//-----------------------------------------------------------------------------
// Purpose: 
//-----------------------------------------------------------------------------
void CObjectSentrygun::SetModel( const char *pModel )
{
	float flPoseParam0 = 0.0;
	float flPoseParam1 = 0.0;

	// Save pose parameters across model change
	if ( m_iPitchPoseParameter >= 0 )
	{
		flPoseParam0 = GetPoseParameter( m_iPitchPoseParameter );
	}

	if ( m_iYawPoseParameter >= 0 )
	{
		flPoseParam1 = GetPoseParameter( m_iYawPoseParameter );
	}

	BaseClass::SetModel( pModel );

	// Reset this after model change
	UTIL_SetSize( this, SENTRYGUN_MINS, SENTRYGUN_MAXS );
	SetSolid( SOLID_BBOX );

	// Restore pose parameters
	m_iPitchPoseParameter = LookupPoseParameter( "aim_pitch" );
	m_iYawPoseParameter = LookupPoseParameter( "aim_yaw" );

	SetPoseParameter( m_iPitchPoseParameter, flPoseParam0 );
	SetPoseParameter( m_iYawPoseParameter, flPoseParam1 );

	CreateBuildPoints();

	ReattachChildren();

	ResetSequenceInfo();
}
Beispiel #2
0
int CBaseTurret::MoveTurret(void)
{
	bool bDidMove = false;
	int iPose;

	matrix3x4_t localToWorld;
	
	GetAttachment( LookupAttachment( "eyes" ), localToWorld );

	Vector vecGoalDir;
	AngleVectors( m_vecGoalAngles, &vecGoalDir );

	Vector vecGoalLocalDir;
	VectorIRotate( vecGoalDir, localToWorld, vecGoalLocalDir );

	QAngle vecGoalLocalAngles;
	VectorAngles( vecGoalLocalDir, vecGoalLocalAngles );

	float flDiff;
	QAngle vecNewAngles;

  // update pitch
	flDiff = AngleNormalize( UTIL_ApproachAngle(  vecGoalLocalAngles.x, 0.0, 0.1 * m_iBaseTurnRate ) );
	iPose = LookupPoseParameter( TURRET_BC_PITCH );
	SetPoseParameter( iPose, GetPoseParameter( iPose ) + flDiff / 1.5 );

	if (fabs(flDiff) > 0.1)
	{
		bDidMove = true;
	}

	// update yaw, with acceleration
#if 0
	float flDist = AngleNormalize( vecGoalLocalAngles.y );
	float flNewDist;
	float flNewTurnRate;

	ChangeDistance( 0.1, flDist, 0.0, m_fTurnRate, m_iBaseTurnRate, m_iBaseTurnRate * 4, flNewDist, flNewTurnRate );
	m_fTurnRate = flNewTurnRate;
	flDiff = flDist - flNewDist;
#else
	flDiff = AngleNormalize( UTIL_ApproachAngle(  vecGoalLocalAngles.y, 0.0, 0.1 * m_iBaseTurnRate ) );
#endif

	iPose = LookupPoseParameter( TURRET_BC_YAW );
	SetPoseParameter( iPose, GetPoseParameter( iPose ) + flDiff / 1.5 );
	if (fabs(flDiff) > 0.1)
	{
		bDidMove = true;
	}

	if (bDidMove)
	{
		// DevMsg( "(%.2f, %.2f)\n", AngleNormalize( vecGoalLocalAngles.x ), AngleNormalize( vecGoalLocalAngles.y ) );
	}
	return bDidMove;
}
//-----------------------------------------------------------------------------
// Purpose: Causes the turret to face its desired angles
//-----------------------------------------------------------------------------
bool CNPC_CeilingTurret::UpdateFacing( void )
{
	bool  bMoved = false;
	matrix3x4_t localToWorld;
	
	GetAttachment( LookupAttachment( "eyes" ), localToWorld );

	Vector vecGoalDir;
	AngleVectors( m_vecGoalAngles, &vecGoalDir );

	Vector vecGoalLocalDir;
	VectorIRotate( vecGoalDir, localToWorld, vecGoalLocalDir );

	if ( g_debug_turret_ceiling.GetBool() )
	{
		Vector	vecMuzzle, vecMuzzleDir;
		QAngle	vecMuzzleAng;

		GetAttachment( "eyes", vecMuzzle, vecMuzzleAng );
		AngleVectors( vecMuzzleAng, &vecMuzzleDir );

		NDebugOverlay::Cross3D( vecMuzzle, -Vector(2,2,2), Vector(2,2,2), 255, 255, 0, false, 0.05 );
		NDebugOverlay::Cross3D( vecMuzzle+(vecMuzzleDir*256), -Vector(2,2,2), Vector(2,2,2), 255, 255, 0, false, 0.05 );
		NDebugOverlay::Line( vecMuzzle, vecMuzzle+(vecMuzzleDir*256), 255, 255, 0, false, 0.05 );
		
		NDebugOverlay::Cross3D( vecMuzzle, -Vector(2,2,2), Vector(2,2,2), 255, 0, 0, false, 0.05 );
		NDebugOverlay::Cross3D( vecMuzzle+(vecGoalDir*256), -Vector(2,2,2), Vector(2,2,2), 255, 0, 0, false, 0.05 );
		NDebugOverlay::Line( vecMuzzle, vecMuzzle+(vecGoalDir*256), 255, 0, 0, false, 0.05 );
	}

	QAngle vecGoalLocalAngles;
	VectorAngles( vecGoalLocalDir, vecGoalLocalAngles );

	// Update pitch
	float flDiff = AngleNormalize( UTIL_ApproachAngle(  vecGoalLocalAngles.x, 0.0, 0.1f * MaxYawSpeed() ) );
	
	SetPoseParameter( m_poseAim_Pitch, GetPoseParameter( m_poseAim_Pitch ) + ( flDiff / 1.5f ) );

	if ( fabs( flDiff ) > 0.1f )
	{
		bMoved = true;
	}

	// Update yaw
	flDiff = AngleNormalize( UTIL_ApproachAngle(  vecGoalLocalAngles.y, 0.0, 0.1f * MaxYawSpeed() ) );

	SetPoseParameter( m_poseAim_Yaw, GetPoseParameter( m_poseAim_Yaw ) + ( flDiff / 1.5f ) );

	if ( fabs( flDiff ) > 0.1f )
	{
		bMoved = true;
	}

	InvalidateBoneCache();

	return bMoved;
}
Beispiel #4
0
bool CNPC_Infected::OverrideMoveFacing( const AILocalMoveGoal_t &move, float flInterval )
{
	// required movement direction
	float flMoveYaw = UTIL_VecToYaw( move.dir );

	// FIXME: move this up to navigator so that path goals can ignore these overrides.
	Vector dir;
	float flInfluence = GetFacingDirection( dir );
	dir = move.facing * (1 - flInfluence) + dir * flInfluence;
	VectorNormalize( dir );

	// ideal facing direction
	float idealYaw = UTIL_AngleMod( UTIL_VecToYaw( dir ) );
		
	// FIXME: facing has important max velocity issues
	GetMotor()->SetIdealYawAndUpdate( idealYaw );	

	// find movement direction to compensate for not being turned far enough
	float flDiff = UTIL_AngleDiff( flMoveYaw, GetLocalAngles().y );

	// Setup the 9-way blend parameters based on our speed and direction.
	Vector2D vCurMovePose( 0, 0 );

	vCurMovePose.x = cos( DEG2RAD( flDiff ) ) * 1.0f; //flPlaybackRate;
	vCurMovePose.y = -sin( DEG2RAD( flDiff ) ) * 1.0f; //flPlaybackRate;

	SetPoseParameter( gm_nMoveXPoseParam, vCurMovePose.x );
	SetPoseParameter( gm_nMoveYPoseParam, vCurMovePose.y );

	// ==== Update Lean pose parameters
	if ( gm_nLeanYawPoseParam >= 0 )
	{
		float targetLean = GetPoseParameter( gm_nMoveYPoseParam ) * 30.0f;
		float curLean = GetPoseParameter( gm_nLeanYawPoseParam );
		if( curLean < targetLean )
			curLean += MIN(fabs(targetLean-curLean), GetAnimTimeInterval()*12.0f); //was 15.0f
		else
			curLean -= MIN(fabs(targetLean-curLean), GetAnimTimeInterval()*12.0f); //was 15.0f
		SetPoseParameter( gm_nLeanYawPoseParam, curLean );
	}

	if( gm_nLeanPitchPoseParam >= 0 )
	{
		float targetLean = GetPoseParameter( gm_nMoveXPoseParam ) * -20.0f; //was -30.0f
		float curLean = GetPoseParameter( gm_nLeanPitchPoseParam );
		if( curLean < targetLean )
			curLean += MIN(fabs(targetLean-curLean), GetAnimTimeInterval()*10.0f); //was 15.0f
		else
			curLean -= MIN(fabs(targetLean-curLean), GetAnimTimeInterval()*10.0f); //was 15.0f
		SetPoseParameter( gm_nLeanPitchPoseParam, curLean );
	}

	return true;
}
//-----------------------------------------------------------------------------
// Purpose: Causes the camera to face its desired angles
//-----------------------------------------------------------------------------
bool CNPC_CombineCamera::UpdateFacing()
{
	bool  bMoved = false;
	matrix3x4_t localToWorld;
	
	GetAttachment(LookupAttachment("eyes"), localToWorld);

	Vector vecGoalDir;
	AngleVectors(m_vecGoalAngles, &vecGoalDir );

	Vector vecGoalLocalDir;
	VectorIRotate(vecGoalDir, localToWorld, vecGoalLocalDir);

	QAngle vecGoalLocalAngles;
	VectorAngles(vecGoalLocalDir, vecGoalLocalAngles);

	// Update pitch
	float flDiff = AngleNormalize(UTIL_ApproachAngle( vecGoalLocalAngles.x, 0.0, 0.1f * MaxYawSpeed()));
	
	int iPose = LookupPoseParameter(COMBINE_CAMERA_BC_PITCH);
	SetPoseParameter(iPose, GetPoseParameter(iPose) + (flDiff / 1.5f));

	if (fabs(flDiff) > 0.1f)
	{
		bMoved = true;
	}

	// Update yaw
	flDiff = AngleNormalize(UTIL_ApproachAngle( vecGoalLocalAngles.y, 0.0, 0.1f * MaxYawSpeed()));

	iPose = LookupPoseParameter(COMBINE_CAMERA_BC_YAW);
	SetPoseParameter(iPose, GetPoseParameter(iPose) + (flDiff / 1.5f));

	if (fabs(flDiff) > 0.1f)
	{
		bMoved = true;
	}

	if (bMoved && (m_flMoveSoundTime < gpGlobals->curtime))
	{
		EmitSound("NPC_CombineCamera.Move");
		m_flMoveSoundTime = gpGlobals->curtime + CAMERA_MOVE_INTERVAL;
	}

	// You're going to make decisions based on this info.  So bump the bone cache after you calculate everything
	InvalidateBoneCache();

	return bMoved;
}
Beispiel #6
0
//-----------------------------------------------------------------------------
// Primary gun 
//-----------------------------------------------------------------------------
void CPropAPC::AimPrimaryWeapon( const Vector &vecWorldTarget ) 
{
	EntityMatrix parentMatrix;
	parentMatrix.InitFromEntity( this, m_nMachineGunBaseAttachment );
	Vector target = parentMatrix.WorldToLocal( vecWorldTarget ); 

	float quadTarget = target.LengthSqr();
	float quadTargetXY = target.x*target.x + target.y*target.y;

	// Target is too close!  Can't aim at it
	if ( quadTarget > m_vecBarrelPos.LengthSqr() )
	{
		// We're trying to aim the offset barrel at an arbitrary point.
		// To calculate this, I think of the target as being on a sphere with 
		// it's center at the origin of the gun.
		// The rotation we need is the opposite of the rotation that moves the target 
		// along the surface of that sphere to intersect with the gun's shooting direction
		// To calculate that rotation, we simply calculate the intersection of the ray 
		// coming out of the barrel with the target sphere (that's the new target position)
		// and use atan2() to get angles

		// angles from target pos to center
		float targetToCenterYaw = atan2( target.y, target.x );
		float centerToGunYaw = atan2( m_vecBarrelPos.y, sqrt( quadTarget - (m_vecBarrelPos.y*m_vecBarrelPos.y) ) );

		float targetToCenterPitch = atan2( target.z, sqrt( quadTargetXY ) );
		float centerToGunPitch = atan2( -m_vecBarrelPos.z, sqrt( quadTarget - (m_vecBarrelPos.z*m_vecBarrelPos.z) ) );

		QAngle angles;
		angles.Init( -RAD2DEG(targetToCenterPitch+centerToGunPitch), RAD2DEG( targetToCenterYaw + centerToGunYaw ), 0 );

		SetPoseParameter( "vehicle_weapon_yaw", angles.y );
		SetPoseParameter( "vehicle_weapon_pitch", angles.x );
		StudioFrameAdvance();

		float curPitch = GetPoseParameter( "vehicle_weapon_pitch" );
		float curYaw = GetPoseParameter( "vehicle_weapon_yaw" );
		m_bInFiringCone = (fabs(curPitch - angles.x) < 1e-3) && (fabs(curYaw - angles.y) < 1e-3);
	}
	else
	{
		m_bInFiringCone = false;
	}
}
void CPropVehicleManhack::UpdateHead( void )
{
	float yaw = GetPoseParameter( "head_yaw" );
	float pitch = GetPoseParameter( "head_pitch" );

	// If we should be watching our enemy, turn our head
	CNPC_Manhack *pManhack=GetManhack();
	
	if (pManhack != NULL) 
	{
		Vector vehicleEyeOrigin;
		QAngle vehicleEyeAngles;
		GetAttachment( "vehicle_driver_eyes", vehicleEyeOrigin, vehicleEyeAngles );

		// FIXME: cache this
		Vector vBodyDir;
		AngleVectors( vehicleEyeAngles, &vBodyDir );

		Vector	manhackDir = pManhack->GetAbsOrigin() - vehicleEyeOrigin;
		VectorNormalize( manhackDir );
		
		float angle = UTIL_VecToYaw( vBodyDir );
		float angleDiff = UTIL_VecToYaw( manhackDir );
		angleDiff = UTIL_AngleDiff( angleDiff, angle + yaw );

		SetPoseParameter( "head_yaw", UTIL_Approach( yaw + angleDiff, yaw, 1 ) );

		angle = UTIL_VecToPitch( vBodyDir );
		angleDiff = UTIL_VecToPitch( manhackDir );
		angleDiff = UTIL_AngleDiff( angleDiff, angle + pitch );

		SetPoseParameter( "head_pitch", UTIL_Approach( pitch + angleDiff, pitch, 1 ) );
	}
	else
	{
		// Otherwise turn the head back to its normal position
		SetPoseParameter( "head_yaw",	UTIL_Approach( 0, yaw, 10 ) );
		SetPoseParameter( "head_pitch", UTIL_Approach( 0, pitch, 10 ) );
	}
}
Beispiel #8
0
float StudioModel::GetPoseParameter( char const *szName )
{
	return GetPoseParameter( LookupPoseParameter( szName ) );
}
//-----------------------------------------------------------------------------
// Purpose: Render the weapon. Draw the Viewmodel if the weapon's being carried
//			by this player, otherwise draw the worldmodel.
//-----------------------------------------------------------------------------
int C_BaseViewModel::DrawModel( int flags, const RenderableInstance_t &instance )
{
	if ( !m_bReadyToDraw )
		return 0;

	if ( flags & STUDIO_RENDER )
	{
		// Determine blending amount and tell engine
		float blend = (float)( instance.m_nAlpha / 255.0f );

		// Totally gone
		if ( blend <= 0.0f )
			return 0;

		// Tell engine
		render->SetBlend( blend );

		float color[3];
		GetColorModulation( color );
		render->SetColorModulation(	color );
	}
	
	CMatRenderContextPtr pRenderContext( materials );
	
	if ( ShouldFlipViewModel() )
		pRenderContext->CullMode( MATERIAL_CULLMODE_CW );

	int ret = 0;
	C_BasePlayer *pPlayer = C_BasePlayer::GetLocalPlayer();
	C_BaseCombatWeapon *pWeapon = GetOwningWeapon();

	// If the local player's overriding the viewmodel rendering, let him do it
	if ( pPlayer && pPlayer->IsOverridingViewmodel() )
	{
		ret = pPlayer->DrawOverriddenViewmodel( this, flags, instance );
	}
	else if ( pWeapon && pWeapon->IsOverridingViewmodel() )
	{
		ret = pWeapon->DrawOverriddenViewmodel( this, flags, instance );
	}
	else
	{
		ret = BaseClass::DrawModel( flags, instance );
	}

	pRenderContext->CullMode( MATERIAL_CULLMODE_CCW );

	// Now that we've rendered, reset the animation restart flag
	if ( flags & STUDIO_RENDER )
	{
		if ( m_nOldAnimationParity != m_nAnimationParity )
		{
			m_nOldAnimationParity = m_nAnimationParity;
		}

		// Tell the weapon itself that we've rendered, in case it wants to do something
		if ( pWeapon )
		{
			pWeapon->ViewModelDrawn( this );
		}

		if ( vm_debug.GetBool() )
		{
			MDLCACHE_CRITICAL_SECTION();

			int line = 16;
			CStudioHdr *hdr = GetModelPtr();
			engine->Con_NPrintf( line++, "%s: %s(%d), cycle: %.2f cyclerate: %.2f playbackrate: %.2f\n", 
				(hdr)?hdr->pszName():"(null)",
				GetSequenceName( GetSequence() ),
				GetSequence(),
				GetCycle(), 
				GetSequenceCycleRate( hdr, GetSequence() ),
				GetPlaybackRate()
				);
			if ( hdr )
			{
				for( int i=0; i < hdr->GetNumPoseParameters(); ++i )
				{
					const mstudioposeparamdesc_t &Pose = hdr->pPoseParameter( i );
					engine->Con_NPrintf( line++, "pose_param %s: %f",
						Pose.pszName(), GetPoseParameter( i ) );
				}
			}

			// Determine blending amount and tell engine
			float blend = (float)( instance.m_nAlpha / 255.0f );
			float color[3];
			GetColorModulation( color );
			engine->Con_NPrintf( line++, "blend=%f, color=%f,%f,%f", blend, color[0], color[1], color[2] );
			engine->Con_NPrintf( line++, "GetRenderMode()=%d", GetRenderMode() );
			engine->Con_NPrintf( line++, "m_nRenderFX=0x%8.8X", GetRenderFX() );

			color24 c = GetRenderColor();
			unsigned char a = GetRenderAlpha();
			engine->Con_NPrintf( line++, "rendercolor=%d,%d,%d,%d", c.r, c.g, c.b, a );

			engine->Con_NPrintf( line++, "origin=%f, %f, %f", GetRenderOrigin().x, GetRenderOrigin().y, GetRenderOrigin().z );
			engine->Con_NPrintf( line++, "angles=%f, %f, %f", GetRenderAngles()[0], GetRenderAngles()[1], GetRenderAngles()[2] );

			if ( IsEffectActive( EF_NODRAW ) )
			{
				engine->Con_NPrintf( line++, "EF_NODRAW" );
			}
		}
	}

	return ret;
}
Beispiel #10
0
//-----------------------------------------------------------------------------
// Purpose: Aim Gun at a target
//-----------------------------------------------------------------------------
void CASW_PropJeep::AimGunAt( Vector *endPos, float flInterval )
{
	Vector	aimPos = *endPos;

	// See if the gun should be allowed to aim
	if ( IsOverturned() || m_bEngineLocked || m_bHasGun == false )
	{
		SetPoseParameter( JEEP_GUN_YAW, 0 );
		SetPoseParameter( JEEP_GUN_PITCH, 0 );
		SetPoseParameter( JEEP_GUN_SPIN, 0 );
		return;

		// Make the gun go limp and look "down"
		Vector	v_forward, v_up;
		AngleVectors( GetLocalAngles(), NULL, &v_forward, &v_up );
		aimPos = WorldSpaceCenter() + ( v_forward * -32.0f ) - Vector( 0, 0, 128.0f );
	}

	matrix3x4_t gunMatrix;
	GetAttachment( LookupAttachment("gun_ref"), gunMatrix );

	// transform the enemy into gun space
	Vector localEnemyPosition;
	VectorITransform( aimPos, gunMatrix, localEnemyPosition );

	// do a look at in gun space (essentially a delta-lookat)
	QAngle localEnemyAngles;
	VectorAngles( localEnemyPosition, localEnemyAngles );
	
	// convert to +/- 180 degrees
	localEnemyAngles.x = UTIL_AngleDiff( localEnemyAngles.x, 0 );	
	localEnemyAngles.y = UTIL_AngleDiff( localEnemyAngles.y, 0 );

	float targetYaw = m_aimYaw + localEnemyAngles.y;
	float targetPitch = m_aimPitch + localEnemyAngles.x;
	
	// Constrain our angles
	float newTargetYaw	= clamp( targetYaw, -CANNON_MAX_LEFT_YAW, CANNON_MAX_RIGHT_YAW );
	float newTargetPitch = clamp( targetPitch, -CANNON_MAX_DOWN_PITCH, CANNON_MAX_UP_PITCH );

	// If the angles have been clamped, we're looking outside of our valid range
	if ( fabs(newTargetYaw-targetYaw) > 1e-4 || fabs(newTargetPitch-targetPitch) > 1e-4 )
	{
		m_bUnableToFire = true;
	}

	targetYaw = newTargetYaw;
	targetPitch = newTargetPitch;

	// Exponentially approach the target
	float yawSpeed = 8;
	float pitchSpeed = 8;

	m_aimYaw = UTIL_Approach( targetYaw, m_aimYaw, yawSpeed );
	m_aimPitch = UTIL_Approach( targetPitch, m_aimPitch, pitchSpeed );

	SetPoseParameter( JEEP_GUN_YAW, -m_aimYaw);
	SetPoseParameter( JEEP_GUN_PITCH, -m_aimPitch );

	InvalidateBoneCache();

	// read back to avoid drift when hitting limits
	// as long as the velocity is less than the delta between the limit and 180, this is fine.
	m_aimPitch = -GetPoseParameter( JEEP_GUN_PITCH );
	m_aimYaw = -GetPoseParameter( JEEP_GUN_YAW );

	// Now draw crosshair for actual aiming point
	Vector	vecMuzzle, vecMuzzleDir;
	QAngle	vecMuzzleAng;

	GetAttachment( "Muzzle", vecMuzzle, vecMuzzleAng );
	AngleVectors( vecMuzzleAng, &vecMuzzleDir );

	trace_t	tr;
	UTIL_TraceLine( vecMuzzle, vecMuzzle + (vecMuzzleDir * MAX_TRACE_LENGTH), MASK_SHOT, this, COLLISION_GROUP_NONE, &tr );

		// see if we hit something, if so, adjust endPos to hit location
	if ( tr.fraction < 1.0 )
	{
		m_vecGunCrosshair = vecMuzzle + ( vecMuzzleDir * MAX_TRACE_LENGTH * tr.fraction );
	}
}
//------------------------------------------------------------------------------
// Purpose : 
// Input   :
// Output  :
//------------------------------------------------------------------------------
void CNPC_CombineDropship::Flight( void )
{
	// Only run pose params in some flight states
	bool bRunPoseParams = ( m_iLandState == LANDING_NO || 
							m_iLandState == LANDING_LEVEL_OUT || 
							m_iLandState == LANDING_LIFTOFF ||
							m_iLandState == LANDING_SWOOPING );

	if ( bRunPoseParams )
	{
		if( GetFlags() & FL_ONGROUND )
		{
			//This would be really bad.
			RemoveFlag( FL_ONGROUND );
		}

		// NDebugOverlay::Line(GetLocalOrigin(), GetDesiredPosition(), 0,0,255, true, 0.1);

		Vector deltaPos = GetDesiredPosition() - GetLocalOrigin();

		// calc desired acceleration
		float dt = 1.0f;

		Vector	accel;
		float	accelRate = DROPSHIP_ACCEL_RATE;
		float	maxSpeed = m_flMaxSpeed;

		if ( m_lifeState == LIFE_DYING )
		{
			accelRate *= 5.0;
			maxSpeed *= 5.0;
		}

		float flDist = min( GetAbsVelocity().Length() + accelRate, maxSpeed );

		// Only decelerate to our goal if we're going to hit it
		if ( deltaPos.Length() > flDist * dt )
		{
			float scale = flDist * dt / deltaPos.Length();
			deltaPos = deltaPos * scale;
		}
		
		// If we're swooping, floor it
		if ( m_iLandState == LANDING_SWOOPING )
		{
			VectorNormalize( deltaPos );
			deltaPos *= maxSpeed;
		}
		
		// calc goal linear accel to hit deltaPos in dt time.
		accel.x = 2.0 * (deltaPos.x - GetAbsVelocity().x * dt) / (dt * dt);
		accel.y = 2.0 * (deltaPos.y - GetAbsVelocity().y * dt) / (dt * dt);
		accel.z = 2.0 * (deltaPos.z - GetAbsVelocity().z * dt + 0.5 * 384 * dt * dt) / (dt * dt);
		
		//NDebugOverlay::Line(GetLocalOrigin(), GetLocalOrigin() + deltaPos, 255,0,0, true, 0.1);
		//NDebugOverlay::Line(GetLocalOrigin(), GetLocalOrigin() + accel, 0,255,0, true, 0.1);

		// don't fall faster than 0.2G or climb faster than 2G
		if ( m_iLandState != LANDING_SWOOPING )
		{
			accel.z = clamp( accel.z, 384 * 0.2, 384 * 2.0 );
		}

		Vector forward, right, up;
		GetVectors( &forward, &right, &up );

		Vector goalUp = accel;
		VectorNormalize( goalUp );

		// calc goal orientation to hit linear accel forces
		float goalPitch = RAD2DEG( asin( DotProduct( forward, goalUp ) ) );
		float goalYaw = UTIL_VecToYaw( m_vecDesiredFaceDir );
		float goalRoll = RAD2DEG( asin( DotProduct( right, goalUp ) ) );

		// clamp goal orientations
		goalPitch = clamp( goalPitch, -45, 60 );
		goalRoll = clamp( goalRoll, -45, 45 );

		// calc angular accel needed to hit goal pitch in dt time.
		dt = 0.6;
		QAngle goalAngAccel;
		goalAngAccel.x = 2.0 * (AngleDiff( goalPitch, AngleNormalize( GetLocalAngles().x ) ) - GetLocalAngularVelocity().x * dt) / (dt * dt);
		goalAngAccel.y = 2.0 * (AngleDiff( goalYaw, AngleNormalize( GetLocalAngles().y ) ) - GetLocalAngularVelocity().y * dt) / (dt * dt);
		goalAngAccel.z = 2.0 * (AngleDiff( goalRoll, AngleNormalize( GetLocalAngles().z ) ) - GetLocalAngularVelocity().z * dt) / (dt * dt);

		goalAngAccel.x = clamp( goalAngAccel.x, -300, 300 );
		//goalAngAccel.y = clamp( goalAngAccel.y, -60, 60 );
		goalAngAccel.y = clamp( goalAngAccel.y, -120, 120 );
		goalAngAccel.z = clamp( goalAngAccel.z, -300, 300 );

		// limit angular accel changes to simulate mechanical response times
		dt = 0.1;
		QAngle angAccelAccel;
		angAccelAccel.x = (goalAngAccel.x - m_vecAngAcceleration.x) / dt;
		angAccelAccel.y = (goalAngAccel.y - m_vecAngAcceleration.y) / dt;
		angAccelAccel.z = (goalAngAccel.z - m_vecAngAcceleration.z) / dt;

		angAccelAccel.x = clamp( angAccelAccel.x, -1000, 1000 );
		angAccelAccel.y = clamp( angAccelAccel.y, -1000, 1000 );
		angAccelAccel.z = clamp( angAccelAccel.z, -1000, 1000 );

		m_vecAngAcceleration += angAccelAccel * 0.1;

		// Msg( "pitch %6.1f (%6.1f:%6.1f)  ", goalPitch, GetLocalAngles().x, m_vecAngVelocity.x );
		// Msg( "roll %6.1f (%6.1f:%6.1f) : ", goalRoll, GetLocalAngles().z, m_vecAngVelocity.z );
		// Msg( "%6.1f %6.1f %6.1f  :  ", goalAngAccel.x, goalAngAccel.y, goalAngAccel.z );
		// Msg( "%6.0f %6.0f %6.0f\n", angAccelAccel.x, angAccelAccel.y, angAccelAccel.z );

		ApplySidewaysDrag( right );
		ApplyGeneralDrag();
		
		QAngle angVel = GetLocalAngularVelocity();
		angVel += m_vecAngAcceleration * 0.1;

		//angVel.y = clamp( angVel.y, -60, 60 );
		//angVel.y = clamp( angVel.y, -120, 120 );
		angVel.y = clamp( angVel.y, -120, 120 );

		SetLocalAngularVelocity( angVel );

		m_flForce = m_flForce * 0.8 + (accel.z + fabs( accel.x ) * 0.1 + fabs( accel.y ) * 0.1) * 0.1 * 0.2;

		Vector vecImpulse = m_flForce * up;
		
		if ( m_lifeState == LIFE_DYING )
		{
			vecImpulse.z = -38.4;  // 64ft/sec
		}
		else
		{
			vecImpulse.z -= 38.4;  // 32ft/sec
		}
		
		// Find our acceleration direction
		Vector	vecAccelDir = vecImpulse;
		VectorNormalize( vecAccelDir );

		// Find our current velocity
		Vector	vecVelDir = GetAbsVelocity();
		VectorNormalize( vecVelDir );

		// Level out our plane of movement
		vecAccelDir.z	= 0.0f;
		vecVelDir.z		= 0.0f;
		forward.z		= 0.0f;
		right.z			= 0.0f;

		// Find out how "fast" we're moving in relation to facing and acceleration
		float speed = m_flForce * DotProduct( vecVelDir, vecAccelDir );// * DotProduct( forward, vecVelDir );

		// Use the correct pose params
		char *sBodyAccel;
		char *sBodySway;
		if ( m_hContainer || m_iLandState == LANDING_SWOOPING )
		{
			sBodyAccel = "cargo_body_accel";
			sBodySway = "cargo_body_sway";
			SetPoseParameter( "body_accel", 0 );
			SetPoseParameter( "body_sway", 0 );
		}
		else
		{
			sBodyAccel = "body_accel";
			sBodySway = "body_sway";
			SetPoseParameter( "cargo_body_accel", 0 );
			SetPoseParameter( "cargo_body_sway", 0 );
		}

		// Apply the acceleration blend to the fins
		float finAccelBlend = SimpleSplineRemapVal( speed, -60, 60, -1, 1 );
		float curFinAccel = GetPoseParameter( sBodyAccel );
		
		curFinAccel = UTIL_Approach( finAccelBlend, curFinAccel, 0.5f );

		SetPoseParameter( sBodyAccel, curFinAccel );

		speed = m_flForce * DotProduct( vecVelDir, right );

		// Apply the spin sway to the fins
		float finSwayBlend = SimpleSplineRemapVal( speed, -60, 60, -1, 1 );
		float curFinSway = GetPoseParameter( sBodySway );

		curFinSway = UTIL_Approach( finSwayBlend, curFinSway, 0.5f );
		SetPoseParameter( sBodySway, curFinSway );

		// Add in our velocity pulse for this frame
		ApplyAbsVelocityImpulse( vecImpulse );

		//Msg("FinAccel: %f, Finsway: %f\n", curFinAccel, curFinSway );
	}
	else
	{
		SetPoseParameter( "body_accel", 0 );
		SetPoseParameter( "body_sway", 0 );
		SetPoseParameter( "cargo_body_accel", 0 );
		SetPoseParameter( "cargo_body_sway", 0 );
	}
}
//-----------------------------------------------------------------------------
// Frame-based updating 
//-----------------------------------------------------------------------------
bool CFourWheelVehiclePhysics::Think()
{
	if (!m_pVehicle)
		return false;

	// Update sound + physics state
	const vehicle_operatingparams_t &carState = m_pVehicle->GetOperatingParams();
	const vehicleparams_t &vehicleData = m_pVehicle->GetVehicleParams();

	// Set save data.
	float carSpeed = fabs( INS2MPH( carState.speed ) );
	m_nLastSpeed = m_nSpeed;
	m_nSpeed = ( int )carSpeed;
	m_nRPM = ( int )carState.engineRPM;
	m_nHasBoost = static_cast<int>(vehicleData.engine.boostDelay);	// if we have any boost delay, vehicle has boost ability

	m_pVehicle->Update( gpGlobals->frametime, m_controls);

	// boost sounds
	if( IsBoosting() && !m_bLastBoost )
	{
		m_bLastBoost = true;
		m_turboTimer = gpGlobals->curtime + 2.75f;		// min duration for turbo sound
	}
	else if( !IsBoosting() && m_bLastBoost )
	{
		if ( gpGlobals->curtime >= m_turboTimer )
		{
			m_bLastBoost = false;
		}
	}

	m_fLastBoost = carState.boostDelay;
	m_nBoostTimeLeft =  carState.boostTimeLeft;

	// UNDONE: Use skid info from the physics system?
	// Only check wheels if we're not being carried by a dropship
	if ( m_pOuter->VPhysicsGetObject() && !m_pOuter->VPhysicsGetObject()->GetShadowController() )
	{
		// check for skidding, if we're skidding, need to play the sound
		if ( carState.skidding && m_bIsOn )
		{
			if ( !m_bLastSkid )	// only play sound once
			{
				m_bLastSkid = true;
				CPASAttenuationFilter filter( m_pOuter );
				m_pOuterServerVehicle->PlaySound( VS_SKID_FRICTION_NORMAL );
			}

			// kick up dust from the wheels while skidding
			for ( int i = 0; i < 4; i++ )
			{
				PlaceWheelDust( i, true );
			}
		}
		else if ( m_bLastSkid == true )
		{
			m_bLastSkid = false;
			m_pOuterServerVehicle->StopSound( VS_SKID_FRICTION_NORMAL );
		}

		// toss dust up from the wheels of the vehicle if we're moving fast enough
		if ( m_nSpeed >= DUST_SPEED && vehicleData.steering.dustCloud && m_bIsOn )
		{
			for ( int i = 0; i < 4; i++ )
			{
				PlaceWheelDust( i );
			}
		}
	}

	// Make the steering wheel match the input, with a little dampening.
	#define STEER_DAMPING	0.8
	float flSteer = GetPoseParameter( m_poseParameters[VEH_STEER] );
	SetPoseParameter( m_poseParameters[VEH_STEER], (STEER_DAMPING * flSteer) + ((1 - STEER_DAMPING) * m_controls.steering) );

	m_actionValue += m_actionSpeed * m_actionScale * gpGlobals->frametime;
	SetPoseParameter( m_poseParameters[VEH_ACTION], m_actionValue );

	// setup speedometer
	if ( m_bIsOn == true )
	{
		float displaySpeed = m_nSpeed / MAX_GUAGE_SPEED;
		SetPoseParameter( m_poseParameters[VEH_SPEEDO], displaySpeed );
	}

	return m_bIsOn;
}