void GridPatchCartesianGLL::EvaluateGeometricTerms() {

	// Physical constants
	const PhysicalConstants & phys = m_grid.GetModel().GetPhysicalConstants();

	// Obtain Gauss Lobatto quadrature nodes and weights
	DataVector<double> dGL;
	DataVector<double> dWL;

	GaussLobattoQuadrature::GetPoints(m_nHorizontalOrder, 0.0, 1.0, dGL, dWL);

	// Obtain normalized areas in the vertical
	const DataVector<double> & dWNode =
		m_grid.GetREtaLevelsNormArea();
	const DataVector<double> & dWREdge =
		m_grid.GetREtaInterfacesNormArea();

	// Verify that normalized areas are correct
	double dWNodeSum = 0.0;
	for (int k = 0; k < dWNode.GetRows(); k++) {
		dWNodeSum += dWNode[k];
	}
	if (fabs(dWNodeSum - 1.0) > 1.0e-13) {
		_EXCEPTION1("Error in normalized areas (%1.15e)", dWNodeSum);
	}

	if (m_grid.GetVerticalStaggering() !=
	    Grid::VerticalStaggering_Interfaces
	) {
		double dWREdgeSum = 0.0;
		for (int k = 0; k < dWREdge.GetRows(); k++) {
			dWREdgeSum += dWREdge[k];
		}
		if (fabs(dWREdgeSum - 1.0) > 1.0e-13) {
			_EXCEPTION1("Error in normalized areas (%1.15e)", dWREdgeSum);
		}
	}

	// Derivatives of basis functions
	GridCartesianGLL & gridCartesianGLL =
		dynamic_cast<GridCartesianGLL &>(m_grid);

	const DataMatrix<double> & dDxBasis1D = gridCartesianGLL.GetDxBasis1D();
	
	double dy0 = 0.5 * fabs(m_dGDim[3] - m_dGDim[2]);
	double dfp = 2.0 * phys.GetOmega() * sin(m_dRefLat);
	double dbetap = 2.0 * phys.GetOmega() * cos(m_dRefLat) / 
					phys.GetEarthRadius();
	// Initialize the Coriolis force at each node
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {
		// Coriolis force by beta approximation
		//m_dataCoriolisF[i][j] = dfp + dbetap * (m_dataLat[i][j] - dy0);
		//m_dataCoriolisF[i][j] = dfp;
		//m_dataCoriolisF[i][j] = 0.0;
	}
	}

	// Initialize metric and Christoffel symbols in terrain-following coords
	for (int a = 0; a < GetElementCountA(); a++) {
	for (int b = 0; b < GetElementCountB(); b++) {

		for (int i = 0; i < m_nHorizontalOrder; i++) {
		for (int j = 0; j < m_nHorizontalOrder; j++) {

			// Nodal points
			int iElementA = m_box.GetAInteriorBegin() + a * m_nHorizontalOrder;
			int iElementB = m_box.GetBInteriorBegin() + b * m_nHorizontalOrder;

			int iA = iElementA + i;
			int iB = iElementB + j;

			// Topography height and its derivatives
			double dZs = m_dataTopography[iA][iB];
			double dDaZs = m_dataTopographyDeriv[0][iA][iB];
			double dDbZs = m_dataTopographyDeriv[1][iA][iB];

			// Initialize 2D Jacobian
			m_dataJacobian2D[iA][iB] = 1.0;

			// Initialize 2D contravariant metric
			m_dataContraMetric2DA[iA][iB][0] = 1.0;
			m_dataContraMetric2DA[iA][iB][1] = 0.0;

			m_dataContraMetric2DB[iA][iB][0] = 0.0;
			m_dataContraMetric2DB[iA][iB][1] = 1.0;

			// Initialize 2D covariant metric
			m_dataCovMetric2DA[iA][iB][0] = 1.0;
			m_dataCovMetric2DA[iA][iB][1] = 0.0;

			m_dataCovMetric2DB[iA][iB][0] = 0.0;
			m_dataCovMetric2DB[iA][iB][1] = 1.0;

			// Vertical coordinate transform and its derivatives
			for (int k = 0; k < m_grid.GetRElements(); k++) {

				// Gal-Chen and Somerville (1975) terrain following coord
				// Schar Exponential Decay terrain following coord
				double dREta = m_grid.GetREtaLevel(k);

				double dREtaStretch;
				double dDxREtaStretch;
				m_grid.EvaluateVerticalStretchF(
					dREta, dREtaStretch, dDxREtaStretch);

				//double dZ = dZs + (m_grid.GetZtop() - dZs) * dREtaStretch;
				//double dbZ = sinh(m_grid.GetZtop() * (1.0 - dREtaStretch) / m_dSL)
				//	/ sinh(m_grid.GetZtop() / m_dSL);
				//double dZ = m_grid.GetZtop() * dREtaStretch + dZs; // * dbZ;

				double dZ = dZs + (m_grid.GetZtop() - dZs) * dREtaStretch;

				double dDaZ = (1.0 - dREtaStretch) * dDaZs;
				double dDbZ = (1.0 - dREtaStretch) * dDbZs;
				double dDxZ = (m_grid.GetZtop() - dZs) * dDxREtaStretch;

/*
				double dDaZ = dbZ * dDaZs;
				double dDbZ = dbZ * dDbZs;
				double dDxZ = m_grid.GetZtop() - dZs * m_grid.GetZtop() * 
					cosh(m_grid.GetZtop() * (1.0 - dREtaStretch) / m_dSL) /
					(m_dSL * sinh(m_grid.GetZtop() / m_dSL));
				dDxZ *= dDxREtaStretch;
*/
				// Calculate pointwise Jacobian
				m_dataJacobian[k][iA][iB] =
					dDxZ * m_dataJacobian2D[iA][iB];

				// Element area associated with each model level GLL node
				m_dataElementArea[k][iA][iB] =
					m_dataJacobian[k][iA][iB]
					* dWL[i] * GetElementDeltaA()
					* dWL[j] * GetElementDeltaB()
					* dWNode[k];

				// Contravariant metric components
				m_dataContraMetricA[k][iA][iB][0] =
					m_dataContraMetric2DA[iA][iB][0];
				m_dataContraMetricA[k][iA][iB][1] =
					m_dataContraMetric2DA[iA][iB][1];
				m_dataContraMetricA[k][iA][iB][2] =
					- dDaZ / dDxZ;

				m_dataContraMetricB[k][iA][iB][0] =
					m_dataContraMetric2DB[iA][iB][0];
				m_dataContraMetricB[k][iA][iB][1] =
					m_dataContraMetric2DB[iA][iB][1];
				m_dataContraMetricB[k][iA][iB][2] =
					- dDbZ / dDxZ;

				m_dataContraMetricXi[k][iA][iB][0] =
					m_dataContraMetricA[k][iA][iB][2];
				m_dataContraMetricXi[k][iA][iB][1] =
					m_dataContraMetricB[k][iA][iB][2];
				m_dataContraMetricXi[k][iA][iB][2] =
					(1.0 + dDaZ * dDaZ + dDbZ * dDbZ) / (dDxZ * dDxZ);

				// Covariant metric components
				m_dataCovMetricA[k][iA][iB][0] =
					m_dataCovMetric2DA[iA][iB][0] + dDaZ * dDaZ;
				m_dataCovMetricA[k][iA][iB][1] =
					m_dataCovMetric2DA[iA][iB][1] + dDaZ * dDbZ;
				m_dataCovMetricA[k][iA][iB][2] =
					dDaZ * dDxZ;

				m_dataCovMetricB[k][iA][iB][0] =
					m_dataCovMetric2DB[iA][iB][0] + dDbZ * dDaZ;
				m_dataCovMetricB[k][iA][iB][1] =
					m_dataCovMetric2DB[iA][iB][1] + dDbZ * dDbZ;
				m_dataCovMetricB[k][iA][iB][2] =
					dDbZ * dDxZ;

				m_dataCovMetricXi[k][iA][iB][0] =
					dDaZ * dDxZ;
				m_dataCovMetricXi[k][iA][iB][1] =
					dDbZ * dDxZ;
				m_dataCovMetricXi[k][iA][iB][2] =
					dDxZ * dDxZ;

				// Derivatives of the vertical coordinate transform
				m_dataDerivRNode[k][iA][iB][0] = dDaZ;
				m_dataDerivRNode[k][iA][iB][1] = dDbZ;
				m_dataDerivRNode[k][iA][iB][2] = dDxZ;
			}

			// Metric terms at vertical interfaces
			for (int k = 0; k <= m_grid.GetRElements(); k++) {

				// Gal-Chen and Somerville (1975) terrain following coord
				// Schar Exponential decay terrain following coord
				double dREta = m_grid.GetREtaInterface(k);
/*				
				double dREtaStretch;
				double dDxREtaStretch;
				m_grid.EvaluateVerticalStretchF(
					dREta, dREtaStretch, dDxREtaStretch);

				double dZ = dZs + (m_grid.GetZtop() - dZs) * dREtaStretch;

				double dDaZ = (1.0 - dREtaStretch) * dDaZs;
				double dDbZ = (1.0 - dREtaStretch) * dDbZs;
				double dDxZ = (m_grid.GetZtop() - dZs) * dDxREtaStretch;
*/
				double dREtaStretch;
				double dDxREtaStretch;
				m_grid.EvaluateVerticalStretchF(
					dREta, dREtaStretch, dDxREtaStretch);
/*
				//double dZ = dZs + (m_grid.GetZtop() - dZs) * dREtaStretch;
				double dbZ = sinh(m_grid.GetZtop() * (1.0 - dREtaStretch) / m_dSL) / 
					sinh(m_grid.GetZtop() / m_dSL);
				double dZ = m_grid.GetZtop() * dREtaStretch + dZs * dbZ;
*/

				double dDaZ = (1.0 - dREtaStretch) * dDaZs;
				double dDbZ = (1.0 - dREtaStretch) * dDbZs;
		     	double dDxZ = (m_grid.GetZtop() - dZs) * dDxREtaStretch;
/*
				double dDaZ = dbZ * dDaZs;
				double dDbZ = dbZ * dDbZs;
				double dDxZ = m_grid.GetZtop() - dZs * m_grid.GetZtop() * 
					cosh(m_grid.GetZtop() * (1.0 - dREtaStretch) / m_dSL) /
					(m_dSL * sinh(m_grid.GetZtop() / m_dSL));
				dDxZ *= dDxREtaStretch;
*/
				// Calculate pointwise Jacobian
				m_dataJacobianREdge[k][iA][iB] =
					dDxZ * m_dataJacobian2D[iA][iB];

				// Element area associated with each model interface GLL node
				m_dataElementAreaREdge[k][iA][iB] =
					m_dataJacobianREdge[k][iA][iB]
					* dWL[i] * GetElementDeltaA()
					* dWL[j] * GetElementDeltaB()
					* dWREdge[k];

				// Components of the contravariant metric
				m_dataContraMetricAREdge[k][iA][iB][0] =
					m_dataContraMetric2DA[iA][iB][0];
				m_dataContraMetricAREdge[k][iA][iB][1] =
					m_dataContraMetric2DA[iA][iB][1];
				m_dataContraMetricAREdge[k][iA][iB][2] =
					- dDaZ / dDxZ;

				m_dataContraMetricBREdge[k][iA][iB][0] =
					m_dataContraMetric2DB[iA][iB][0];
				m_dataContraMetricBREdge[k][iA][iB][1] =
					m_dataContraMetric2DB[iA][iB][1];
				m_dataContraMetricBREdge[k][iA][iB][2] =
					- dDbZ / dDxZ;

				m_dataContraMetricXiREdge[k][iA][iB][0] =
					- dDaZ / dDxZ;
				m_dataContraMetricXiREdge[k][iA][iB][1] =
					- dDbZ / dDxZ;
				m_dataContraMetricXiREdge[k][iA][iB][2] =
					(1.0 + dDaZ * dDaZ + dDbZ * dDbZ) / (dDxZ * dDxZ);

				// Derivatives of the vertical coordinate transform
				m_dataDerivRREdge[k][iA][iB][0] = dDaZ;
				m_dataDerivRREdge[k][iA][iB][1] = dDbZ;
				m_dataDerivRREdge[k][iA][iB][2] = dDxZ;
			}
		}
		}
	}
	}
}
Beispiel #2
0
void GridPatchCSGLL::EvaluateGeometricTerms() {

	// Physical constants
	const PhysicalConstants & phys = m_grid.GetModel().GetPhysicalConstants();

	// 2D equation set
	bool fIs2DEquationSet = false;
	if (m_grid.GetModel().GetEquationSet().GetDimensionality() == 2) {
		fIs2DEquationSet = true;
	}

	if ((fIs2DEquationSet) && (m_grid.GetZtop() != 1.0)) {
		_EXCEPTIONT("Ztop must be 1.0 for 2D equation sets");
	}

	// Obtain Gauss Lobatto quadrature nodes and weights
	DataArray1D<double> dGL;
	DataArray1D<double> dWL;

	GaussLobattoQuadrature::GetPoints(m_nHorizontalOrder, 0.0, 1.0, dGL, dWL);

	// Obtain normalized areas in the vertical
	const DataArray1D<double> & dWNode =
		m_grid.GetREtaLevelsNormArea();
	const DataArray1D<double> & dWREdge =
		m_grid.GetREtaInterfacesNormArea();

	// Verify that normalized areas are correct
	double dWNodeSum = 0.0;
	for (int k = 0; k < dWNode.GetRows(); k++) {
		dWNodeSum += dWNode[k];
	}
	if (fabs(dWNodeSum - 1.0) > 1.0e-13) {
		_EXCEPTION1("Error in normalized areas (%1.15e)", dWNodeSum);
	}

	if (m_grid.GetVerticalStaggering() !=
	    Grid::VerticalStaggering_Interfaces
	) {
		double dWREdgeSum = 0.0;
		for (int k = 0; k < dWREdge.GetRows(); k++) {
			dWREdgeSum += dWREdge[k];
		}
		if (fabs(dWREdgeSum - 1.0) > 1.0e-13) {
			_EXCEPTION1("Error in normalized areas (%1.15e)", dWREdgeSum);
		}
	}

	// Derivatives of basis functions
	GridCSGLL & gridCSGLL = dynamic_cast<GridCSGLL &>(m_grid);

	const DataArray2D<double> & dDxBasis1D = gridCSGLL.GetDxBasis1D();

	// Initialize the Coriolis force at each node
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {
		m_dataCoriolisF[i][j] = 2.0 * phys.GetOmega() * sin(m_dataLat[i][j]);
	}
	}

	// Initialize metric in terrain-following coords
	for (int a = 0; a < GetElementCountA(); a++) {
	for (int b = 0; b < GetElementCountB(); b++) {

	for (int i = 0; i < m_nHorizontalOrder; i++) {
	for (int j = 0; j < m_nHorizontalOrder; j++) {

		// Nodal points
		int iElementA = m_box.GetAInteriorBegin() + a * m_nHorizontalOrder;
		int iElementB = m_box.GetBInteriorBegin() + b * m_nHorizontalOrder;

		int iA = iElementA + i;
		int iB = iElementB + j;

		// Gnomonic coordinates
		double dX = tan(m_dANode[iA]);
		double dY = tan(m_dBNode[iB]);
		double dDelta2 = (1.0 + dX * dX + dY * dY);
		double dDelta = sqrt(dDelta2);

		// Topography height and its derivatives
		double dZs = m_dataTopography[iA][iB];
		double dDaZs = m_dataTopographyDeriv[0][iA][iB];
		double dDbZs = m_dataTopographyDeriv[1][iA][iB];

		// 2D equations
		if (fIs2DEquationSet) {
			dZs = 0.0;
			dDaZs = 0.0;
			dDbZs = 0.0;
		}

		// Initialize 2D Jacobian
		m_dataJacobian2D[iA][iB] =
			(1.0 + dX * dX) * (1.0 + dY * dY) / (dDelta * dDelta * dDelta);

		m_dataJacobian2D[iA][iB] *=
			  phys.GetEarthRadius()
			* phys.GetEarthRadius();

		// Initialize 2D contravariant metric
		double dContraMetricScale = 
			dDelta2 / (1.0 + dX * dX) / (1.0 + dY * dY)
			/ (phys.GetEarthRadius() * phys.GetEarthRadius());

		m_dataContraMetric2DA[iA][iB][0] =
			dContraMetricScale * (1.0 + dY * dY);
		m_dataContraMetric2DA[iA][iB][1] =
			dContraMetricScale * dX * dY;

		m_dataContraMetric2DB[iA][iB][0] =
			dContraMetricScale * dX * dY;
		m_dataContraMetric2DB[iA][iB][1] =
			dContraMetricScale * (1.0 + dX * dX);

		// Initialize 2D covariant metric
		double dCovMetricScale =
			phys.GetEarthRadius() * phys.GetEarthRadius()
			* (1.0 + dX * dX) * (1.0 + dY * dY)
			/ (dDelta2 * dDelta2);

		m_dataCovMetric2DA[iA][iB][0] =
			dCovMetricScale * (1.0 + dX * dX);
		m_dataCovMetric2DA[iA][iB][1] =
			dCovMetricScale * (- dX * dY);

		m_dataCovMetric2DB[iA][iB][0] =
			dCovMetricScale * (- dX * dY);
		m_dataCovMetric2DB[iA][iB][1] =
			dCovMetricScale * (1.0 + dY * dY);

		// Vertical coordinate transform and its derivatives
		for (int k = 0; k < m_grid.GetRElements(); k++) {

			// Gal-Chen and Somerville (1975) linear terrain-following coord
			double dREta = m_grid.GetREtaLevel(k);
/*
			double dREtaStretch;
			double dDxREtaStretch;
			m_grid.EvaluateVerticalStretchF(
				dREta, dREtaStretch, dDxREtaStretch);

			double dZ = dZs + (m_grid.GetZtop() - dZs) * dREtaStretch;
			double dDaR = (1.0 - dREtaStretch) * dDaZs;
			double dDbR = (1.0 - dREtaStretch) * dDbZs;
			double dDxR = (m_grid.GetZtop() - dZs) * dDxREtaStretch;
*/

			double dZ = dZs + (m_grid.GetZtop() - dZs) * dREta;
			double dDaR = (1.0 - dREta) * dDaZs;
			double dDbR = (1.0 - dREta) * dDbZs;
			double dDxR = (m_grid.GetZtop() - dZs);

			// Calculate pointwise Jacobian
			m_dataJacobian[k][iA][iB] = dDxR * m_dataJacobian2D[iA][iB];

			// Element area associated with each model level GLL node
			m_dataElementAreaNode[k][iA][iB] =
				m_dataJacobian[k][iA][iB]
				* dWL[i] * GetElementDeltaA()
				* dWL[j] * GetElementDeltaB()
				* dWNode[k];

			// Contravariant metric components
			m_dataContraMetricA[k][iA][iB][0] =
				m_dataContraMetric2DA[iA][iB][0];
			m_dataContraMetricA[k][iA][iB][1] =
				m_dataContraMetric2DA[iA][iB][1];
			m_dataContraMetricA[k][iA][iB][2] =
				- dContraMetricScale / dDxR * (
					(1.0 + dY * dY) * dDaR + dX * dY * dDbR);

			m_dataContraMetricB[k][iA][iB][0] =
				m_dataContraMetric2DB[iA][iB][0];
			m_dataContraMetricB[k][iA][iB][1] =
				m_dataContraMetric2DB[iA][iB][1];
			m_dataContraMetricB[k][iA][iB][2] =
				- dContraMetricScale / dDxR * (
					dX * dY * dDaR + (1.0 + dX * dX) * dDbR);

			m_dataContraMetricXi[k][iA][iB][0] =
				m_dataContraMetricA[k][iA][iB][2];
			m_dataContraMetricXi[k][iA][iB][1] =
				m_dataContraMetricB[k][iA][iB][2];
			m_dataContraMetricXi[k][iA][iB][2] =
				  1.0 / (dDxR * dDxR)
				- 1.0 / dDxR * (
					  m_dataContraMetricXi[k][iA][iB][0] * dDaR
					+ m_dataContraMetricXi[k][iA][iB][1] * dDbR);

			// Derivatives of the vertical coordinate transform
			m_dataDerivRNode[k][iA][iB][0] = dDaR;
			m_dataDerivRNode[k][iA][iB][1] = dDbR;
			m_dataDerivRNode[k][iA][iB][2] = dDxR;
		}

		// Metric terms at vertical interfaces
		for (int k = 0; k <= m_grid.GetRElements(); k++) {

			// Gal-Chen and Somerville (1975) linear terrain-following coord
			double dREta = m_grid.GetREtaInterface(k);
/*
			double dREtaStretch;
			double dDxREtaStretch;
			m_grid.EvaluateVerticalStretchF(
				dREta, dREtaStretch, dDxREtaStretch);

			double dZ = dZs + (m_grid.GetZtop() - dZs) * dREtaStretch;

			double dDaR = (1.0 - dREtaStretch) * dDaZs;
			double dDbR = (1.0 - dREtaStretch) * dDbZs;
			double dDxR = (m_grid.GetZtop() - dZs) * dDxREtaStretch;
*/
			double dZ = dZs + (m_grid.GetZtop() - dZs) * dREta;
			double dDaR = (1.0 - dREta) * dDaZs;
			double dDbR = (1.0 - dREta) * dDbZs;
			double dDxR = (m_grid.GetZtop() - dZs);

			// Calculate pointwise Jacobian
			m_dataJacobianREdge[k][iA][iB] =
				(1.0 + dX * dX) * (1.0 + dY * dY) / (dDelta * dDelta * dDelta);

			m_dataJacobianREdge[k][iA][iB] *=
				dDxR
				* phys.GetEarthRadius()
				* phys.GetEarthRadius();

			// Element area associated with each model interface GLL node
			m_dataElementAreaREdge[k][iA][iB] =
				m_dataJacobianREdge[k][iA][iB]
				* dWL[i] * GetElementDeltaA()
				* dWL[j] * GetElementDeltaB()
				* dWREdge[k];

			// Contravariant metric (alpha)
			m_dataContraMetricAREdge[k][iA][iB][0] =
				m_dataContraMetric2DA[iA][iB][0];
			m_dataContraMetricAREdge[k][iA][iB][1] =
				m_dataContraMetric2DA[iA][iB][1];
			m_dataContraMetricAREdge[k][iA][iB][2] =
				- dContraMetricScale / dDxR * (
					(1.0 + dY * dY) * dDaR + dX * dY * dDbR);

			// Contravariant metric (beta)
			m_dataContraMetricBREdge[k][iA][iB][0] =
				m_dataContraMetric2DB[iA][iB][0];
			m_dataContraMetricBREdge[k][iA][iB][1] =
				m_dataContraMetric2DB[iA][iB][1];
			m_dataContraMetricBREdge[k][iA][iB][2] =
				- dContraMetricScale / dDxR * (
					dX * dY * dDaR + (1.0 + dX * dX) * dDbR);

			// Contravariant metric (xi)
			m_dataContraMetricXiREdge[k][iA][iB][0] =
				- dContraMetricScale / dDxR * (
					(1.0 + dY * dY) * dDaR + dX * dY * dDbR);

			m_dataContraMetricXiREdge[k][iA][iB][1] =
				- dContraMetricScale / dDxR * (
					dX * dY * dDaR + (1.0 + dX * dX) * dDbR);

			m_dataContraMetricXiREdge[k][iA][iB][2] =
				  1.0 / (dDxR * dDxR)
				- 1.0 / dDxR * (
					  m_dataContraMetricXiREdge[k][iA][iB][0] * dDaR
					+ m_dataContraMetricXiREdge[k][iA][iB][1] * dDbR);

			// Derivatives of the vertical coordinate transform
			m_dataDerivRREdge[k][iA][iB][0] = dDaR;
			m_dataDerivRREdge[k][iA][iB][1] = dDbR;
			m_dataDerivRREdge[k][iA][iB][2] = dDxR;
		}
	}
	}

	}
	}
}
void GridPatchCartesianGLL::EvaluateTopography(
	const TestCase & test
) {
	const PhysicalConstants & phys = m_grid.GetModel().GetPhysicalConstants();

	// Compute values of topography
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

		double dX = m_box.GetANode(i);
		double dY = m_box.GetBNode(j);

		m_dataTopography[i][j] = test.EvaluateTopography(phys, dX, dY);

		if (m_dataTopography[i][j] >= m_grid.GetZtop()) {
			_EXCEPTIONT("TestCase topography exceeds model top.");
		}
	}
	}

	// Get derivatves from basis
	GridCartesianGLL & gridCartesianGLL =
		dynamic_cast<GridCartesianGLL &>(m_grid);

	const DataMatrix<double> & dDxBasis1D =
		gridCartesianGLL.GetDxBasis1D();

	// Compute derivatives of topography
	for (int a = 0; a < GetElementCountA(); a++) {
	for (int b = 0; b < GetElementCountB(); b++) {

		for (int i = 0; i < m_nHorizontalOrder; i++) {
		for (int j = 0; j < m_nHorizontalOrder; j++) {

			// Nodal points
			int iElementA = m_box.GetAInteriorBegin() + a * m_nHorizontalOrder;
			int iElementB = m_box.GetBInteriorBegin() + b * m_nHorizontalOrder;

			int iA = iElementA + i;
			int iB = iElementB + j;

			// Topography height and its derivatives
			double dZs = m_dataTopography[iA][iB];

			double dDaZs = 0.0;
			double dDbZs = 0.0;

			for (int s = 0; s < m_nHorizontalOrder; s++) {
				dDaZs += dDxBasis1D[s][i] * m_dataTopography[iElementA+s][iB];
				dDbZs += dDxBasis1D[s][j] * m_dataTopography[iA][iElementB+s];
			}

			dDaZs /= GetElementDeltaA();
			dDbZs /= GetElementDeltaB();

			m_dataTopographyDeriv[0][iA][iB] = dDaZs;
			m_dataTopographyDeriv[1][iA][iB] = dDbZs;
		}
		}
	}
	}
}
Beispiel #4
0
void GridPatchCSGLL::EvaluateTopography(
	const TestCase & test
) {
	const PhysicalConstants & phys = m_grid.GetModel().GetPhysicalConstants();

	// Compute values of topography
	for (int i = 0; i < m_box.GetATotalWidth(); i++) {
	for (int j = 0; j < m_box.GetBTotalWidth(); j++) {

		double dLon;
		double dLat;

		CubedSphereTrans::RLLFromABP(
			m_dANode[i],
			m_dBNode[j],
			m_box.GetPanel(),
			dLon,
			dLat);

		m_dataTopography[i][j] = test.EvaluateTopography(phys, dLon, dLat);
	}
	}

	// Get derivatves from basis
	GridCSGLL & gridCSGLL = dynamic_cast<GridCSGLL &>(m_grid);

	const DataArray2D<double> & dDxBasis1D = gridCSGLL.GetDxBasis1D();

	// Compute derivatives of topography
	for (int a = 0; a < GetElementCountA(); a++) {
	for (int b = 0; b < GetElementCountB(); b++) {

		for (int i = 0; i < m_nHorizontalOrder; i++) {
		for (int j = 0; j < m_nHorizontalOrder; j++) {

			// Nodal points
			int iElementA = m_box.GetAInteriorBegin() + a * m_nHorizontalOrder;
			int iElementB = m_box.GetBInteriorBegin() + b * m_nHorizontalOrder;

			int iA = iElementA + i;
			int iB = iElementB + j;

			// Topography height and its derivatives
			double dZs = m_dataTopography[iA][iB];

			double dDaZs = 0.0;
			double dDbZs = 0.0;

			for (int s = 0; s < m_nHorizontalOrder; s++) {
				dDaZs += dDxBasis1D[s][i] * m_dataTopography[iElementA+s][iB];
				dDbZs += dDxBasis1D[s][j] * m_dataTopography[iA][iElementB+s];
			}

			dDaZs /= GetElementDeltaA();
			dDbZs /= GetElementDeltaB();

			m_dataTopographyDeriv[0][iA][iB] = dDaZs;
			m_dataTopographyDeriv[1][iA][iB] = dDbZs;
		}
		}
	}
	}
}