do nothing if r < radius */
  /* zoom otherwise */
  norm_x *= CLAMP (r, 0.0, cgt->radius) / r;
  norm_y *= CLAMP (r, 0.0, cgt->radius) / r;

  /* unnormalize */
  *in_x = 0.5 * (norm_x) * MAX (width, height) + cgt->x_center * width;
  *in_y = 0.5 * (norm_y) * MAX (width, height) + cgt->y_center * height;

  GST_DEBUG_OBJECT (tunnel, "Inversely mapped %d %d into %lf %lf",
      x, y, *in_x, *in_y);

  return TRUE;
}
static void
gst_circle_geometric_transform_get_property (GObject * object, guint prop_id,
    GValue * value, GParamSpec * pspec)
{
  GstCircleGeometricTransform *cgt;

  cgt = GST_CIRCLE_GEOMETRIC_TRANSFORM_CAST (object);

  switch (prop_id) {
    case PROP_X_CENTER:
      g_value_set_double (value, cgt->x_center);
      break;
    case PROP_Y_CENTER:
      g_value_set_double (value, cgt->y_center);
      break;
    case PROP_RADIUS:
      g_value_set_double (value, cgt->radius);
      break;
    default:
      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
      break;
  }
}