u64 TextureCache::TCacheEntryBase::CalculateHash() const
{
	u8* ptr = Memory::GetPointer(addr);
	if (memory_stride == CacheLinesPerRow() * 32)
	{
		return GetHash64(ptr, size_in_bytes, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	}
	else
	{
		u32 blocks = NumBlocksY();
		u64 temp_hash = size_in_bytes;

		u32 samples_per_row = 0;
		if (g_ActiveConfig.iSafeTextureCache_ColorSamples != 0)
		{
			// Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left side of the efb copy
			samples_per_row = std::max(g_ActiveConfig.iSafeTextureCache_ColorSamples / blocks, 4u);
		}

		for (u32 i = 0; i < blocks; i++)
		{
			// Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from canceling each other out
			temp_hash = (temp_hash * 397) ^ GetHash64(ptr, CacheLinesPerRow() * 32, samples_per_row);
			ptr += memory_stride;
		}
		return temp_hash;
	}
}
Beispiel #2
0
ID3D11SamplerState*      GetSamplerState( D3D11_SAMPLER_DESC const& desc, char const* debugNameOnCreation ) {
	auto crc = GetHash64( (u8 const*)&desc, sizeof( desc ), 0 );
	auto it = sstates_.find( crc );
	if ( it != sstates_.end() ) {
		return it->second;
	}
	ID3D11SamplerState* state;
	auto hr = D3D::device->CreateSamplerState( &desc, &state );
	if ( FAILED( hr ) ) 
		PanicAlert( "Failed to create sampler state at %s %d\n", __FILE__, __LINE__ );
	D3D::SetDebugObjectName( state, debugNameOnCreation );
	sstates_.emplace( crc, state );
	return state;
}
Beispiel #3
0
ID3D11DepthStencilState* GetDepthStencilState( D3D11_DEPTH_STENCIL_DESC const& desc, char const* debugNameOnCreation ) {
	auto crc = GetHash64( (u8 const*)&desc, sizeof( desc ), 0 );
	auto it = dstates_.find( crc );
	if ( it != dstates_.end() ) {
		return it->second;
	}
	ID3D11DepthStencilState* state;
	auto hr = D3D::device->CreateDepthStencilState( &desc, &state );
	if ( FAILED( hr ) ) 
		PanicAlert( "Failed to create depth stencil state at %s %d\n", __FILE__, __LINE__ );
	D3D::SetDebugObjectName( state, debugNameOnCreation );
	dstates_.emplace( crc, state );
	return state;
}
Beispiel #4
0
TextureCache::TCacheEntryBase* TextureCache::Load(unsigned int const stage,
	u32 const address, unsigned int width, unsigned int height, int const texformat,
	unsigned int const tlutaddr, int const tlutfmt, bool const use_mipmaps, unsigned int maxlevel, bool const from_tmem)
{
	if (0 == address)
		return nullptr;

	// TexelSizeInNibbles(format) * width * height / 16;
	const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat) - 1;
	const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat) - 1;

	unsigned int expandedWidth  = (width  + bsw) & (~bsw);
	unsigned int expandedHeight = (height + bsh) & (~bsh);
	const unsigned int nativeW = width;
	const unsigned int nativeH = height;

	u32 texID = address;
	// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
	u64 tex_hash = TEXHASH_INVALID;
	u64 tlut_hash = TEXHASH_INVALID;

	u32 full_format = texformat;
	PC_TexFormat pcfmt = PC_TEX_FMT_NONE;

	const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);
	if (isPaletteTexture)
		full_format = texformat | (tlutfmt << 16);

	const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);

	const u8* src_data;
	if (from_tmem)
		src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
	else
		src_data = Memory::GetPointer(address);

	// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
	tex_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	if (isPaletteTexture)
	{
		const u32 palette_size = TexDecoder_GetPaletteSize(texformat);
		tlut_hash = GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);

		// NOTE: For non-paletted textures, texID is equal to the texture address.
		//       A paletted texture, however, may have multiple texIDs assigned though depending on the currently used tlut.
		//       This (changing texID depending on the tlut_hash) is a trick to get around
		//       an issue with Metroid Prime's fonts (it has multiple sets of fonts on each other
		//       stored in a single texture and uses the palette to make different characters
		//       visible or invisible. Thus, unless we want to recreate the textures for every drawn character,
		//       we must make sure that a paletted texture gets assigned multiple IDs for each tlut used.
		//
		// TODO: Because texID isn't always the same as the address now, CopyRenderTargetToTexture might be broken now
		texID ^= ((u32)tlut_hash) ^(u32)(tlut_hash >> 32);
		tex_hash ^= tlut_hash;
	}

	// D3D doesn't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
	// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,1x1, so we limit the mipmap count to 6 there
	while (g_ActiveConfig.backend_info.bUseMinimalMipCount && std::max(expandedWidth, expandedHeight) >> maxlevel == 0)
		--maxlevel;

	TCacheEntryBase *entry = textures[texID];
	if (entry)
	{
		// 1. Calculate reference hash:
		// calculated from RAM texture data for normal textures. Hashes for paletted textures are modified by tlut_hash. 0 for virtual EFB copies.
		if (g_ActiveConfig.bCopyEFBToTexture && entry->IsEfbCopy())
			tex_hash = TEXHASH_INVALID;

		// 2. a) For EFB copies, only the hash and the texture address need to match
		if (entry->IsEfbCopy() && tex_hash == entry->hash && address == entry->addr)
		{
			entry->type = TCET_EC_VRAM;

			// TODO: Print a warning if the format changes! In this case,
			// we could reinterpret the internal texture object data to the new pixel format
			// (similar to what is already being done in Renderer::ReinterpretPixelFormat())
			return ReturnEntry(stage, entry);
		}

		// 2. b) For normal textures, all texture parameters need to match
		if (address == entry->addr && tex_hash == entry->hash && full_format == entry->format &&
			entry->num_mipmaps > maxlevel && entry->native_width == nativeW && entry->native_height == nativeH)
		{
			return ReturnEntry(stage, entry);
		}

		// 3. If we reach this line, we'll have to upload the new texture data to VRAM.
		//    If we're lucky, the texture parameters didn't change and we can reuse the internal texture object instead of destroying and recreating it.
		//
		// TODO: Don't we need to force texture decoding to RGBA8 for dynamic EFB copies?
		// TODO: Actually, it should be enough if the internal texture format matches...
		if ((entry->type == TCET_NORMAL &&
		     width == entry->virtual_width &&
		     height == entry->virtual_height &&
		     full_format == entry->format &&
		     entry->num_mipmaps > maxlevel) ||
		    (entry->type == TCET_EC_DYNAMIC &&
		     entry->native_width == width &&
		     entry->native_height == height))
		{
			// reuse the texture
		}
		else
		{
			// delete the texture and make a new one
			delete entry;
			entry = nullptr;
		}
	}

	bool using_custom_texture = false;

	if (g_ActiveConfig.bHiresTextures)
	{
		// This function may modify width/height.
		pcfmt = LoadCustomTexture(tex_hash, texformat, 0, width, height);
		if (pcfmt != PC_TEX_FMT_NONE)
		{
			if (expandedWidth != width || expandedHeight != height)
			{
				expandedWidth = width;
				expandedHeight = height;

				// If we thought we could reuse the texture before, make sure to pool it now!
				if (entry)
				{
					delete entry;
					entry = nullptr;
				}
			}
			using_custom_texture = true;
		}
	}

	if (!using_custom_texture)
	{
		if (!(texformat == GX_TF_RGBA8 && from_tmem))
		{
			pcfmt = TexDecoder_Decode(temp, src_data, expandedWidth,
						expandedHeight, texformat, tlutaddr, tlutfmt, g_ActiveConfig.backend_info.bUseRGBATextures);
		}
		else
		{
			u8* src_data_gb = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE];
			pcfmt = TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
		}
	}

	u32 texLevels = use_mipmaps ? (maxlevel + 1) : 1;
	const bool using_custom_lods = using_custom_texture && CheckForCustomTextureLODs(tex_hash, texformat, texLevels);
	// Only load native mips if their dimensions fit to our virtual texture dimensions
	const bool use_native_mips = use_mipmaps && !using_custom_lods && (width == nativeW && height == nativeH);
	texLevels = (use_native_mips || using_custom_lods) ? texLevels : 1; // TODO: Should be forced to 1 for non-pow2 textures (e.g. efb copies with automatically adjusted IR)

	// create the entry/texture
	if (nullptr == entry)
	{
		textures[texID] = entry = g_texture_cache->CreateTexture(width, height, expandedWidth, texLevels, pcfmt);

		// Sometimes, we can get around recreating a texture if only the number of mip levels changes
		// e.g. if our texture cache entry got too many mipmap levels we can limit the number of used levels by setting the appropriate render states
		// Thus, we don't update this member for every Load, but just whenever the texture gets recreated

		// TODO: This is the wrong value. We should be storing the number of levels our actual texture has.
		// But that will currently make the above "existing entry" tests fail as "texLevels" is not calculated until after.
		// Currently, we might try to reuse a texture which appears to have more levels than actual, maybe..
		entry->num_mipmaps = maxlevel + 1;
		entry->type = TCET_NORMAL;

		GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);
	}
	else
	{
		// load texture (CreateTexture also loads level 0)
		entry->Load(width, height, expandedWidth, 0);
	}

	entry->SetGeneralParameters(address, texture_size, full_format, entry->num_mipmaps);
	entry->SetDimensions(nativeW, nativeH, width, height);
	entry->hash = tex_hash;

	if (entry->IsEfbCopy() && !g_ActiveConfig.bCopyEFBToTexture)
		entry->type = TCET_EC_DYNAMIC;
	else
		entry->type = TCET_NORMAL;

	if (g_ActiveConfig.bDumpTextures && !using_custom_texture)
		DumpTexture(entry, 0);

	u32 level = 1;
	// load mips - TODO: Loading mipmaps from tmem is untested!
	if (pcfmt != PC_TEX_FMT_NONE)
	{
		if (use_native_mips)
		{
			src_data += texture_size;

			const u8* ptr_even = nullptr;
			const u8* ptr_odd = nullptr;
			if (from_tmem)
			{
				ptr_even = &texMem[bpmem.tex[stage/4].texImage1[stage%4].tmem_even * TMEM_LINE_SIZE + texture_size];
				ptr_odd = &texMem[bpmem.tex[stage/4].texImage2[stage%4].tmem_odd * TMEM_LINE_SIZE];
			}

			for (; level != texLevels; ++level)
			{
				const u32 mip_width = CalculateLevelSize(width, level);
				const u32 mip_height = CalculateLevelSize(height, level);
				const u32 expanded_mip_width = (mip_width + bsw) & (~bsw);
				const u32 expanded_mip_height = (mip_height + bsh) & (~bsh);

				const u8*& mip_src_data = from_tmem
					? ((level % 2) ? ptr_odd : ptr_even)
					: src_data;
				TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlutaddr, tlutfmt, g_ActiveConfig.backend_info.bUseRGBATextures);
				mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);

				entry->Load(mip_width, mip_height, expanded_mip_width, level);

				if (g_ActiveConfig.bDumpTextures)
					DumpTexture(entry, level);
			}
		}
		else if (using_custom_lods)
		{
			for (; level != texLevels; ++level)
			{
				unsigned int mip_width = CalculateLevelSize(width, level);
				unsigned int mip_height = CalculateLevelSize(height, level);

				LoadCustomTexture(tex_hash, texformat, level, mip_width, mip_height);
				entry->Load(mip_width, mip_height, mip_width, level);
			}
		}
	}

	INCSTAT(stats.numTexturesCreated);
	SETSTAT(stats.numTexturesAlive, textures.size());

	return ReturnEntry(stage, entry);
}
Beispiel #5
0
void TextureCache::TCacheEntry::FromRenderTarget(u32 dstAddr, unsigned int dstFormat,
	PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect,
	bool isIntensity, bool scaleByHalf, unsigned int cbufid,
	const float *colmat)
{
	g_renderer->ResetAPIState(); // reset any game specific settings

	// Make sure to resolve anything we need to read from.
	const GLuint read_texture = (srcFormat == PEControl::Z24) ?
		FramebufferManager::ResolveAndGetDepthTarget(srcRect) :
		FramebufferManager::ResolveAndGetRenderTarget(srcRect);

	GL_REPORT_ERRORD();

	if (type != TCET_EC_DYNAMIC || g_ActiveConfig.bCopyEFBToTexture)
	{
		FramebufferManager::SetFramebuffer(framebuffer);

		GL_REPORT_ERRORD();

		glActiveTexture(GL_TEXTURE0+9);
		glBindTexture(GL_TEXTURE_2D, read_texture);

		glViewport(0, 0, virtual_width, virtual_height);

		if (srcFormat == PEControl::Z24)
		{
			s_DepthMatrixProgram.Bind();
			if (s_DepthCbufid != cbufid)
				glUniform4fv(s_DepthMatrixUniform, 5, colmat);
			s_DepthCbufid = cbufid;
		}
		else
		{
			s_ColorMatrixProgram.Bind();
			if (s_ColorCbufid != cbufid)
				glUniform4fv(s_ColorMatrixUniform, 7, colmat);
			s_ColorCbufid = cbufid;
		}

		TargetRectangle R = g_renderer->ConvertEFBRectangle(srcRect);
		glUniform4f(srcFormat == PEControl::Z24 ? s_DepthCopyPositionUniform : s_ColorCopyPositionUniform,
			R.left, R.top, R.right, R.bottom);
		GL_REPORT_ERRORD();

		glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

		GL_REPORT_ERRORD();
	}

	if (false == g_ActiveConfig.bCopyEFBToTexture)
	{
		int encoded_size = TextureConverter::EncodeToRamFromTexture(
			addr,
			read_texture,
			srcFormat == PEControl::Z24,
			isIntensity,
			dstFormat,
			scaleByHalf,
			srcRect);

		u8* dst = Memory::GetPointer(addr);
		u64 const new_hash = GetHash64(dst,encoded_size,g_ActiveConfig.iSafeTextureCache_ColorSamples);

		// Mark texture entries in destination address range dynamic unless caching is enabled and the texture entry is up to date
		if (!g_ActiveConfig.bEFBCopyCacheEnable)
			TextureCache::MakeRangeDynamic(addr,encoded_size);
		else if (!TextureCache::Find(addr, new_hash))
			TextureCache::MakeRangeDynamic(addr,encoded_size);

		hash = new_hash;
	}

	FramebufferManager::SetFramebuffer(0);

	GL_REPORT_ERRORD();

	if (g_ActiveConfig.bDumpEFBTarget)
	{
		static int count = 0;
		SaveTexture(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(),
			count++), GL_TEXTURE_2D, texture, virtual_width, virtual_height, 0);
	}

	g_renderer->RestoreAPIState();
}
TextureCache::TCacheEntryBase* TextureCache::Load(const u32 stage)
{
	const FourTexUnits &tex = bpmem.tex[stage >> 2];
	const u32 id = stage & 3;
	const u32 address = (tex.texImage3[id].image_base/* & 0x1FFFFF*/) << 5;
	u32 width = tex.texImage0[id].width + 1;
	u32 height = tex.texImage0[id].height + 1;
	const int texformat = tex.texImage0[id].format;
	const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9;
	const u32 tlutfmt = tex.texTlut[id].tlut_format;
	const bool use_mipmaps = (tex.texMode0[id].min_filter & 3) != 0;
	u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1;
	const bool from_tmem = tex.texImage1[id].image_type != 0;

	if (0 == address)
		return nullptr;

	// TexelSizeInNibbles(format) * width * height / 16;
	const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat);
	const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat);

	unsigned int expandedWidth = ROUND_UP(width, bsw);
	unsigned int expandedHeight = ROUND_UP(height, bsh);
	const unsigned int nativeW = width;
	const unsigned int nativeH = height;

	// Hash assigned to texcache entry (also used to generate filenames used for texture dumping and custom texture lookup)
	u64 base_hash = TEXHASH_INVALID;
	u64 full_hash = TEXHASH_INVALID;

	u32 full_format = texformat;

	const bool isPaletteTexture = (texformat == GX_TF_C4 || texformat == GX_TF_C8 || texformat == GX_TF_C14X2);

	// Reject invalid tlut format.
	if (isPaletteTexture && tlutfmt > GX_TL_RGB5A3)
		return nullptr;

	if (isPaletteTexture)
		full_format = texformat | (tlutfmt << 16);

	const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat);
	u32 additional_mips_size = 0; // not including level 0, which is texture_size

	// GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in the mipmap chain
	// e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we limit the mipmap count to 6 there
	tex_levels = std::min<u32>(IntLog2(std::max(width, height)) + 1, tex_levels);

	for (u32 level = 1; level != tex_levels; ++level)
	{
		// We still need to calculate the original size of the mips
		const u32 expanded_mip_width = ROUND_UP(CalculateLevelSize(width, level), bsw);
		const u32 expanded_mip_height = ROUND_UP(CalculateLevelSize(height, level), bsh);

		additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);
	}

	// If we are recording a FifoLog, keep track of what memory we read.
	// FifiRecorder does it's own memory modification tracking independant of the texture hashing below.
	if (g_bRecordFifoData && !from_tmem)
		FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP);

	const u8* src_data;
	if (from_tmem)
		src_data = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE];
	else
		src_data = Memory::GetPointer(address);

	// TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data from the low tmem bank than it should)
	base_hash = GetHash64(src_data, texture_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	u32 palette_size = 0;
	if (isPaletteTexture)
	{
		palette_size = TexDecoder_GetPaletteSize(texformat);
		full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	}
	else
	{
		full_hash = base_hash;
	}

	// Search the texture cache for textures by address
	//
	// Find all texture cache entries for the current texture address, and decide whether to use one of
	// them, or to create a new one
	//
	// In most cases, the fastest way is to use only one texture cache entry for the same address. Usually,
	// when a texture changes, the old version of the texture is unlikely to be used again. If there were
	// new cache entries created for normal texture updates, there would be a slowdown due to a huge amount
	// of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is
	// faster than creating a new one from scratch.
	//
	// Some games use the same address for different textures though. If the same cache entry was used in
	// this case, it would be constantly overwritten, and effectively there wouldn't be any caching for
	// those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has multiple
	// sets of fonts on each other stored in a single texture and uses the palette to make different
	// characters visible or invisible. In Castlevania 3 some textures are used for 2 different things or
	// at least in 2 different ways(size 1024x1024 vs 1024x256).
	//
	// To determine whether to use multiple cache entries or a single entry, use the following heuristic:
	// If the same texture address is used several times during the same frame, assume the address is used
	// for different purposes and allow creating an additional cache entry. If there's at least one entry
	// that hasn't been used for the same frame, then overwrite it, in order to keep the cache as small as
	// possible. If the current texture is found in the cache, use that entry.
	//
	// For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else it was
	// done in vain.
	std::pair<TexCache::iterator, TexCache::iterator> iter_range = textures_by_address.equal_range((u64)address);
	TexCache::iterator iter = iter_range.first;
	TexCache::iterator oldest_entry = iter;
	int temp_frameCount = 0x7fffffff;
	TexCache::iterator unconverted_copy = textures_by_address.end();

	while (iter != iter_range.second)
	{
		TCacheEntryBase* entry = iter->second;
		// Do not load strided EFB copies, they are not meant to be used directly
		if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH &&
			entry->memory_stride == entry->CacheLinesPerRow() * 32)
		{
			// EFB copies have slightly different rules as EFB copy formats have different
			// meanings from texture formats.
			if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) ||
				IsPlayingBackFifologWithBrokenEFBCopies)
			{
				// TODO: We should check format/width/height/levels for EFB copies. Checking
				// format is complicated because EFB copy formats don't exactly match
				// texture formats. I'm not sure what effect checking width/height/levels
				// would have.
				if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion)
					return ReturnEntry(stage, entry);

				// Note that we found an unconverted EFB copy, then continue.  We'll
				// perform the conversion later.  Currently, we only convert EFB copies to
				// palette textures; we could do other conversions if it proved to be
				// beneficial.
				unconverted_copy = iter;
			}
			else
			{
				// Aggressively prune EFB copies: if it isn't useful here, it will probably
				// never be useful again.  It's theoretically possible for a game to do
				// something weird where the copy could become useful in the future, but in
				// practice it doesn't happen.
				iter = FreeTexture(iter);
				continue;
			}
		}
		else
		{
			// For normal textures, all texture parameters need to match
			if (entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels &&
				entry->native_width == nativeW && entry->native_height == nativeH)
			{
				entry = DoPartialTextureUpdates(iter);

				return ReturnEntry(stage, entry);
			}
		}

		// Find the texture which hasn't been used for the longest time. Count paletted
		// textures as the same texture here, when the texture itself is the same. This
		// improves the performance a lot in some games that use paletted textures.
		// Example: Sonic the Fighters (inside Sonic Gems Collection)
		// Skip EFB copies here, so they can be used for partial texture updates
		if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount &&
			!entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash))
		{
			temp_frameCount = entry->frameCount;
			oldest_entry = iter;
		}
		++iter;
	}

	if (unconverted_copy != textures_by_address.end())
	{
		// Perform palette decoding.
		TCacheEntryBase *entry = unconverted_copy->second;

		TCacheEntryConfig config;
		config.rendertarget = true;
		config.width = entry->config.width;
		config.height = entry->config.height;
		config.layers = FramebufferManagerBase::GetEFBLayers();
		TCacheEntryBase *decoded_entry = AllocateTexture(config);

		decoded_entry->SetGeneralParameters(address, texture_size, full_format);
		decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1);
		decoded_entry->SetHashes(base_hash, full_hash);
		decoded_entry->frameCount = FRAMECOUNT_INVALID;
		decoded_entry->is_efb_copy = false;

		g_texture_cache->ConvertTexture(decoded_entry, entry, &texMem[tlutaddr], (TlutFormat)tlutfmt);
		textures_by_address.emplace((u64)address, decoded_entry);
		return ReturnEntry(stage, decoded_entry);
	}

	// Search the texture cache for normal textures by hash
	//
	// If the texture was fully hashed, the address does not need to match. Identical duplicate textures cause unnecessary slowdowns
	// Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 different ones
	if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
		std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
	{
		iter_range = textures_by_hash.equal_range(full_hash);
		iter = iter_range.first;
		while (iter != iter_range.second)
		{
			TCacheEntryBase* entry = iter->second;
			// All parameters, except the address, need to match here
			if (entry->format == full_format && entry->native_levels >= tex_levels &&
				entry->native_width == nativeW && entry->native_height == nativeH)
			{
				entry = DoPartialTextureUpdates(iter);

				return ReturnEntry(stage, entry);
			}
			++iter;
		}
	}

	// If at least one entry was not used for the same frame, overwrite the oldest one
	if (temp_frameCount != 0x7fffffff)
	{
		// pool this texture and make a new one later
		FreeTexture(oldest_entry);
	}

	std::shared_ptr<HiresTexture> hires_tex;
	if (g_ActiveConfig.bHiresTextures)
	{
		hires_tex = HiresTexture::Search(
			src_data, texture_size,
			&texMem[tlutaddr], palette_size,
			width, height,
			texformat, use_mipmaps
		);

		if (hires_tex)
		{
			auto& l = hires_tex->m_levels[0];
			if (l.width != width || l.height != height)
			{
				width = l.width;
				height = l.height;
			}
			expandedWidth = l.width;
			expandedHeight = l.height;
			CheckTempSize(l.data_size);
			memcpy(temp, l.data, l.data_size);
		}
	}

	if (!hires_tex)
	{
		if (!(texformat == GX_TF_RGBA8 && from_tmem))
		{
			const u8* tlut = &texMem[tlutaddr];
			TexDecoder_Decode(temp, src_data, expandedWidth, expandedHeight, texformat, tlut, (TlutFormat)tlutfmt);
		}
		else
		{
			u8* src_data_gb = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
			TexDecoder_DecodeRGBA8FromTmem(temp, src_data, src_data_gb, expandedWidth, expandedHeight);
		}
	}

	// how many levels the allocated texture shall have
	const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels;

	// create the entry/texture
	TCacheEntryConfig config;
	config.width = width;
	config.height = height;
	config.levels = texLevels;

	TCacheEntryBase* entry = AllocateTexture(config);
	GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true);

	iter = textures_by_address.emplace((u64)address, entry);
	if (g_ActiveConfig.iSafeTextureCache_ColorSamples == 0 ||
		std::max(texture_size, palette_size) <= (u32)g_ActiveConfig.iSafeTextureCache_ColorSamples * 8)
	{
		entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry);
	}

	entry->SetGeneralParameters(address, texture_size, full_format);
	entry->SetDimensions(nativeW, nativeH, tex_levels);
	entry->SetHashes(base_hash, full_hash);
	entry->is_efb_copy = false;
	entry->is_custom_tex = hires_tex != nullptr;

	// load texture
	entry->Load(width, height, expandedWidth, 0);

	std::string basename = "";
	if (g_ActiveConfig.bDumpTextures && !hires_tex)
	{
		basename = HiresTexture::GenBaseName(
			src_data, texture_size,
			&texMem[tlutaddr], palette_size,
			width, height,
			texformat, use_mipmaps,
			true
		);
		DumpTexture(entry, basename, 0);
	}

	if (hires_tex)
	{
		for (u32 level = 1; level != texLevels; ++level)
		{
			auto& l = hires_tex->m_levels[level];
			CheckTempSize(l.data_size);
			memcpy(temp, l.data, l.data_size);
			entry->Load(l.width, l.height, l.width, level);
		}
	}
	else
	{
		// load mips - TODO: Loading mipmaps from tmem is untested!
		src_data += texture_size;

		const u8* ptr_even = nullptr;
		const u8* ptr_odd = nullptr;
		if (from_tmem)
		{
			ptr_even = &texMem[bpmem.tex[stage / 4].texImage1[stage % 4].tmem_even * TMEM_LINE_SIZE + texture_size];
			ptr_odd = &texMem[bpmem.tex[stage / 4].texImage2[stage % 4].tmem_odd * TMEM_LINE_SIZE];
		}

		for (u32 level = 1; level != texLevels; ++level)
		{
			const u32 mip_width = CalculateLevelSize(width, level);
			const u32 mip_height = CalculateLevelSize(height, level);
			const u32 expanded_mip_width = ROUND_UP(mip_width, bsw);
			const u32 expanded_mip_height = ROUND_UP(mip_height, bsh);

			const u8*& mip_src_data = from_tmem
				? ((level % 2) ? ptr_odd : ptr_even)
				: src_data;
			const u8* tlut = &texMem[tlutaddr];
			TexDecoder_Decode(temp, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, (TlutFormat)tlutfmt);
			mip_src_data += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat);

			entry->Load(mip_width, mip_height, expanded_mip_width, level);

			if (g_ActiveConfig.bDumpTextures)
				DumpTexture(entry, basename, level);
		}
	}

	INCSTAT(stats.numTexturesUploaded);
	SETSTAT(stats.numTexturesAlive, textures_by_address.size());

	entry = DoPartialTextureUpdates(iter);

	return ReturnEntry(stage, entry);
}
Beispiel #7
0
void TextureCache::TCacheEntry::FromRenderTarget(u32 dstAddr, unsigned int dstFormat,
	PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect,
	bool isIntensity, bool scaleByHalf, unsigned int cbufid,
	const float *colmat)
{
	g_renderer->ResetAPIState();

	// stretch picture with increased internal resolution
	const D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)config.width, (float)config.height);
	D3D::context->RSSetViewports(1, &vp);

	// set transformation
	if (nullptr == efbcopycbuf[cbufid])
	{
		const D3D11_BUFFER_DESC cbdesc = CD3D11_BUFFER_DESC(28 * sizeof(float), D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DEFAULT);
		D3D11_SUBRESOURCE_DATA data;
		data.pSysMem = colmat;
		HRESULT hr = D3D::device->CreateBuffer(&cbdesc, &data, &efbcopycbuf[cbufid]);
		CHECK(SUCCEEDED(hr), "Create efb copy constant buffer %d", cbufid);
		D3D::SetDebugObjectName((ID3D11DeviceChild*)efbcopycbuf[cbufid], "a constant buffer used in TextureCache::CopyRenderTargetToTexture");
	}
	D3D::stateman->SetPixelConstants(efbcopycbuf[cbufid]);

	const TargetRectangle targetSource = g_renderer->ConvertEFBRectangle(srcRect);
	// TODO: try targetSource.asRECT();
	const D3D11_RECT sourcerect = CD3D11_RECT(targetSource.left, targetSource.top, targetSource.right, targetSource.bottom);

	// Use linear filtering if (bScaleByHalf), use point filtering otherwise
	if (scaleByHalf)
		D3D::SetLinearCopySampler();
	else
		D3D::SetPointCopySampler();

	// Make sure we don't draw with the texture set as both a source and target.
	// (This can happen because we don't unbind textures when we free them.)
	D3D::stateman->UnsetTexture(texture->GetSRV());

	D3D::context->OMSetRenderTargets(1, &texture->GetRTV(), nullptr);

	// Create texture copy
	D3D::drawShadedTexQuad(
		(srcFormat == PEControl::Z24) ? FramebufferManager::GetEFBDepthTexture()->GetSRV() : FramebufferManager::GetEFBColorTexture()->GetSRV(),
		&sourcerect, Renderer::GetTargetWidth(), Renderer::GetTargetHeight(),
		(srcFormat == PEControl::Z24) ? PixelShaderCache::GetDepthMatrixProgram(true) : PixelShaderCache::GetColorMatrixProgram(true),
		VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), GeometryShaderCache::GetCopyGeometryShader());

	D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());

	g_renderer->RestoreAPIState();

	if (!g_ActiveConfig.bSkipEFBCopyToRam)
	{
		u8* dst = Memory::GetPointer(dstAddr);
		size_t encoded_size = g_encoder->Encode(dst, dstFormat, srcFormat, srcRect, isIntensity, scaleByHalf);

		size_in_bytes = (u32)encoded_size;

		TextureCache::MakeRangeDynamic(dstAddr, (u32)encoded_size);

		this->hash = GetHash64(dst, (int)encoded_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);
	}
}
Beispiel #8
0
void TextureCache::TCacheEntry::FromRenderTarget(u32 dstAddr, unsigned int dstFormat,
	unsigned int srcFormat, const EFBRectangle& srcRect,
	bool isIntensity, bool scaleByHalf, unsigned int cbufid,
	const float *colmat)
{
	const LPDIRECT3DTEXTURE9 read_texture = (srcFormat == PIXELFMT_Z24) ?
		FramebufferManager::GetEFBDepthTexture() :
		FramebufferManager::GetEFBColorTexture();

	if (type != TCET_EC_DYNAMIC || g_ActiveConfig.bCopyEFBToTexture)
	{
		LPDIRECT3DSURFACE9 Rendersurf = NULL;
		texture->GetSurfaceLevel(0, &Rendersurf);
		D3D::dev->SetDepthStencilSurface(NULL);
		D3D::dev->SetRenderTarget(0, Rendersurf);

		D3DVIEWPORT9 vp;

		// Stretch picture with increased internal resolution
		vp.X = 0;
		vp.Y = 0;
		vp.Width  = virtual_width;
		vp.Height = virtual_height;
		vp.MinZ = 0.0f;
		vp.MaxZ = 1.0f;
		D3D::dev->SetViewport(&vp);
		RECT destrect;
		destrect.bottom = virtual_height;
		destrect.left = 0;
		destrect.right = virtual_width;
		destrect.top = 0;

		PixelShaderManager::SetColorMatrix(colmat); // set transformation
		TargetRectangle targetSource = g_renderer->ConvertEFBRectangle(srcRect);
		RECT sourcerect;
		sourcerect.bottom = targetSource.bottom;
		sourcerect.left = targetSource.left;
		sourcerect.right = targetSource.right;
		sourcerect.top = targetSource.top;

		if (srcFormat == PIXELFMT_Z24)
		{
			if (scaleByHalf || g_ActiveConfig.iMultisampleMode)
			{
				D3D::ChangeSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
				D3D::ChangeSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
			}
			else
			{
				D3D::ChangeSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);
				D3D::ChangeSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
			}
		}
		else
		{
			D3D::ChangeSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
			D3D::ChangeSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
		}

		D3DFORMAT bformat = FramebufferManager::GetEFBDepthRTSurfaceFormat();
		int SSAAMode = g_ActiveConfig.iMultisampleMode;

		D3D::drawShadedTexQuad(read_texture, &sourcerect, 
			Renderer::GetTargetWidth(), Renderer::GetTargetHeight(),
			virtual_width, virtual_height,
			// TODO: why is D3DFMT_D24X8 singled out here? why not D3DFMT_D24X4S4/D24S8/D24FS8/D32/D16/D15S1 too, or none of them?
			PixelShaderCache::GetDepthMatrixProgram(SSAAMode, (srcFormat == PIXELFMT_Z24) && bformat != FOURCC_RAWZ && bformat != D3DFMT_D24X8),
			VertexShaderCache::GetSimpleVertexShader(SSAAMode));

		Rendersurf->Release();
	}

	if (!g_ActiveConfig.bCopyEFBToTexture)
	{
		int encoded_size = TextureConverter::EncodeToRamFromTexture(
					addr,
					read_texture,
					Renderer::GetTargetWidth(), 
					Renderer::GetTargetHeight(),
					srcFormat == PIXELFMT_Z24, 
					isIntensity, 
					dstFormat, 
					scaleByHalf, 
					srcRect);

		u8* dst = Memory::GetPointer(addr);
		hash = GetHash64(dst,encoded_size,g_ActiveConfig.iSafeTextureCache_ColorSamples);

		// Mark texture entries in destination address range dynamic unless caching is enabled and the texture entry is up to date
		if (!g_ActiveConfig.bEFBCopyCacheEnable)
			TextureCache::MakeRangeDynamic(addr,encoded_size);
		else if (!TextureCache::Find(addr, hash))
			TextureCache::MakeRangeDynamic(addr,encoded_size);
	}
	
	D3D::RefreshSamplerState(0, D3DSAMP_MINFILTER);
	D3D::RefreshSamplerState(0, D3DSAMP_MAGFILTER);
	D3D::SetTexture(0, NULL);
	D3D::dev->SetRenderTarget(0, FramebufferManager::GetEFBColorRTSurface());
	D3D::dev->SetDepthStencilSurface(FramebufferManager::GetEFBDepthRTSurface());
}
Beispiel #9
0
void TextureCache::TCacheEntry::FromRenderTarget(u32 dstAddr, unsigned int dstFormat,
	PEControl::PixelFormat srcFormat, const EFBRectangle& srcRect,
	bool isIntensity, bool scaleByHalf, unsigned int cbufid,
	const float *colmat)
{
	if (type != TCET_EC_DYNAMIC || g_ActiveConfig.bCopyEFBToTexture)
	{
		g_renderer->ResetAPIState();

		// stretch picture with increased internal resolution
		const D3D11_VIEWPORT vp = CD3D11_VIEWPORT(0.f, 0.f, (float)virtual_width, (float)virtual_height);
		D3D::context->RSSetViewports(1, &vp);

		// set transformation
		if (nullptr == efbcopycbuf[cbufid])
		{
			const D3D11_BUFFER_DESC cbdesc = CD3D11_BUFFER_DESC(28 * sizeof(float), D3D11_BIND_CONSTANT_BUFFER, D3D11_USAGE_DEFAULT);
			D3D11_SUBRESOURCE_DATA data;
			data.pSysMem = colmat;
			HRESULT hr = D3D::device->CreateBuffer(&cbdesc, &data, &efbcopycbuf[cbufid]);
			CHECK(SUCCEEDED(hr), "Create efb copy constant buffer %d", cbufid);
			D3D::SetDebugObjectName((ID3D11DeviceChild*)efbcopycbuf[cbufid], "a constant buffer used in TextureCache::CopyRenderTargetToTexture");
		}
		D3D::stateman->SetPixelConstants(efbcopycbuf[cbufid]);

		const TargetRectangle targetSource = g_renderer->ConvertEFBRectangle(srcRect);
		// TODO: try targetSource.asRECT();
		const D3D11_RECT sourcerect = CD3D11_RECT(targetSource.left, targetSource.top, targetSource.right, targetSource.bottom);

		// Use linear filtering if (bScaleByHalf), use point filtering otherwise
		if (scaleByHalf)
			D3D::SetLinearCopySampler();
		else
			D3D::SetPointCopySampler();

		// if texture is currently in use, it needs to be temporarily unset
		u32 textureSlotMask = D3D::stateman->UnsetTexture(texture->GetSRV());
		D3D::stateman->Apply();

		D3D::context->OMSetRenderTargets(1, &texture->GetRTV(), nullptr);

		// Create texture copy
		D3D::drawShadedTexQuad(
			(srcFormat == PEControl::Z24) ? FramebufferManager::GetEFBDepthTexture()->GetSRV() : FramebufferManager::GetEFBColorTexture()->GetSRV(),
			&sourcerect, Renderer::GetTargetWidth(), Renderer::GetTargetHeight(),
			(srcFormat == PEControl::Z24) ? PixelShaderCache::GetDepthMatrixProgram(true) : PixelShaderCache::GetColorMatrixProgram(true),
			VertexShaderCache::GetSimpleVertexShader(), VertexShaderCache::GetSimpleInputLayout(), GeometryShaderCache::GetCopyGeometryShader());

		D3D::context->OMSetRenderTargets(1, &FramebufferManager::GetEFBColorTexture()->GetRTV(), FramebufferManager::GetEFBDepthTexture()->GetDSV());

		g_renderer->RestoreAPIState();

		// Restore old texture in all previously used slots, if any
		D3D::stateman->SetTextureByMask(textureSlotMask, texture->GetSRV());
	}

	if (!g_ActiveConfig.bCopyEFBToTexture)
	{
		u8* dst = Memory::GetPointer(dstAddr);
		size_t encoded_size = g_encoder->Encode(dst, dstFormat, srcFormat, srcRect, isIntensity, scaleByHalf);

		u64 hash = GetHash64(dst, (int)encoded_size, g_ActiveConfig.iSafeTextureCache_ColorSamples);

		// Mark texture entries in destination address range dynamic unless caching is enabled and the texture entry is up to date
		if (!g_ActiveConfig.bEFBCopyCacheEnable)
			TextureCache::MakeRangeDynamic(addr, (u32)encoded_size);
		else if (!TextureCache::Find(addr, hash))
			TextureCache::MakeRangeDynamic(addr, (u32)encoded_size);

		this->hash = hash;
	}
}