Beispiel #1
0
static void hfa_set_fanspeed(struct cgpu_info *hashfast, struct hashfast_info *info,
			     int fandiff)
{
	const uint8_t opcode = HF_USB_CMD(OP_FAN);
	uint8_t packet[256];
	struct hf_header *p = (struct hf_header *)packet;
	const int tx_length = sizeof(struct hf_header);
	uint16_t hdata;
	int fandata;

	info->fanspeed += fandiff;
	if (info->fanspeed > opt_hfa_fan_max)
		info->fanspeed = opt_hfa_fan_max;
	else if (info->fanspeed < opt_hfa_fan_min)
		info->fanspeed = opt_hfa_fan_min;
	fandata = info->fanspeed * 255 / 100; // Fanspeed is in percent, hdata 0-255
	hdata = fandata; // Use an int first to avoid overflowing uint16_t
	p->preamble = HF_PREAMBLE;
	p->operation_code = hfa_cmds[opcode].cmd;
	p->chip_address = 0xff;
	p->core_address = 1;
	p->hdata = htole16(hdata);
	p->data_length = 0;
	p->crc8 = hfa_crc8(packet);

	__hfa_send_frame(hashfast, opcode, tx_length, packet);
}
Beispiel #2
0
static void *hfa_read(void *arg)
{
	struct thr_info *thr = (struct thr_info *)arg;
	struct cgpu_info *hashfast = thr->cgpu;
	struct hashfast_info *info = hashfast->device_data;
	char threadname[16];

	snprintf(threadname, sizeof(threadname), "%d/%sRead", hashfast->device_id, hashfast->drv->name);
	RenameThread(threadname);

	while (likely(!hashfast->shutdown)) {
		char buf[512];
		struct hf_header *h = (struct hf_header *)buf;
		bool ret = hfa_get_packet(hashfast, h);

		if (unlikely(hashfast->usbinfo.nodev))
			break;

		if (unlikely(!ret))
			continue;

		switch (h->operation_code) {
			case OP_GWQ_STATUS:
				hfa_parse_gwq_status(hashfast, info, h);
				break;
			case OP_DIE_STATUS:
				hfa_update_die_status(hashfast, info, h);
				break;
			case OP_NONCE:
				hfa_parse_nonce(thr, hashfast, info, h);
				break;
			case OP_STATISTICS:
				hfa_update_die_statistics(info, h);
				break;
			case OP_USB_STATS1:
				hfa_update_stats1(hashfast, info, h);
				break;
			case OP_USB_NOTICE:
				hfa_parse_notice(hashfast, h);
				break;
			case OP_PING:
				/* Do nothing */
				break;
			default:
				applog(LOG_WARNING, "%s %d: Unhandled operation code %d",
				       hashfast->drv->name, hashfast->device_id, h->operation_code);
				break;
		}
		/* Make sure we send something to the device at least every 5
		 * seconds so it knows the driver is still alive for when we
		 * run out of work. The read thread never blocks so is the
		 * best place to do this. */
		if (time(NULL) - info->last_send > 5)
			hfa_send_frame(hashfast, HF_USB_CMD(OP_PING), 0, NULL, 0);
	}
	applog(LOG_DEBUG, "%s %d: Shutting down read thread", hashfast->drv->name, hashfast->device_id);

	return NULL;
}
Beispiel #3
0
static void hfa_dfu_boot(struct cgpu_info *hashfast)
{
    bool ret;

    ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_DFU), 0, NULL, 0);
    applog(LOG_WARNING, "HFA %d %03d:%03d DFU Boot %s", hashfast->device_id, hashfast->usbinfo.bus_number,
           hashfast->usbinfo.device_address, ret ? "Succeeded" : "Failed");
}
Beispiel #4
0
static void hfa_decrease_clock(struct cgpu_info *hashfast, struct hashfast_info *info,
			       int die)
{
	struct hf_die_data *hdd = &info->die_data[die];
	uint32_t diebit = 0x00000001ul << die;
	uint16_t hdata, decrease = 10;

	if (hdd->hash_clock - decrease < HFA_CLOCK_MIN)
		decrease = hdd->hash_clock - HFA_CLOCK_MIN;
	hdd->hash_clock -= decrease;
	applog(LOG_INFO, "%s %d: Die temp above range %.1f, decreasing die %d clock to %d",
	       hashfast->drv->name, hashfast->device_id, info->die_data[die].temp, die, hdd->hash_clock);
	hdata = (WR_MHZ_DECREASE << 12) | decrease;
	hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), hdata, (uint8_t *)&diebit, 4);
}
Beispiel #5
0
static void hfa_increase_clock(struct cgpu_info *hashfast, struct hashfast_info *info,
			       int die)
{
	struct hf_die_data *hdd = &info->die_data[die];
	uint32_t diebit = 0x00000001ul << die;
	uint16_t hdata, increase = 10;

	if (hdd->hash_clock + increase > info->hash_clock_rate)
		increase = info->hash_clock_rate - hdd->hash_clock;
	hdd->hash_clock += increase;
	applog(LOG_INFO, "%s %d: Die temp below range %.1f, increasing die %d clock to %d",
	       hashfast->drv->name, hashfast->device_id, info->die_data[die].temp, die, hdd->hash_clock);
	hdata = (WR_MHZ_INCREASE << 12) | increase;
	hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), hdata, (uint8_t *)&diebit, 4);
}
Beispiel #6
0
static int64_t hfa_scanwork(struct thr_info *thr)
{
    struct cgpu_info *hashfast = thr->cgpu;
    struct hashfast_info *info = hashfast->device_data;
    int64_t hashes;
    int jobs, ret;

    if (unlikely(hashfast->usbinfo.nodev)) {
        applog(LOG_WARNING, "HFA %d: device disappeared, disabling",
               hashfast->device_id);
        return -1;
    }

    if (unlikely(thr->work_restart)) {
restart:
        thr->work_restart = false;
        ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), 0, (uint8_t *)NULL, 0);
        if (unlikely(!ret)) {
            ret = hfa_reset(hashfast, info);
            if (unlikely(!ret)) {
                applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling",
                       hashfast->device_id);
                return -1;
            }
        }
    }

    jobs = hfa_jobs(info);

    if (!jobs) {
        ret = restart_wait(thr, 100);
        if (unlikely(!ret))
            goto restart;
        jobs = hfa_jobs(info);
    }

    if (jobs) {
        applog(LOG_DEBUG, "HFA %d: Sending %d new jobs", hashfast->device_id,
               jobs);
    }

    while (jobs-- > 0) {
        struct hf_hash_usb op_hash_data;
        struct work *work;
        uint64_t intdiff;
        int i, sequence;
        uint32_t *p;

        /* This is a blocking function if there's no work */
        work = get_work(thr, thr->id);

        /* Assemble the data frame and send the OP_HASH packet */
        memcpy(op_hash_data.midstate, work->midstate, sizeof(op_hash_data.midstate));
        memcpy(op_hash_data.merkle_residual, work->data + 64, 4);
        p = (uint32_t *)(work->data + 64 + 4);
        op_hash_data.timestamp = *p++;
        op_hash_data.bits = *p++;
        op_hash_data.starting_nonce = 0;
        op_hash_data.nonce_loops = 0;
        op_hash_data.ntime_loops = 0;

        /* Set the number of leading zeroes to look for based on diff.
         * Diff 1 = 32, Diff 2 = 33, Diff 4 = 34 etc. */
        intdiff = (uint64_t)work->device_diff;
        for (i = 31; intdiff; i++, intdiff >>= 1);
        op_hash_data.search_difficulty = i;
        op_hash_data.group = 0;
        if ((sequence = info->hash_sequence_head + 1) >= info->num_sequence)
            sequence = 0;
        ret = hfa_send_frame(hashfast, OP_HASH, sequence, (uint8_t *)&op_hash_data, sizeof(op_hash_data));
        if (unlikely(!ret)) {
            ret = hfa_reset(hashfast, info);
            if (unlikely(!ret)) {
                applog(LOG_ERR, "HFA %d: Failed to reset after write failure, disabling",
                       hashfast->device_id);
                return -1;
            }
        }

        mutex_lock(&info->lock);
        info->hash_sequence_head = sequence;
        info->works[info->hash_sequence_head] = work;
        mutex_unlock(&info->lock);

        applog(LOG_DEBUG, "HFA %d: OP_HASH sequence %d search_difficulty %d work_difficulty %g",
               hashfast->device_id, info->hash_sequence_head, op_hash_data.search_difficulty, work->work_difficulty);
    }

    mutex_lock(&info->lock);
    hashes = info->hash_count;
    info->hash_count = 0;
    mutex_unlock(&info->lock);

    return hashes;
}
Beispiel #7
0
static void hfa_send_shutdown(struct cgpu_info *hashfast)
{
    hfa_send_frame(hashfast, HF_USB_CMD(OP_USB_SHUTDOWN), 0, NULL, 0);
}
Beispiel #8
0
static bool hfa_reset(struct cgpu_info *hashfast, struct hashfast_info *info)
{
    struct hf_usb_init_header usb_init[2], *hu = usb_init;
    struct hf_usb_init_base *db;
    struct hf_usb_init_options *ho;
    int retries = 0, i;
    char buf[1024];
    struct hf_header *h = (struct hf_header *)buf;
    uint8_t hcrc;
    bool ret;

    /* Hash clock rate in Mhz */
    info->hash_clock_rate = opt_hfa_hash_clock ? opt_hfa_hash_clock : 550;
    info->group_ntime_roll = opt_hfa_ntime_roll ? opt_hfa_ntime_roll : 1;
    info->core_ntime_roll = 1;

    // Assemble the USB_INIT request
    memset(hu, 0, sizeof(*hu));
    hu->preamble = HF_PREAMBLE;
    hu->operation_code = OP_USB_INIT;
    hu->protocol = PROTOCOL_GLOBAL_WORK_QUEUE;	// Protocol to use
    // Force PLL bypass
    hu->pll_bypass = opt_hfa_pll_bypass;
    hu->hash_clock = info->hash_clock_rate;		// Hash clock rate in Mhz
    if (info->group_ntime_roll > 1 && info->core_ntime_roll) {
        ho = (struct hf_usb_init_options *)(hu + 1);
        memset(ho, 0, sizeof(*ho));
        ho->group_ntime_roll = info->group_ntime_roll;
        ho->core_ntime_roll = info->core_ntime_roll;
        hu->data_length = sizeof(*ho) / 4;
    }
    hu->crc8 = hfa_crc8((uint8_t *)hu);
    applog(LOG_INFO, "HFA%d: Sending OP_USB_INIT with GWQ protocol specified",
           hashfast->device_id);

    if (!hfa_send_packet(hashfast, (struct hf_header *)hu, HF_USB_CMD(OP_USB_INIT)))
        return false;

    // Check for the correct response.
    // We extend the normal timeout - a complete device initialization, including
    // bringing power supplies up from standby, etc., can take over a second.
tryagain:
    for (i = 0; i < 30; i++) {
        ret = hfa_get_header(hashfast, h, &hcrc);
        if (ret)
            break;
    }
    if (!ret) {
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed!", hashfast->device_id);
        return false;
    }
    if (h->crc8 != hcrc) {
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! CRC mismatch", hashfast->device_id);
        return false;
    }
    if (h->operation_code != OP_USB_INIT) {
        // This can happen if valid packet(s) were in transit *before* the OP_USB_INIT arrived
        // at the device, so we just toss the packets and keep looking for the response.
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT: Tossing packet, valid but unexpected type %d",
               hashfast->device_id, h->operation_code);
        hfa_get_data(hashfast, buf, h->data_length);
        if (retries++ < 3)
            goto tryagain;
        return false;
    }

    applog(LOG_DEBUG, "HFA %d: Good reply to OP_USB_INIT", hashfast->device_id);
    applog(LOG_DEBUG, "HFA %d: OP_USB_INIT: %d die in chain, %d cores, device_type %d, refclk %d Mhz",
           hashfast->device_id, h->chip_address, h->core_address, h->hdata & 0xff, (h->hdata >> 8) & 0xff);

    // Save device configuration
    info->asic_count = h->chip_address;
    info->core_count = h->core_address;
    info->device_type = (uint8_t)h->hdata;
    info->ref_frequency = (uint8_t)(h->hdata >> 8);
    info->hash_sequence_head = 0;
    info->hash_sequence_tail = 0;
    info->device_sequence_tail = 0;

    // Size in bytes of the core bitmap in bytes
    info->core_bitmap_size = (((info->asic_count * info->core_count) + 31) / 32) * 4;

    // Get the usb_init_base structure
    if (!hfa_get_data(hashfast, (char *)&info->usb_init_base, U32SIZE(info->usb_init_base))) {
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get usb_init_base data",
               hashfast->device_id);
        return false;
    }
    db = &info->usb_init_base;
    applog(LOG_INFO, "HFA %d:      firmware_rev:    %d.%d", hashfast->device_id,
           (db->firmware_rev >> 8) & 0xff, db->firmware_rev & 0xff);
    applog(LOG_INFO, "HFA %d:      hardware_rev:    %d.%d", hashfast->device_id,
           (db->hardware_rev >> 8) & 0xff, db->hardware_rev & 0xff);
    applog(LOG_INFO, "HFA %d:      serial number:   %d", hashfast->device_id,
           db->serial_number);
    applog(LOG_INFO, "HFA %d:      hash clockrate:  %d Mhz", hashfast->device_id,
           db->hash_clockrate);
    applog(LOG_INFO, "HFA %d:      inflight_target: %d", hashfast->device_id,
           db->inflight_target);
    applog(LOG_INFO, "HFA %d:      sequence_modulus: %d", hashfast->device_id,
           db->sequence_modulus);
    info->num_sequence = db->sequence_modulus;

    // Now a copy of the config data used
    if (!hfa_get_data(hashfast, (char *)&info->config_data, U32SIZE(info->config_data))) {
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get config_data",
               hashfast->device_id);
        return false;
    }

    // Now the core bitmap
    info->core_bitmap = malloc(info->core_bitmap_size);
    if (!info->core_bitmap)
        quit(1, "Failed to malloc info core bitmap in hfa_reset");
    if (!hfa_get_data(hashfast, (char *)info->core_bitmap, info->core_bitmap_size / 4)) {
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Failure to get core_bitmap", hashfast->device_id);
        return false;
    }

    // See if the initialization suceeded
    if (db->operation_status) {
        applog(LOG_WARNING, "HFA %d: OP_USB_INIT failed! Operation status %d (%s)",
               hashfast->device_id, db->operation_status,
               (db->operation_status < sizeof(hf_usb_init_errors)/sizeof(hf_usb_init_errors[0])) ?
               hf_usb_init_errors[db->operation_status] : "Unknown error code");
        return false;
    }

    return true;
}
Beispiel #9
0
static void hfa_send_shutdown(struct cgpu_info *hashfast)
{
	if (hashfast->usbinfo.nodev)
		return;
	hfa_send_frame(hashfast, HF_USB_CMD(OP_USB_SHUTDOWN), 0, NULL, 0);
}
Beispiel #10
0
static int64_t hfa_scanwork(struct thr_info *thr)
{
	struct cgpu_info *hashfast = thr->cgpu;
	struct hashfast_info *info = hashfast->device_data;
	int jobs, ret, cycles = 0;
	int64_t hashes;

	if (unlikely(hashfast->usbinfo.nodev)) {
		applog(LOG_WARNING, "%s %d: device disappeared, disabling",
		       hashfast->drv->name, hashfast->device_id);
		return -1;
	}

	if (unlikely(last_getwork - hashfast->last_device_valid_work > 60)) {
		applog(LOG_WARNING, "%s %d: No valid hashes for over 1 minute, attempting to reset",
		       hashfast->drv->name, hashfast->device_id);
		if (info->hash_clock_rate > HFA_CLOCK_DEFAULT) {
			info->hash_clock_rate -= 5;
			if (info->hash_clock_rate < opt_hfa_hash_clock)
				opt_hfa_hash_clock = info->hash_clock_rate;
			applog(LOG_WARNING, "%s %d: Decreasing clock speed to %d with reset",
			       hashfast->drv->name, hashfast->device_id, info->hash_clock_rate);
		}
		ret = hfa_reset(hashfast, info);
		if (!ret) {
			applog(LOG_ERR, "%s %d: Failed to reset after hash failure, disabling",
			       hashfast->drv->name, hashfast->device_id);
			return -1;
		}
		applog(LOG_NOTICE, "%s %d: Reset successful", hashfast->drv->name,
		       hashfast->device_id);
	}

	if (unlikely(thr->work_restart)) {
restart:
		info->last_restart = time(NULL);
		thr->work_restart = false;
		ret = hfa_send_frame(hashfast, HF_USB_CMD(OP_WORK_RESTART), 0, (uint8_t *)NULL, 0);
		if (unlikely(!ret)) {
			ret = hfa_reset(hashfast, info);
			if (unlikely(!ret)) {
				applog(LOG_ERR, "%s %d: Failed to reset after write failure, disabling",
				       hashfast->drv->name, hashfast->device_id);
				return -1;
			}
		}
		/* Give a full allotment of jobs after a restart, not waiting
		 * for the status update telling us how much to give. */
		jobs = info->usb_init_base.inflight_target;
	} else {
		/* Only adjust die clocks if there's no restart since two
		 * restarts back to back get ignored. */
		hfa_temp_clock(hashfast, info);
		jobs = hfa_jobs(hashfast, info);
	}

	/* Wait on restart_wait for up to 0.5 seconds or submit jobs as soon as
	 * they're required. */
	while (!jobs && ++cycles < 5) {
		ret = restart_wait(thr, 100);
		if (unlikely(!ret))
			goto restart;
		jobs = hfa_jobs(hashfast, info);
	}

	if (jobs) {
		applog(LOG_DEBUG, "%s %d: Sending %d new jobs", hashfast->drv->name, hashfast->device_id,
		       jobs);
	}

	while (jobs-- > 0) {
		struct hf_hash_usb op_hash_data;
		struct work *work;
		uint64_t intdiff;
		int i, sequence;
		uint32_t *p;

		/* This is a blocking function if there's no work */
		work = get_work(thr, thr->id);

		/* Assemble the data frame and send the OP_HASH packet */
		memcpy(op_hash_data.midstate, work->midstate, sizeof(op_hash_data.midstate));
		memcpy(op_hash_data.merkle_residual, work->data + 64, 4);
		p = (uint32_t *)(work->data + 64 + 4);
		op_hash_data.timestamp = *p++;
		op_hash_data.bits = *p++;
		op_hash_data.starting_nonce = 0;
		op_hash_data.nonce_loops = 0;
		op_hash_data.ntime_loops = 0;

		/* Set the number of leading zeroes to look for based on diff.
		 * Diff 1 = 32, Diff 2 = 33, Diff 4 = 34 etc. */
		intdiff = (uint64_t)work->device_diff;
		for (i = 31; intdiff; i++, intdiff >>= 1);
		op_hash_data.search_difficulty = i;
		op_hash_data.group = 0;
		if ((sequence = info->hash_sequence_head + 1) >= info->num_sequence)
			sequence = 0;
		ret = hfa_send_frame(hashfast, OP_HASH, sequence, (uint8_t *)&op_hash_data, sizeof(op_hash_data));
		if (unlikely(!ret)) {
			ret = hfa_reset(hashfast, info);
			if (unlikely(!ret)) {
				applog(LOG_ERR, "%s %d: Failed to reset after write failure, disabling",
				       hashfast->drv->name, hashfast->device_id);
				return -1;
			}
		}

		mutex_lock(&info->lock);
		info->hash_sequence_head = sequence;
		info->works[info->hash_sequence_head] = work;
		mutex_unlock(&info->lock);

		applog(LOG_DEBUG, "%s %d: OP_HASH sequence %d search_difficulty %d work_difficulty %g",
		       hashfast->drv->name, hashfast->device_id, info->hash_sequence_head,
		       op_hash_data.search_difficulty, work->work_difficulty);
	}

	/* Only count 2/3 of the hashes to smooth out the hashrate for cycles
	 * that have no hashes added. */
	mutex_lock(&info->lock);
	hashes = info->hash_count / 3 * 2;
	info->calc_hashes += hashes;
	info->hash_count -= hashes;
	mutex_unlock(&info->lock);

	return hashes;
}