Beispiel #1
0
/* Initializes the BMP085 configuration to
 * the I2C1 module. Automatically enables interrupts,
 * I2C1 module, and the GPIO A Peripheral, and the
 * callback application for the BMP085 created by TI.
 *
 * Input:
 * abI2cModule
 * Returns:
 * none
 *
 */
void bmp085Init(uint32_t i2cModule){
	if(!bmpI2CInited){
		i2cInit(AB_I2C_MODULE_1);
		I2CMInit(&bmpI2cModuleInstance, i2cGetBase(i2cModule), i2cGetInterruptID(i2cModule), 0xff, 0xff,
	         ROM_SysCtlClockGet());
		bmpI2CInited = 1;
	}
	BMP180Init(&bmpAppInstance[bmpStructCounter], &bmpI2cModuleInstance, BMP085_I2C_ADDRESS,
			bmp085AppCallback, &bmpAppInstance[bmpStructCounter]);
	bmpStructCounter++;
	while(bmp085_dataFlag == 0);
	bmp085_dataFlag = 0;
}
Beispiel #2
0
void initsensorhub(void)
{
	//
	// Enable port B used for motion interrupt.
	//
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

	//
	// Initialize the UART.
	//
	ConfigureUART();

	//
	// Print the welcome message to the terminal.
	//
	UARTprintf("\033[2JMPU9150 Raw Example\n");

	//
	// Set the color to a purple approximation.
	//
	g_pui32Colors[RED] = 0x8000;
	g_pui32Colors[BLUE] = 0x8000;
	g_pui32Colors[GREEN] = 0x0000;

	//
	// Initialize RGB driver.
	//
	RGBInit(0);
	RGBColorSet(g_pui32Colors);
	RGBIntensitySet(0.5f);
	RGBEnable();

	//
	// The I2C3 peripheral must be enabled before use.
	//
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

	//
	// Configure the pin muxing for I2C3 functions on port D0 and D1.
	//
	ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
	ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

	//
	// Select the I2C function for these pins.  This function will also
	// configure the GPIO pins pins for I2C operation, setting them to
	// open-drain operation with weak pull-ups.  Consult the data sheet
	// to see which functions are allocated per pin.
	//
	GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
	ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

	//
	// Configure and Enable the GPIO interrupt. Used for INT signal from the
	// MPU9150
	//
	ROM_GPIOPinTypeGPIOInput(GPIO_PORTB_BASE, GPIO_PIN_2);
	GPIOIntEnable(GPIO_PORTB_BASE, GPIO_PIN_2);
	ROM_GPIOIntTypeSet(GPIO_PORTB_BASE, GPIO_PIN_2, GPIO_FALLING_EDGE);
	ROM_IntEnable(INT_GPIOB);

	//
	// Keep only some parts of the systems running while in sleep mode.
	// GPIOB is for the MPU9150 interrupt pin.
	// UART0 is the virtual serial port
	// TIMER0, TIMER1 and WTIMER5 are used by the RGB driver
	// I2C3 is the I2C interface to the ISL29023
	//
	ROM_SysCtlPeripheralClockGating(true);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOB);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER0);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER1);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C3);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_WTIMER5);

	//
	// Enable interrupts to the processor.
	//
	ROM_IntMasterEnable();

	//
	// Initialize I2C3 peripheral.
	//
	I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
			ROM_SysCtlClockGet());

	//
	// Initialize the MPU9150 Driver.
	//
	MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
			MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Write application specifice sensor configuration such as filter settings
	// and sensor range settings.
	//
	g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
	g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
	g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
			MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
			MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Configure the data ready interrupt pin output of the MPU9150.
	//
	g_sMPU9150Inst.pui8Data[0] = MPU9150_INT_PIN_CFG_INT_LEVEL |
			MPU9150_INT_PIN_CFG_INT_RD_CLEAR |
			MPU9150_INT_PIN_CFG_LATCH_INT_EN;
	g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
			g_sMPU9150Inst.pui8Data, 2, MPU9150AppCallback,
			&g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Initialize the DCM system. 50 hz sample rate.
	// accel weight = .2, gyro weight = .8, mag weight = .2
	//
	CompDCMInit(&g_sCompDCMInst, 1.0f / 50.0f, 0.2f, 0.6f, 0.2f);

	UARTprintf("\033[2J\033[H");
	UARTprintf("MPU9150 9-Axis Simple Data Application Example\n\n");
	UARTprintf("\033[20GX\033[31G|\033[43GY\033[54G|\033[66GZ\n\n");
	 UARTprintf("Accel\033[8G|\033[31G|\033[54G|\n\n");
	  UARTprintf("Gyro\033[8G|\033[31G|\033[54G|\n\n");
	 UARTprintf("Mag\033[8G|\033[31G|\033[54G|\n\n");
	UARTprintf("\n\033[20GRoll\033[31G|\033[43GPitch\033[54G|\033[66GYaw\n\n");
	UARTprintf("Eulers\033[8G|\033[31G|\033[54G|\n\n");

	  UARTprintf("\n\033[17GQ1\033[26G|\033[35GQ2\033[44G|\033[53GQ3\033[62G|"
	            "\033[71GQ4\n\n");
	  UARTprintf("Q\033[8G|\033[26G|\033[44G|\033[62G|\n\n");

	//
	// Enable blinking indicates config finished successfully
	//
	RGBBlinkRateSet(1.0f);
	//
	// Initialize convenience pointers that clean up and clarify the code
	// meaning. We want all the data in a single contiguous array so that
	// we can make our pretty printing easier later.
	//
	pfAccel = pfData;
	pfGyro = pfData + 3;
	pfMag = pfData + 6;
	pfEulers = pfData + 9;
	pfQuaternion = pfData + 12;

}
Beispiel #3
0
int main(void) {
	
	int  delay;
	float fTemperature, fPressure, fAltitude, fK_Altitude, fAltitude_sum,fK_Altitude_sum;
	int count,i;
//	static float f_meas[VAR_COUNT], fAlt_Mean, fAlt_Var;
	unsigned short sw1_count, sw2_count;
	unsigned char sw1_was_cleared = 0, sw2_was_cleared = 0;


	// Set the clocking to run directly from the external crystal/oscillator.
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
			WRFL_XTAL);


	//init ports and peripherals
	PlatformInit();
	Nokia5110_Init();
	Nokia5110_Clear();


    Nokia5110_DrawFullImage(gears_logo);
    for(delay=0; delay<1000000; delay=delay+1);

    Nokia5110_Clear();
    Nokia5110_SetCursor(3, 1);
    Nokia5110_OutString("WRFL");
    Nokia5110_SetCursor(1, 2);
    Nokia5110_OutString("Prototype");
    Nokia5110_SetCursor(2, 4);
    Nokia5110_OutString("VER 0.1");
    Nokia5110_SetCursor(0, 5);
    Nokia5110_OutString("NightMecanic");
    for(delay=0; delay<1000000; delay=delay+1);
    Nokia5110_Clear();
    //
   // Enable interrupts to the processor.
   //
   MAP_IntMasterEnable();

   //
   // Initialize I2C1 peripheral.
   //
   I2CMInit(&g_sI2CInst, BMP180_I2C_BASE, BMP180_I2C_INT, 0xff, 0xff,
			MAP_SysCtlClockGet());

   //
   // Initialize the BMP180
   //
   BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
			  BMP180AppCallback, &g_sBMP180Inst);


   //
   // Wait for initialization callback to indicate reset request is complete.
   //
   while(g_vui8DataFlag == 0)
   {
	   //
	   // Wait for I2C Transactions to complete.
	   //
   }

   //
   // Reset the data ready flag
   //
   g_vui8DataFlag = 0;

   //set oversampling to 8x
   g_sBMP180Inst.ui8Mode = 0xC0;

   //Initialize the Kalman filter
   Kalman_Init(&Alt_KState, 0.0f, 1.0f, ALT_KALMAN_R, ALT_KALMAN_Q);

   //
   // Enable the system ticks at 10 hz.
   //
   MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / (40 * 3));
   MAP_SysTickIntEnable();
   MAP_SysTickEnable();


   Nokia5110_SetCursor(0, 0);
   Nokia5110_OutString("SW1:");

   Nokia5110_SetCursor(0, 2);
   Nokia5110_OutString("SW2:");

  //config done
   count = 0;
   //
   // Begin the data collection and printing.  Loop Forever.
   //
   while(1)
   {

	   // SW1
	   if (sw_state & SW1){
		   if (sw1_was_cleared){
			   sw1_was_cleared = 0;
			   sw1_count++;
		   	   Nokia5110_SetCursor(5, 0);
		   	   Nokia5110_OutUDec(sw1_count);
		   }
	   }else
		   sw1_was_cleared = 1;

	   //SW2
	   if (sw_state & SW2){
	   		   if (sw2_was_cleared){
	   			   sw2_was_cleared = 0;
	   			   sw2_count++;
	   		   	   Nokia5110_SetCursor(5, 2);
	   		   	   Nokia5110_OutUDec(sw2_count);
	   		   }
	   	   }else
	   		   sw2_was_cleared = 1;

	   // handle BMP180 data (display average every 50 samples)
	   if (g_vui8DataFlag ){
		   //
		   // Reset the data ready flag.
		   //
		   g_vui8DataFlag = 0;

		   //
		   // Get a local copy of the latest temperature data in float format.
		   //
		   BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

		   //
		   // Print temperature with three digits of decimal precision.
		   //

		   //Nokia5110_SetCursor(0, 0);
		   //Nokia5110_OutString("Temp:");
		   //Nokia5110_OutFloatp3(fTemperature);

		   //
		   // Get a local copy of the latest air pressure data in float format.
		   //
		   BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

	   	   //
	   	   // Print Pressure with three digits of decimal precision.
	   	   //

	   	   //Nokia5110_SetCursor(0, 1);
	   	   // Nokia5110_OutString("Pres:");
	   	   //Nokia5110_SetCursor(0, 2);

	   	   //display in hPa
	   	   //Nokia5110_OutFloatp3((fPressure / 100.0f));

	   	   //
	   	   // Calculate the altitude.
	   	   //
	   	   //fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
	   	   //									   1.0f / 5.255f));
	   	   //corrected:
	   	   fAltitude = 44330.0f * (1.0f - powf(fPressure / LOC_ALT_P0,
	   										   1.0f / 5.255f));
	   	   // Kalman filtered altitude

	  	   Kalman_Update (&Alt_KState, fAltitude);
	  	   fK_Altitude = Alt_KState.X;


	  	   fAltitude_sum += fAltitude;
	  	   fK_Altitude_sum += fK_Altitude;
	  	   count++;

	  	   if (count>=50){
	  		 Nokia5110_SetCursor(0, 3);
	  		 Nokia5110_OutString("Alt:");
	  		 Nokia5110_OutFloatp3(fAltitude_sum/50.0);

	  		 Nokia5110_SetCursor(0, 5);
	  		 Nokia5110_OutString("KAlt:");
	  		 Nokia5110_OutFloatp3(fK_Altitude_sum/50.0);

	  		fAltitude_sum = 0;
	  		fK_Altitude_sum = 0;
	  		count = 0;
	  	   }


/*
	  	 //calculate variance
	  	 f_meas[count]=fK_Altitude;
	  	 count++;

	  	 if (count>=VAR_COUNT){
	  		 fAlt_Mean = 0.0f;
	  		 fAlt_Var = 0.0f;
	  		 // calculate mean
	  		 for(i=0; i<VAR_COUNT; i++){
	  			 fAlt_Mean = fAlt_Mean +f_meas[i];
	  		 }
	  		 fAlt_Mean = fAlt_Mean/((float) VAR_COUNT);

	  		 // Calculate Var
	  		 for(i=0; i<VAR_COUNT; i++){
	  			 fAlt_Var = fAlt_Var + powf((f_meas[i] - fAlt_Mean),2.0f);
	  		 }
	  		 fAlt_Var = fAlt_Var/((float) VAR_COUNT);



	  		 //
	  		 // Print altitude with three digits of decimal precision.
	  		 //

	  		 Nokia5110_SetCursor(0, 4);
	  		 Nokia5110_OutString("Var:");

	  		 Nokia5110_OutFloatp3(fAlt_Var);

	  		 count = 0;

	  	 }
*/
	   //
	   // Delay to keep printing speed reasonable. About 100msec.
	   //
	   //MAP_SysCtlDelay(MAP_SysCtlClockGet() / (10 * 3));

	   }
   }//while end
}
void initI2C(void)
{
		uint8_t ui8Mask;
	
	
		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);
		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);
		SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOH);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C7);
		
		GPIOPinConfigure(GPIO_PD0_I2C7SCL);
		
    GPIOPinConfigure(GPIO_PD1_I2C7SDA);
	
		
	
		GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);
		//
    // Configure and Enable the GPIO interrupt. Used for INT signal from the
    // ISL29023
    //
	
		
		GPIOPinTypeGPIOInput(GPIO_PORTE_BASE, GPIO_PIN_5);
    GPIOIntEnable(GPIO_PORTE_BASE, GPIO_PIN_5);
    GPIOIntTypeSet(GPIO_PORTE_BASE, GPIO_PIN_5, GPIO_FALLING_EDGE);
    IntEnable(INT_GPIOE);
		
		I2CMInit(&g_sI2CInst, I2C7_BASE, INT_I2C7, 0xff, 0xff, g_SysClock);
		
		//
    // Initialize the SHT21.
    //
    SHT21Init(&g_sSHT21Inst, &g_sI2CInst, SHT21_I2C_ADDRESS,
            SHT21AppCallback, &g_sSHT21Inst);
						
		SysCtlDelay(g_SysClock / (100 * 3));
	
		//
    // Initialize the TMP006
    //
    TMP006Init(&g_sTMP006Inst, &g_sI2CInst, TMP006_I2C_ADDRESS,
               TMP006AppCallback, &g_sTMP006Inst);
		
		SysCtlDelay(g_SysClock / (100 * 3));
		
		//
    // Initialize the BMP180.
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);
					 
		SysCtlDelay(g_SysClock / (100 * 3));
		
		IntPrioritySet(INT_I2C7, 0x00);
		IntPrioritySet(INT_GPIOM, 0x00);
		IntPrioritySet(INT_TIMER0A, 0x80);
		IntPrioritySet(INT_TIMER1A, 0x40);
    IntPrioritySet(INT_GPIOE, 0x80);
    IntPrioritySet(INT_UART0, 0x80);
		
		//
    // Initialize the ISL29023 Driver.
    //
    ISL29023Init(&g_sISL29023Inst, &g_sI2CInst, ISL29023_I2C_ADDRESS,
                 ISL29023AppCallback, &g_sISL29023Inst);
								 
		SysCtlDelay(g_SysClock / (100 * 3));
		
		//
    // Configure the ISL29023 to measure ambient light continuously. Set a 8
    // sample persistence before the INT pin is asserted. Clears the INT flag.
    // Persistence setting of 8 is sufficient to ignore camera flashes.
    //
    ui8Mask = (ISL29023_CMD_I_OP_MODE_M | ISL29023_CMD_I_INT_PERSIST_M |
               ISL29023_CMD_I_INT_FLAG_M);
    ISL29023ReadModifyWrite(&g_sISL29023Inst, ISL29023_O_CMD_I, ~ui8Mask,
                            (ISL29023_CMD_I_OP_MODE_ALS_CONT |
                             ISL29023_CMD_I_INT_PERSIST_8),
                            ISL29023AppCallback, &g_sISL29023Inst);
														
		//
    // Configure the upper threshold to 80% of maximum value
    //
    g_sISL29023Inst.pui8Data[1] = 0xCC;
    g_sISL29023Inst.pui8Data[2] = 0xCC;
    ISL29023Write(&g_sISL29023Inst, ISL29023_O_INT_HT_LSB,
                  g_sISL29023Inst.pui8Data, 2, ISL29023AppCallback,
                  &g_sISL29023Inst);

    //
    // Wait for transaction to complete
    //
    SysCtlDelay(g_SysClock / (100 * 3));

    //
    // Configure the lower threshold to 20% of maximum value
    //
    g_sISL29023Inst.pui8Data[1] = 0x33;
    g_sISL29023Inst.pui8Data[2] = 0x33;
    ISL29023Write(&g_sISL29023Inst, ISL29023_O_INT_LT_LSB,
                  g_sISL29023Inst.pui8Data, 2, ISL29023AppCallback,
                  &g_sISL29023Inst);
    //
    // Wait for transaction to complete
    //
    SysCtlDelay(g_SysClock / (100 * 3));
		
		//
		// Write the command to start a humidity measurement.
		//
		SHT21Write(&g_sSHT21Inst, SHT21_CMD_MEAS_RH, g_sSHT21Inst.pui8Data, 0,
						SHT21AppCallback, &g_sSHT21Inst);
						
		//
    // Wait for transaction to complete
    //
    SysCtlDelay(g_SysClock / (100 * 3));
		
		//
    // Initialize the MPU9150 Driver.
    //
    MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
                MPU9150AppCallback, &g_sMPU9150Inst);
								
		SysCtlDelay(g_SysClock / (100 * 3));
		
		//
    // Write application specifice sensor configuration such as filter settings
    // and sensor range settings.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
    g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
                                  MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
                 MPU9150AppCallback, &g_sMPU9150Inst);
								 
		SysCtlDelay(g_SysClock / (100 * 3));
								 
		//
    // Initialize the DCM system. 50 hz sample rate.
    // accel weight = .2, gyro weight = .8, mag weight = .2
    //
    CompDCMInit(&g_sCompDCMInst, 1.0f / 50.0f, 0.2f, 0.6f, 0.2f);
		
		SysCtlDelay(g_SysClock / (100 * 3));
		
		ui32CompDCMStarted = 0;

		//
    // Print the basic outline of our data table. Done once and then kept as we
    // print only the data.
    //
		
//    CLI_Write("\033[2J\033[H");
//    CLI_Write("MPU9150 9-Axis Simple Data Application Example\n\r\n\r");
//    CLI_Write("\033[20GX\033[31G|\033[43GY\033[54G|\033[66GZ\n\r\n\r");
//    CLI_Write("Accel\033[8G|\033[31G|\033[54G|\n\r\n\r");
//    CLI_Write("Gyro\033[8G|\033[31G|\033[54G|\n\r\n\r");
//    CLI_Write("Mag\033[8G|\033[31G|\033[54G|\n\r\n\r");
//    CLI_Write("\n\033[20GRoll\033[31G|\033[43GPitch\033[54G|\033[66GYaw\n\r\n\r");
//    CLI_Write("Eulers\033[8G|\033[31G|\033[54G|\n\r\n\r");

//    CLI_Write("\n\033[17GQ1\033[26G|\033[35GQ2\033[44G|\033[53GQ3\033[62G|"
//               "\033[71GQ4\n\r\n\r");
//    CLI_Write("Q\033[8G|\033[26G|\033[44G|\033[62G|\n\r\n\r");
		
		TimerEnable(TIMER1_BASE, TIMER_A);
}
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;

    //
    // Setup the system clock to run at 40 MHz from PLL with crystal reference
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // Set the color to a white approximation.
    //
    g_pui32Colors[RED] = 0x8000;
    g_pui32Colors[BLUE] = 0x8000;
    g_pui32Colors[GREEN] = 0x8000;

    //
    // Initialize RGB driver. Use a default intensity and blink rate.
    //
    RGBInit(0);
    RGBColorSet(g_pui32Colors);
    RGBIntensitySet(0.5f);
    RGBEnable();

    //
    // The I2C3 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C3 functions on port D0 and D1.
    // This step is not necessary if your part does not support pin muxing.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Initialize the GPIO for the LED.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
    ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
    ROM_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0x00);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize the I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ROM_SysCtlClockGet());

    //
    // Initialize the BMP180.
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 Hz.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / (10 * 3));
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // After all the init and config we start blink the LED
    //
    RGBBlinkRateSet(1.0f);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete. When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision.
        //
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision.
        //
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision.
        //
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        ROM_SysCtlDelay(ROM_SysCtlClockGet() / (10 * 3));

    }//while end
}
void main (void)
{

	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
	GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);
	ROM_SysCtlClockSet (SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ | SYSCTL_OSC_MAIN);
	IntMasterEnable();
	ConfigureUART();
	ConfigureGPRS();

	float fAccel[3];
	tMPU9150 sMPU9150;

	UARTprintf("Point 0\n");
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

	ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
	ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

	//
	// Select the I2C function for these pins.  This function will also
	// configure the GPIO pins pins for I2C operation, setting them to
	// open-drain operation with weak pull-ups.  Consult the data sheet
	// to see which functions are allocated per pin.
	//

	GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
	ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

	//
	// Initialize the MPU9150.  This code assumes that the I2C master instance
	// has already been initialized.
	//
	I2CMInit(&sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
			ROM_SysCtlClockGet());

	GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 4);
	UARTprintf("Point 2\n");
	g_bMPU9150Done = false;
	MPU9150Init(&sMPU9150, &sI2CInst, 0x68, MPU9150Callback, 0);
	while(!g_bMPU9150Done)
	{
	}
	//
	// Configure the MPU9150 for +/- 4 g accelerometer range.
	//

	UARTprintf("Point 3\n");
	g_bMPU9150Done = false;
	//  MPU9150ReadModifyWrite(&sMPU9150, MPU9150_O_ACCEL_CONFIG,
	//      ~MPU9150_ACCEL_CONFIG_AFS_SEL_M,
	//      MPU9150_ACCEL_CONFIG_AFS_SEL_16G, MPU9150Callback,
	//      0);

	sMPU9150.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
	sMPU9150.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
	sMPU9150.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
			MPU9150_ACCEL_CONFIG_AFS_SEL_16G);
	MPU9150Write(&sMPU9150, MPU9150_O_CONFIG, sMPU9150.pui8Data, 3,
			MPU9150Callback, 0);
	//  while(1){}
	while(!g_bMPU9150Done)
	{
	}
	//
	// Loop forever reading data from the MPU9150.  Typically, this process
	// would be done in the background, but for the purposes of this example,
	// it is shown in an infinite loop.
	//
	int count=0;
	int prev_count=-100;
	int is_acc=0;
	float imp[3];
	int j=0;
	for(;j<2;j++) imp[j]=0;
	float curr_avg=0;

	while(1)
	{
		GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 8);
		//
		// Request another reading from the MPU9150.
		//
		g_bMPU9150Done = false;
		if(!MPU9150DataRead(&sMPU9150, MPU9150Callback, 0)) continue;
		while(!g_bMPU9150Done)
		{
		}
		//
		// Get the new accelerometer, gyroscope, and magnetometer readings.
		//

		float backup[3];
		int l=0;
		if(count!=0)for(;l<3;l++)backup[l]=fAccel[l];
		MPU9150DataAccelGetFloat(&sMPU9150, &fAccel[0], &fAccel[1],
				&fAccel[2]);
		//   MPU9150DataGyroGetFloat(&sMPU9150, &fGyro[0], &fGyro[1], &fGyro[2]);
		//    MPU9150DataMagnetoGetFloat(&sMPU9150, &fMagneto[0], &fMagneto[1],
		//        &fMagneto[2]);
		//    float factor = 0.0011970964;

		// UARTprintf("%d %d %d ",(int)(fMagneto[0]*1000), (int)(fMagneto[1]*1000),(int)(fMagneto[2]*1000));
		//   UARTprintf("Accel %d %d %d \n",(int)(fAccel[0]*1000), (int)(fAccel[1]*1000),(int)(fAccel[2]*1000));
		//   if(count ==0)UARTprintf("\n");
		//   UARTprintf("Gyro %d %d %d \n",(int)(fGyro[0]*1000), (int)(fGyro[1]*1000),(int)(fGyro[2]*1000));
		// int iter;
		//    for(iter=0;iter<6;iter++)
		//    UARTprintf("%f %f %f \n",fAccel[0]*factor, fAccel[1] *factor,fAccel[2]*factor );

		float temp = check_acc(fAccel, backup);

		curr_avg = curr_avg + (temp - curr_avg)/(count +1);

		if(is_acc && count< prev_count+ 400)
		{
			int j=0;
			for(;j<2;j++)imp[j]+=(fAccel[j] - backup[j]);
		}

		if(is_acc && count == prev_count + 400)
		{
			is_acc = 0;
			UARTprintf("Impulse %d %d %d \n",(int)(imp[0]*1000), (int)(imp[1]*1000),(int)(imp[2]*1000));
			int side = 0;
			int sign=0;
			int j=0, max_imp = 0;
			for(;j<2;j++) if(imp[j]*imp[j] > max_imp) {
				max_imp = imp[j]*imp[j];
				side = j;
				sign = imp[j] > 0 ? 1 : -1;
			}
			send_accident_data(side, sign);
			j=0;
			for(;j<2;j++)imp[j]=0;
		}

		if(count!=0 && temp >= thres && count >= prev_count + 400)
		{
			UARTprintf("Accel %d %d %d ",(int)(fAccel[0]*1000), (int)(fAccel[1]*1000),(int)(fAccel[2]*1000));
			prev_count = count;
			is_acc=1;
		}

		count++;
		if(count % 5000 ==0) UARTprintf("Driver stats : %d\r\n", (int)(curr_avg));
		if(count % 50000 == 0)
		{
			int rating = driver_rating(curr_avg);
			//			UARTprintf("Sending data to server\r\n");
			memset(command,0,200);
			strcpy(command,"AT+HTTPPARA=\"URL\",\"embedded-roshanroshan.rhcloud.com/add/Driver_rating=");
			itoa(rating, command+strlen(command));
			strcpy(command+strlen(command), "\"");
			send_AT_command(command,NULL);
			send_AT_command("AT+HTTPACTION=0",NULL);
			count=0;
			curr_avg = 0;
		}
		GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0);
		//    SysCtlDelay(5000000);
		//
		// Do something with the new accelerometer, gyroscope, and magnetometer
		// readings.
		//
	}
}
//*****************************************************************************
//
// Main application entry point.
//
//*****************************************************************************
int
main(void)
{
	int_fast32_t i32IPart[16], i32FPart[16];
	uint_fast32_t ui32Idx, ui32CompDCMStarted;
	float pfData[16];
	float *pfAccel, *pfGyro, *pfMag, *pfEulers, *pfQuaternion;

	//
	// Initialize convenience pointers that clean up and clarify the code
	// meaning. We want all the data in a single contiguous array so that
	// we can make our pretty printing easier later.
	//
	pfAccel = pfData;
	pfGyro = pfData + 3;
	pfMag = pfData + 6;
	pfEulers = pfData + 9;
	pfQuaternion = pfData + 12;

	//
	// Setup the system clock to run at 40 Mhz from PLL with crystal reference
	//
	SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
			SYSCTL_OSC_MAIN);

	//
	// Enable port B used for motion interrupt.
	//
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

	//
	// Initialize the UART.
	//
	ConfigureUART();

	//
	// Print the welcome message to the terminal.
	//
	UARTprintf("\033[2JMPU9150 Raw Example\n");

	//
	// Set the color to a purple approximation.
	//
	g_pui32Colors[RED] = 0x8000;
	g_pui32Colors[BLUE] = 0x8000;
	g_pui32Colors[GREEN] = 0x0000;

	//
	// Initialize RGB driver.
	//
	RGBInit(0);
	RGBColorSet(g_pui32Colors);
	RGBIntensitySet(0.5f);
	RGBEnable();

	//
	// The I2C3 peripheral must be enabled before use.
	//
	SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
	SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

	//
	// Configure the pin muxing for I2C3 functions on port D0 and D1.
	//
	GPIOPinConfigure(GPIO_PD0_I2C3SCL);
	GPIOPinConfigure(GPIO_PD1_I2C3SDA);

	//
	// Select the I2C function for these pins.  This function will also
	// configure the GPIO pins pins for I2C operation, setting them to
	// open-drain operation with weak pull-ups.  Consult the data sheet
	// to see which functions are allocated per pin.
	//
	GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
	GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

	//
	// Configure and Enable the GPIO interrupt. Used for INT signal from the
	// MPU9150
	//
	GPIOPinTypeGPIOInput(GPIO_PORTB_BASE, GPIO_PIN_2);
	GPIOIntEnable(GPIO_PORTB_BASE, GPIO_PIN_2);
	GPIOIntTypeSet(GPIO_PORTB_BASE, GPIO_PIN_2, GPIO_FALLING_EDGE);
	IntEnable(INT_GPIOB);

	//
	// Keep only some parts of the systems running while in sleep mode.
	// GPIOB is for the MPU9150 interrupt pin.
	// UART0 is the virtual serial port
	// TIMER0, TIMER1 and WTIMER5 are used by the RGB driver
	// I2C3 is the I2C interface to the ISL29023
	//
	SysCtlPeripheralClockGating(true);
	SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOB);
	SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
	SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER0);
	SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER1);
	SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C3);
	SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_WTIMER5);

	//
	// Enable interrupts to the processor.
	//
	IntMasterEnable();

	//
	// Initialize I2C3 peripheral.
	//
	I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
			SysCtlClockGet());

	//
	// Initialize the MPU9150 Driver.
	//
	MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
			MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Write application specifice sensor configuration such as filter settings
	// and sensor range settings.
	//
	g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
	g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
	g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
			MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
			MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Configure the data ready interrupt pin output of the MPU9150.
	//
	g_sMPU9150Inst.pui8Data[0] = MPU9150_INT_PIN_CFG_INT_LEVEL |
			MPU9150_INT_PIN_CFG_INT_RD_CLEAR |
			MPU9150_INT_PIN_CFG_LATCH_INT_EN;
	g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
			g_sMPU9150Inst.pui8Data, 2, MPU9150AppCallback,
			&g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Initialize the DCM system. 50 hz sample rate.
	// accel weight = .2, gyro weight = .8, mag weight = .2
	//
	CompDCMInit(&g_sCompDCMInst, 1.0f / 50.0f, 0.2f, 0.6f, 0.2f);

	UARTprintf("\033[2J\033[H");
	UARTprintf("MPU9150 9-Axis Simple Data Application Example\n\n");
	UARTprintf("\033[20GX\033[31G|\033[43GY\033[54G|\033[66GZ\n\n");
	UARTprintf("Accel\033[8G|\033[31G|\033[54G|\n\n");
	UARTprintf("Gyro\033[8G|\033[31G|\033[54G|\n\n");
	UARTprintf("Mag\033[8G|\033[31G|\033[54G|\n\n");
	UARTprintf("\n\033[20GRoll\033[31G|\033[43GPitch\033[54G|\033[66GYaw\n\n");
	UARTprintf("Eulers\033[8G|\033[31G|\033[54G|\n\n");

	UARTprintf("\n\033[17GQ1\033[26G|\033[35GQ2\033[44G|\033[53GQ3\033[62G|"
			"\033[71GQ4\n\n");
	UARTprintf("Q\033[8G|\033[26G|\033[44G|\033[62G|\n\n");

	//
	// Enable blinking indicates config finished successfully
	//
	RGBBlinkRateSet(1.0f);

	ui32CompDCMStarted = 0;

	while(1)
	{
		//
		// Go to sleep mode while waiting for data ready.
		//
		while(!g_vui8I2CDoneFlag)
		{
			SysCtlSleep();
		}

		//
		// Clear the flag
		//
		g_vui8I2CDoneFlag = 0;

		//
		// Get floating point version of the Accel Data in m/s^2.
		//
		MPU9150DataAccelGetFloat(&g_sMPU9150Inst, pfAccel, pfAccel + 1,
				pfAccel + 2);

		//
		// Get floating point version of angular velocities in rad/sec
		//
		MPU9150DataGyroGetFloat(&g_sMPU9150Inst, pfGyro, pfGyro + 1,
				pfGyro + 2);

		//
		// Get floating point version of magnetic fields strength in tesla
		//
		MPU9150DataMagnetoGetFloat(&g_sMPU9150Inst, pfMag, pfMag + 1,
				pfMag + 2);

		//
		// Check if this is our first data ever.
		//
		if(ui32CompDCMStarted == 0)
		{
			//
			// Set flag indicating that DCM is started.
			// Perform the seeding of the DCM with the first data set.
			//
			ui32CompDCMStarted = 1;
			CompDCMMagnetoUpdate(&g_sCompDCMInst, pfMag[0], pfMag[1],
					pfMag[2]);
			CompDCMAccelUpdate(&g_sCompDCMInst, pfAccel[0], pfAccel[1],
					pfAccel[2]);
			CompDCMGyroUpdate(&g_sCompDCMInst, pfGyro[0], pfGyro[1],
					pfGyro[2]);
			CompDCMStart(&g_sCompDCMInst);
		}
		else
		{
			//
			// DCM Is already started.  Perform the incremental update.
			//
			CompDCMMagnetoUpdate(&g_sCompDCMInst, pfMag[0], pfMag[1],
					pfMag[2]);
			CompDCMAccelUpdate(&g_sCompDCMInst, pfAccel[0], pfAccel[1],
					pfAccel[2]);
			CompDCMGyroUpdate(&g_sCompDCMInst, -pfGyro[0], -pfGyro[1],
					-pfGyro[2]);
			CompDCMUpdate(&g_sCompDCMInst);
		}

		//
		// Increment the skip counter.  Skip counter is used so we do not
		// overflow the UART with data.
		//
		g_ui32PrintSkipCounter++;
		if(g_ui32PrintSkipCounter >= PRINT_SKIP_COUNT)
		{
			//
			// Reset skip counter.
			//
			g_ui32PrintSkipCounter = 0;

			//
			// Get Euler data. (Roll Pitch Yaw)
			//
			CompDCMComputeEulers(&g_sCompDCMInst, pfEulers, pfEulers + 1,
					pfEulers + 2);

			//
			// Get Quaternions.
			//
			CompDCMComputeQuaternion(&g_sCompDCMInst, pfQuaternion);

			//
			// convert mag data to micro-tesla for better human interpretation.
			//
			pfMag[0] *= 1e6;
			pfMag[1] *= 1e6;
			pfMag[2] *= 1e6;

			//
			// Convert Eulers to degrees. 180/PI = 57.29...
			// Convert Yaw to 0 to 360 to approximate compass headings.
			//
			pfEulers[0] *= 57.295779513082320876798154814105f;
			pfEulers[1] *= 57.295779513082320876798154814105f;
			pfEulers[2] *= 57.295779513082320876798154814105f;
			if(pfEulers[2] < 0)
			{
				pfEulers[2] += 360.0f;
			}

			//
			// Now drop back to using the data as a single array for the
			// purpose of decomposing the float into a integer part and a
			// fraction (decimal) part.
			//
			for(ui32Idx = 0; ui32Idx < 16; ui32Idx++)
			{
				//
				// Conver float value to a integer truncating the decimal part.
				//
				i32IPart[ui32Idx] = (int32_t) pfData[ui32Idx];

				//
				// Multiply by 1000 to preserve first three decimal values.
				// Truncates at the 3rd decimal place.
				//
				i32FPart[ui32Idx] = (int32_t) (pfData[ui32Idx] * 1000.0f);

				//
				// Subtract off the integer part from this newly formed decimal
				// part.
				//
				i32FPart[ui32Idx] = i32FPart[ui32Idx] -
						(i32IPart[ui32Idx] * 1000);

				//
				// make the decimal part a positive number for display.
				//
				if(i32FPart[ui32Idx] < 0)
				{
					i32FPart[ui32Idx] *= -1;
				}
			}

			//
			// Print the acceleration numbers in the table.
			//
			UARTprintf("\033[5;17H%3d.%03d", i32IPart[0], i32FPart[0]);
			UARTprintf("\033[5;40H%3d.%03d", i32IPart[1], i32FPart[1]);
			UARTprintf("\033[5;63H%3d.%03d", i32IPart[2], i32FPart[2]);

			//
			// Print the angular velocities in the table.
			//
			UARTprintf("\033[7;17H%3d.%03d", i32IPart[3], i32FPart[3]);
			UARTprintf("\033[7;40H%3d.%03d", i32IPart[4], i32FPart[4]);
			UARTprintf("\033[7;63H%3d.%03d", i32IPart[5], i32FPart[5]);

			//
			// Print the magnetic data in the table.
			//
			UARTprintf("\033[9;17H%3d.%03d", i32IPart[6], i32FPart[6]);
			UARTprintf("\033[9;40H%3d.%03d", i32IPart[7], i32FPart[7]);
			UARTprintf("\033[9;63H%3d.%03d", i32IPart[8], i32FPart[8]);

			//
			// Print the Eulers in a table.
			//
			UARTprintf("\033[14;17H%3d.%03d", i32IPart[9], i32FPart[9]);
			UARTprintf("\033[14;40H%3d.%03d", i32IPart[10], i32FPart[10]);
			UARTprintf("\033[14;63H%3d.%03d", i32IPart[11], i32FPart[11]);

			//
			// Print the quaternions in a table format.
			//
			UARTprintf("\033[19;14H%3d.%03d", i32IPart[12], i32FPart[12]);
			UARTprintf("\033[19;32H%3d.%03d", i32IPart[13], i32FPart[13]);
			UARTprintf("\033[19;50H%3d.%03d", i32IPart[14], i32FPart[14]);
			UARTprintf("\033[19;68H%3d.%03d", i32IPart[15], i32FPart[15]);

		}
	}
}
Beispiel #8
0
//*****************************************************************************
//
// Initialize the I2C, MPU9150 and Gesture systems.
//
//*****************************************************************************
void
MotionInit(void)
{
	//
    // Enable port B used for motion interrupt.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

    //
    // The I2C3 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C3 functions on port D0 and D1.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Configure and Enable the GPIO interrupt. Used for INT signal from the
    // MPU9150
    //
    ROM_GPIOPinTypeGPIOInput(GPIO_PORTB_BASE, GPIO_PIN_2);
    GPIOIntEnable(GPIO_PORTB_BASE, GPIO_PIN_2);
    ROM_GPIOIntTypeSet(GPIO_PORTB_BASE, GPIO_PIN_2, GPIO_FALLING_EDGE);
    ROM_IntEnable(INT_GPIOB);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ROM_SysCtlClockGet());

    //
    // Set the motion state to initializing.
    //
    g_ui8MotionState = MOTION_STATE_INIT;

    //
    // Initialize the MPU9150 Driver.
    //
    MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
                MotionCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MotionI2CWait(__FILE__, __LINE__);

    //
    // Write application specifice sensor configuration such as filter settings
    // and sensor range settings.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
    g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
                                  MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
                 MotionCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MotionI2CWait(__FILE__, __LINE__);

    //
    // Configure the data ready interrupt pin output of the MPU9150.
    //
    g_sMPU9150Inst.pui8Data[0] = (MPU9150_INT_PIN_CFG_INT_LEVEL |
                                  MPU9150_INT_PIN_CFG_INT_RD_CLEAR |
                                  MPU9150_INT_PIN_CFG_LATCH_INT_EN);
    g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
                 g_sMPU9150Inst.pui8Data, 2, MotionCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MotionI2CWait(__FILE__, __LINE__);

	//
	// Initialize the DCM system.
	//
	CompDCMInit(&g_sCompDCMInst, 1.0f / ((float) MOTION_SAMPLE_FREQ_HZ),
				DCM_ACCEL_WEIGHT, DCM_GYRO_WEIGHT, DCM_MAG_WEIGHT);

	//
	// Initialize the gesture instance and establish a initial state estimate.
	//
    GestureInit(&g_sGestureInst, g_pfInitProb, g_ppfPath, g_ppfTransitionProb,
                g_ppfEmitProb, GESTURE_PATH_LENGTH, GESTURE_NUM_STATES,
                GESTURE_STATE_IDLE);
}
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;
    tContext sContext;
    uint32_t ui32SysClock;
    char pcBuf[15];

    //
    // Setup the system clock to run at 40 Mhz from PLL with crystal reference
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 40000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "bmp180");

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // Enable UART0
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, ui32SysClock);

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // The I2C3 peripheral must be enabled before use.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);

    //
    // Configure the pin muxing for I2C3 functions on port G4 and G5.
    // This step is not necessary if your part does not support pin muxing.
    //
    MAP_GPIOPinConfigure(GPIO_PG4_I2C3SCL);
    MAP_GPIOPinConfigure(GPIO_PG5_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    MAP_GPIOPinTypeI2CSCL(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_GPIOPinTypeI2C(GPIO_PORTG_BASE, GPIO_PIN_5);

    //
    // Enable interrupts to the processor.
    //
    MAP_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ui32SysClock);

    //
    // Initialize the BMP180
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 hz.
    //
    MAP_SysTickPeriodSet(ui32SysClock / (10 * 3));
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();

    //
    // Configure PQ4 to control the blue LED.
    //
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTQ_BASE, GPIO_PIN_4);

    //
    // Print temperature, pressure and altitude labels once on the LCD.
    //
    GrStringDraw(&sContext, "Temperature", 11,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 96),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
    GrStringDraw(&sContext, "Pressure", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 63),
                 (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
    GrStringDraw(&sContext, "Altitude", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 59),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete.  When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%03d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart,
                                               i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, -1,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        MAP_SysCtlDelay(ui32SysClock / (10 * 3));
    }
}
Beispiel #10
0
/*
 * main.c
 */
int main(void) {
	float fTemperature, fHumidity;
	    int32_t i32IntegerPart;
	    int32_t i32FractionPart;


	g_ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
	                                             SYSCTL_OSC_MAIN |
	                                             SYSCTL_USE_PLL |
	                                             SYSCTL_CFG_VCO_480), 120000000);
	//confiugre the GPIO pins
	PinoutSet(false,false);

	ConfigureUART();

	//configure I2C pins
	SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C8);

	GPIOPinConfigure(GPIO_PA2_I2C8SCL);
	GPIOPinConfigure(GPIO_PA3_I2C8SDA);

	GPIOPinTypeI2C(GPIO_PORTA_BASE,GPIO_PIN_2);
	GPIOPinTypeI2C(GPIO_PORTA_BASE,GPIO_PIN_3);

	//enable interrupts
	IntMasterEnable();

	//initialize I2C
	I2CMInit(&g_sI2CInst,I2C8_BASE,INT_I2C8,0xff,0xff,g_ui32SysClock);
	IntPrioritySet(INT_I2C7,0xE0);

	//initialize the sensors
	SHT21Init(&g_sSHT21Inst, &g_sI2CInst, SHT21_I2C_ADDRESS,
			SHT21AppCallback,&g_sSHT21Inst);

	//delay for 20 ms
	SysCtlDelay(g_ui32SysClock / (50 * 3));

	while(1){
		  //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Write the command to start a humidity measurement.
		        //
		        SHT21Write(&g_sSHT21Inst, SHT21_CMD_MEAS_RH, g_sSHT21Inst.pui8Data, 0,
		                SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Wait 33 milliseconds before attempting to get the result. Datasheet
		        // claims this can take as long as 29 milliseconds.
		        //
		        SysCtlDelay(g_ui32SysClock / (30 * 3));

		        //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Get the raw data from the sensor over the I2C bus.
		        //
		        SHT21DataRead(&g_sSHT21Inst, SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Get a copy of the most recent raw data in floating point format.
		        //
		        SHT21DataHumidityGetFloat(&g_sSHT21Inst, &fHumidity);

		        //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Write the command to start a temperature measurement.
		        //
		        SHT21Write(&g_sSHT21Inst, SHT21_CMD_MEAS_T, g_sSHT21Inst.pui8Data, 0,
		                SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Wait 100 milliseconds before attempting to get the result. Datasheet
		        // claims this can take as long as 85 milliseconds.
		        //
		        SysCtlDelay(g_ui32SysClock / (10 * 3));

		        //
		        // Turn on D2 to show we are starting a transaction with the sensor.
		        // This is turned off in the application callback.
		        //
		        LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

		        //
		        // Read the conversion data from the sensor over I2C.
		        //
		        SHT21DataRead(&g_sSHT21Inst, SHT21AppCallback, &g_sSHT21Inst);

		        //
		        // Wait for the I2C transactions to complete before moving forward.
		        //
		        SHT21AppI2CWait(__FILE__, __LINE__);

		        //
		        // Get the most recent temperature result as a float in celcius.
		        //
		        SHT21DataTemperatureGetFloat(&g_sSHT21Inst, &fTemperature);

		        //
		        // Convert the floats to an integer part and fraction part for easy
		        // print. Humidity is returned as 0.0 to 1.0 so multiply by 100 to get
		        // percent humidity.
		        //
		        fHumidity *= 100.0f;
		        i32IntegerPart = (int32_t) fHumidity;
		        i32FractionPart = (int32_t) (fHumidity * 1000.0f);
		        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
		        if(i32FractionPart < 0)
		        {
		            i32FractionPart *= -1;
		        }

		        //
		        // Print the humidity value using the integers we just created.
		        //
		        UARTprintf("Humidity %3d.%03d\t", i32IntegerPart, i32FractionPart);

		        //
		        // Perform the conversion from float to a printable set of integers.
		        //
		        i32IntegerPart = (int32_t) fTemperature;
		        i32FractionPart = (int32_t) (fTemperature * 1000.0f);
		        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
		        if(i32FractionPart < 0)
		        {
		            i32FractionPart *= -1;
		        }

		        //
		        // Print the temperature as integer and fraction parts.
		        //
		        UARTprintf("Temperature %3d.%03d\n", i32IntegerPart, i32FractionPart);

		        //
		        // Delay for one second. This is to keep sensor duty cycle
		        // to about 10% as suggested in the datasheet, section 2.4.
		        // This minimizes self heating effects and keeps reading more accurate.
		        //
		        SysCtlDelay(g_ui32SysClock / 3);
	}


	
	return 0;
}
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fAmbient;
    int32_t i32IntegerPart, i32FractionPart;
    uint8_t ui8Mask;

    //
    // Setup the system clock to run at 40 Mhz from PLL with crystal reference
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

    //
    // Initialize the UART and its pins.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JISL29023 Example\n");

    //
    // Set the color to a white approximation.
    //
    g_pui32Colors[RED] = 0x8000;
    g_pui32Colors[BLUE] = 0x8000;
    g_pui32Colors[GREEN] = 0x8000;

    //
    // Initialize RGB driver. Use a default intensity and blink rate.
    //
    RGBInit(0);
    RGBColorSet(g_pui32Colors);
    RGBIntensitySet(0.5f);
    RGBEnable();

    //
    // The I2C3 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C3 functions on port D0 and D1.
    // This step is not necessary if your part does not support pin muxing.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Configure and Enable the GPIO interrupt. Used for INT signal from the
    // ISL29023
    //
    ROM_GPIOPinTypeGPIOInput(GPIO_PORTE_BASE, GPIO_PIN_5);
    GPIOIntEnable(GPIO_PORTE_BASE, GPIO_PIN_5);
    ROM_GPIOIntTypeSet(GPIO_PORTE_BASE, GPIO_PIN_5, GPIO_FALLING_EDGE);
    ROM_IntEnable(INT_GPIOE);

    //
    // Keep only some parts of the systems running while in sleep mode.
    // GPIOE is for the ISL29023 interrupt pin.
    // UART0 is the virtual serial port
    // TIMER0, TIMER1 and WTIMER5 are used by the RGB driver
    // I2C3 is the I2C interface to the ISL29023
    //
    ROM_SysCtlPeripheralClockGating(true);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER0);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER1);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_WTIMER5);

    //
    // Configure desired interrupt priorities.  Setting the I2C interrupt to be
    // of more priority than SysTick and the GPIO interrupt means those
    // interrupt routines can use the I2CM_DRV Application context does not use
    // I2CM_DRV API and GPIO and SysTick are at the same priority level. This
    // prevents re-entrancy problems with I2CM_DRV but keeps the MCU in sleep
    // state as much as possible. UART is at least priority so it can operate
    // in the background.
    //
    ROM_IntPrioritySet(INT_I2C3, 0x00);
    ROM_IntPrioritySet(FAULT_SYSTICK, 0x40);
    ROM_IntPrioritySet(INT_GPIOE, 0x80);
    ROM_IntPrioritySet(INT_UART0, 0x80);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ROM_SysCtlClockGet());

    //
    // Initialize the ISL29023 Driver.
    //
    ISL29023Init(&g_sISL29023Inst, &g_sI2CInst, ISL29023_I2C_ADDRESS,
                 ISL29023AppCallback, &g_sISL29023Inst);

    //
    // Wait for transaction to complete
    //
    ISL29023AppI2CWait(__FILE__, __LINE__);

    //
    // Configure the ISL29023 to measure ambient light continuously. Set a 8
    // sample persistence before the INT pin is asserted. Clears the INT flag.
    // Persistence setting of 8 is sufficient to ignore camera flashes.
    //
    ui8Mask = (ISL29023_CMD_I_OP_MODE_M | ISL29023_CMD_I_INT_PERSIST_M |
               ISL29023_CMD_I_INT_FLAG_M);
    ISL29023ReadModifyWrite(&g_sISL29023Inst, ISL29023_O_CMD_I, ~ui8Mask,
                            (ISL29023_CMD_I_OP_MODE_ALS_CONT |
                             ISL29023_CMD_I_INT_PERSIST_8),
                            ISL29023AppCallback, &g_sISL29023Inst);

    //
    // Wait for transaction to complete
    //
    ISL29023AppI2CWait(__FILE__, __LINE__);

    //
    // Configure the upper threshold to 80% of maximum value
    //
    g_sISL29023Inst.pui8Data[1] = 0xCC;
    g_sISL29023Inst.pui8Data[2] = 0xCC;
    ISL29023Write(&g_sISL29023Inst, ISL29023_O_INT_HT_LSB,
                  g_sISL29023Inst.pui8Data, 2, ISL29023AppCallback,
                  &g_sISL29023Inst);

    //
    // Wait for transaction to complete
    //
    ISL29023AppI2CWait(__FILE__, __LINE__);

    //
    // Configure the lower threshold to 20% of maximum value
    //
    g_sISL29023Inst.pui8Data[1] = 0x33;
    g_sISL29023Inst.pui8Data[2] = 0x33;
    ISL29023Write(&g_sISL29023Inst, ISL29023_O_INT_LT_LSB,
                  g_sISL29023Inst.pui8Data, 2, ISL29023AppCallback,
                  &g_sISL29023Inst);
    //
    // Wait for transaction to complete
    //
    ISL29023AppI2CWait(__FILE__, __LINE__);

    //
    //Configure and enable SysTick Timer
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // After all the init and config we start blink the LED
    //
    RGBBlinkRateSet(1.0f);

    //
    // Loop Forever
    //
    while(1)
    {
        ROM_SysCtlSleep();

        if(g_vui8DataFlag)
        {
            g_vui8DataFlag = 0;

            //
            // Get a local floating point copy of the latest light data
            //
            ISL29023DataLightVisibleGetFloat(&g_sISL29023Inst, &fAmbient);

            //
            // Perform the conversion from float to a printable set of integers
            //
            i32IntegerPart = (int32_t)fAmbient;
            i32FractionPart = (int32_t)(fAmbient * 1000.0f);
            i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
            if(i32FractionPart < 0)
            {
                i32FractionPart *= -1;
            }

            //
            // Print the temperature as integer and fraction parts.
            //
            UARTprintf("Visible Lux: %3d.%03d\n", i32IntegerPart,
                       i32FractionPart);

            //
            // Check if the intensity of light has crossed a threshold. If so
            // then adjust range of sensor readings to track intensity.
            //
            if(g_vui8IntensityFlag)
            {
                //
                // Disable the low priority interrupts leaving only the I2C
                // interrupt enabled.
                //
                ROM_IntPriorityMaskSet(0x40);

                //
                // Reset the intensity trigger flag.
                //
                g_vui8IntensityFlag = 0;

                //
                // Adjust the lux range.
                //
                ISL29023AppAdjustRange(&g_sISL29023Inst);

                //
                // Now we must manually clear the flag in the ISL29023
                // register.
                //
                ISL29023Read(&g_sISL29023Inst, ISL29023_O_CMD_I,
                             g_sISL29023Inst.pui8Data, 1, ISL29023AppCallback,
                             &g_sISL29023Inst);

                //
                // Wait for transaction to complete
                //
                ISL29023AppI2CWait(__FILE__, __LINE__);

                //
                // Disable priority masking so all interrupts are enabled.
                //
                ROM_IntPriorityMaskSet(0);
            }
        }
    }
}
Beispiel #12
0
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fAmbient, fObject;
    int_fast32_t i32IntegerPart;
    int_fast32_t i32FractionPart;

    //
    // Setup the system clock to run at 40 Mhz from PLL with crystal reference
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Enable the peripherals used by this example.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2J\033[1;1HTMP006 Example\n");

    //
    // Setup the color of the RGB LED.
    //
    g_pui32Colors[RED] = 0;
    g_pui32Colors[BLUE] = 0xFFFF;
    g_pui32Colors[GREEN] = 0;

    //
    // Initialize the RGB Driver and start RGB blink operation.
    //
    RGBInit(0);
    RGBColorSet(g_pui32Colors);
    RGBIntensitySet(0.5f);
    RGBEnable();

    //
    // The I2C3 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

    //
    // Configure the pin muxing for I2C3 functions on port D0 and D1.
    // This step is not necessary if your part does not support pin muxing.
    //
    ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
    ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
    ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

    //
    // Configure and Enable the GPIO interrupt. Used for DRDY from the TMP006
    //
    ROM_GPIOPinTypeGPIOInput(GPIO_PORTE_BASE, GPIO_PIN_0);
    GPIOIntEnable(GPIO_PORTE_BASE, GPIO_PIN_0);
    ROM_GPIOIntTypeSet(GPIO_PORTE_BASE, GPIO_PIN_0, GPIO_FALLING_EDGE);
    ROM_IntEnable(INT_GPIOE);

    //
    // Keep only some parts of the systems running while in sleep mode.
    // GPIOE is for the TMP006 data ready interrupt.
    // UART0 is the virtual serial port
    // TIMER0, TIMER1 and WTIMER5 are used by the RGB driver
    // I2C3 is the I2C interface to the TMP006
    //
    ROM_SysCtlPeripheralClockGating(true);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER0);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER1);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C3);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_WTIMER5);

    //
    // Enable interrupts to the processor.
    //
    ROM_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             SysCtlClockGet());

    //
    // Initialize the TMP006
    //
    TMP006Init(&g_sTMP006Inst, &g_sI2CInst, TMP006_I2C_ADDRESS,
               TMP006AppCallback, &g_sTMP006Inst);

    //
    // Put the processor to sleep while we wait for the I2C driver to
    // indicate that the transaction is complete.
    //
    while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
    {
        ROM_SysCtlSleep();
    }

    //
    // If an error occurred call the error handler immediately.
    //
    if(g_vui8ErrorFlag)
    {
        TMP006AppErrorHandler(__FILE__, __LINE__);
    }

    //
    // clear the data flag for next use.
    //
    g_vui8DataFlag = 0;

    //
    // Delay for 10 milliseconds for TMP006 reset to complete.
    // Not explicitly required. Datasheet does not say how long a reset takes.
    //
    ROM_SysCtlDelay(ROM_SysCtlClockGet() / (100 * 3));

    //
    // Enable the DRDY pin indication that a conversion is in progress.
    //
    TMP006ReadModifyWrite(&g_sTMP006Inst, TMP006_O_CONFIG,
                          ~TMP006_CONFIG_EN_DRDY_PIN_M,
                          TMP006_CONFIG_EN_DRDY_PIN, TMP006AppCallback,
                          &g_sTMP006Inst);

    //
    // Wait for the DRDY enable I2C transaction to complete.
    //
    while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
    {
        ROM_SysCtlSleep();
    }

    //
    // If an error occurred call the error handler immediately.
    //
    if(g_vui8ErrorFlag)
    {
        TMP006AppErrorHandler(__FILE__, __LINE__);
    }

    //
    // clear the data flag for next use.
    //
    g_vui8DataFlag = 0;

    //
    // Last thing before the loop start blinking to show we got this far and
    // the tmp006 is setup and ready for auto measure
    //
    RGBBlinkRateSet(1.0f);

    //
    // Loop Forever
    //
    while(1)
    {
        //
        // Put the processor to sleep while we wait for the TMP006 to
        // signal that data is ready.  Also continue to sleep while I2C
        // transactions get the raw data from the TMP006
        //
        while((g_vui8DataFlag == 0) && (g_vui8ErrorFlag == 0))
        {
            ROM_SysCtlSleep();
        }

        //
        // If an error occurred call the error handler immediately.
        //
        if(g_vui8ErrorFlag)
        {
            TMP006AppErrorHandler(__FILE__, __LINE__);
        }

        //
        // Reset the flag
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest data in float format.
        //
        TMP006DataTemperatureGetFloat(&g_sTMP006Inst, &fAmbient, &fObject);

        //
        // Convert the floating point ambient temperature  to an integer part
        // and fraction part for easy printing.
        //
        i32IntegerPart = (int32_t)fAmbient;
        i32FractionPart = (int32_t)(fAmbient * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }
        UARTprintf("Ambient %3d.%03d\t", i32IntegerPart, i32FractionPart);

        //
        // Convert the floating point ambient temperature  to an integer part
        // and fraction part for easy printing.
        //
        i32IntegerPart = (int32_t)fObject;
        i32FractionPart = (int32_t)(fObject * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }
        UARTprintf("Object %3d.%03d\n", i32IntegerPart, i32FractionPart);
    }
}
//*****************************************************************************
//
// Main application entry point.
//
//*****************************************************************************
int main(void) {
	int_fast32_t i32IPart[17], i32FPart[17];
	uint_fast32_t ui32Idx, ui32CompDCMStarted;
	float pfData[17];
	float *pfAccel, *pfGyro, *pfMag, *pfEulers, *pfQuaternion;
	float *direction;

	//
	// Initialize convenience pointers that clean up and clarify the code
	// meaning. We want all the data in a single contiguous array so that
	// we can make our pretty printing easier later.
	//
	pfAccel = pfData;
	pfGyro = pfData + 3;
	pfMag = pfData + 6;
	pfEulers = pfData + 9;
	pfQuaternion = pfData + 12;
	direction = pfData + 16;

	//
	// Setup the system clock to run at 40 Mhz from PLL with crystal reference
	//
	ROM_SysCtlClockSet(
			SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ
					| SYSCTL_OSC_MAIN);

	//
	// Enable port E used for motion interrupt.
	//
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);

	//
	// Enable port F used for calibration.
	//
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

	//
	// Initialize the UART.
	//
	ConfigureUART();

	/* EEPROM SETTINGS */
	SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0); // EEPROM activate
	EEPROMInit(); // EEPROM start

	//
	// Print the welcome message to the terminal.
	//
	UARTprintf("\033[2JMPU9150 Raw Example\n");

	//
	// Set the color to a purple approximation.
	//
	g_pui32Colors[RED] = 0x8000;
	g_pui32Colors[BLUE] = 0x8000;
	g_pui32Colors[GREEN] = 0x8000;

	//
	// Initialize RGB driver.
	//
	RGBInit(0);
	RGBColorSet(g_pui32Colors);
	RGBIntensitySet(0.5f);
	RGBEnable();

	// Initialize BGLib
	bglib_output = output;
	ConfigureBLE();

	//
	// The I2C3 peripheral must be enabled before use.
	//
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);

	//
	// Configure the pin muxing for I2C3 functions on port D0 and D1.
	//
	ROM_GPIOPinConfigure(GPIO_PD0_I2C3SCL);
	ROM_GPIOPinConfigure(GPIO_PD1_I2C3SDA);

	//
	// Select the I2C function for these pins.  This function will also
	// configure the GPIO pins pins for I2C operation, setting them to
	// open-drain operation with weak pull-ups.  Consult the data sheet
	// to see which functions are allocated per pin.
	//
	GPIOPinTypeI2CSCL(GPIO_PORTD_BASE, GPIO_PIN_0);
	ROM_GPIOPinTypeI2C(GPIO_PORTD_BASE, GPIO_PIN_1);

	//
	// Configure and Enable the GPIO interrupt. Used for INT signal from the
	// MPU9150
	//
	ROM_GPIOPinTypeGPIOInput(GPIO_PORTE_BASE, GPIO_PIN_2);
	GPIOIntEnable(GPIO_PORTE_BASE, GPIO_PIN_2);
	ROM_GPIOIntTypeSet(GPIO_PORTE_BASE, GPIO_PIN_2, GPIO_FALLING_EDGE);
	ROM_IntEnable(INT_GPIOE);

	//
	// Keep only some parts of the systems running while in sleep mode.
	// GPIOE is for the MPU9150 interrupt pin.
	// UART0 is the virtual serial port
	// TIMER0, TIMER1 and WTIMER5 are used by the RGB driver
	// I2C3 is the I2C interface to the ISL29023
	//
	ROM_SysCtlPeripheralClockGating(true);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOE);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER0);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_TIMER1);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C3);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_WTIMER5);

	//
	// Enable interrupts to the processor.
	//
	ROM_IntMasterEnable();

	//
	// Initialize I2C3 peripheral.
	//
	I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
			ROM_SysCtlClockGet());

	//
	// Initialize the MPU9150 Driver.
	//
	MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
			MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Configure the sampling rate to 1000 Hz / (1+24).
	//
	g_sMPU9150Inst.pui8Data[0] = 24;
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_SMPLRT_DIV, g_sMPU9150Inst.pui8Data,
			1, MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Write application specifice sensor configuration such as filter settings
	// and sensor range settings.
	//
	g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
	g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
	g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ
			| MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
//	g_sMPU9150Inst.pui8Data[2] = MPU9150_ACCEL_CONFIG_AFS_SEL_2G;
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
			MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Configure the data ready interrupt pin output of the MPU9150.
	//
	g_sMPU9150Inst.pui8Data[0] = MPU9150_INT_PIN_CFG_INT_LEVEL
			| MPU9150_INT_PIN_CFG_INT_RD_CLEAR
			| MPU9150_INT_PIN_CFG_LATCH_INT_EN;
	g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
	MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
			g_sMPU9150Inst.pui8Data, 2, MPU9150AppCallback, &g_sMPU9150Inst);

	//
	// Wait for transaction to complete
	//
	MPU9150AppI2CWait(__FILE__, __LINE__);

	//
	// Initialize the DCM system. 40 hz sample rate.
	// accel weight = .2, gyro weight = .8, mag weight = .2
	//
	CompDCMInit(&g_sCompDCMInst, 1.0f / 40.0f, 0.2f, 0.6f, 0.2f);

	//
	// Enable blinking indicates config finished successfully
	//
	RGBBlinkRateSet(1.0f);

	//
	// Configure and Enable the GPIO interrupt. Used for calibration
	//
	HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
	HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;
	ROM_GPIOPinTypeGPIOInput(GPIO_PORTF_BASE, GPIO_PIN_4);
	GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_4, GPIO_STRENGTH_2MA,
			GPIO_PIN_TYPE_STD_WPU);
	ROM_IntEnable(INT_GPIOF);
	ROM_GPIOIntTypeSet(GPIO_PORTF_BASE, GPIO_PIN_4, GPIO_FALLING_EDGE);
	GPIOIntEnable(GPIO_PORTF_BASE, GPIO_PIN_4);
	g_calibrationState = 0;

	ui32CompDCMStarted = 0;
	// Configure the white noise, read the error from EEPROM
	EEPROMRead((uint32_t *) zeroErrorAccel,
			EEPROM_ZERO_ERROR_ACCELERATION_ADDRESS, 12);
	EEPROMRead((uint32_t *) linearErrorAccel,
			EEPROM_LINEAR_ERROR_ACCELERATION_ADDRESS, 12);
	EEPROMRead((uint32_t *) zeroErrorGyro, EEPROM_ZERO_ERROR_GYROSCOPE_ADDRESS,
			12);

	while (1) {
		//
		// Go to sleep mode while waiting for data ready.
		//
		while (!g_vui8I2CDoneFlag) {
			//ROM_SysCtlSleep();
		}

		//
		// Clear the flag
		//
		g_vui8I2CDoneFlag = 0;

		//
		// Get floating point version of the Accel Data in m/s^2.
		//
		MPU9150DataAccelGetFloat(&g_sMPU9150Inst, pfAccel, pfAccel + 1,
				pfAccel + 2);

		//
		// Get floating point version of angular velocities in rad/sec
		//
		MPU9150DataGyroGetFloat(&g_sMPU9150Inst, pfGyro, pfGyro + 1,
				pfGyro + 2);

		//
		// Get floating point version of magnetic fields strength in tesla
		//
		MPU9150DataMagnetoGetFloat(&g_sMPU9150Inst, pfMag, pfMag + 1,
				pfMag + 2);

		if (g_calibrationState == 2) {
			zeroErrorAccel[0] = (pfAccel[0]
					+ zeroErrorAccel[0] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			zeroErrorAccel[1] = (pfAccel[1]
					+ zeroErrorAccel[1] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			accelAtGravity[2] = (pfAccel[2]
					+ accelAtGravity[2] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			zeroErrorGyro[0] = (pfGyro[0]
					+ zeroErrorGyro[0] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			zeroErrorGyro[1] = (pfGyro[1]
					+ zeroErrorGyro[1] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			zeroErrorGyro[2] = (pfGyro[2]
					+ zeroErrorGyro[2] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			g_calibrationCount++;
			if (g_calibrationCount > 500) {
				Calibration();
			}
			continue;
		} else if (g_calibrationState == 4) {
			zeroErrorAccel[2] = (pfAccel[2]
					+ zeroErrorAccel[2] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			accelAtGravity[1] = (pfAccel[1]
					+ accelAtGravity[1] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			g_calibrationCount++;
			if (g_calibrationCount > 500) {
				Calibration();
			}
			continue;
		} else if (g_calibrationState == 6) {
			accelAtGravity[0] = (pfAccel[0]
					+ accelAtGravity[0] * g_calibrationCount)
					/ (g_calibrationCount + 1);
			g_calibrationCount++;
			if (g_calibrationCount > 500) {
				Calibration();
			}
			continue;
		}

		// Cancel out white noise
//		pfAccel[0] = pfAccel[0] - zeroErrorAccel[0];
//		pfAccel[1] = pfAccel[1] - zeroErrorAccel[1];
//		pfAccel[2] = pfAccel[2] - zeroErrorAccel[2];
//		pfGyro[0] = pfGyro[0] - zeroErrorGyro[0];
//		pfGyro[1] = pfGyro[1] - zeroErrorGyro[1];
//		pfGyro[2] = pfGyro[2] - zeroErrorGyro[2];
//		// Straighten out linear noise
//		pfAccel[0] = pfAccel[0] * (1 + linearErrorAccel[0]);
//		pfAccel[1] = pfAccel[1] * (1 + linearErrorAccel[1]);
//		pfAccel[2] = pfAccel[2] * (1 + linearErrorAccel[2]);

		//
		// Check if this is our first data ever.
		//
		if (ui32CompDCMStarted == 0) {
			//
			// Set flag indicating that DCM is started.
			// Perform the seeding of the DCM with the first data set.
			//
			ui32CompDCMStarted = 1;
			CompDCMMagnetoUpdate(&g_sCompDCMInst, pfMag[0], pfMag[1], pfMag[2]);
			CompDCMAccelUpdate(&g_sCompDCMInst, pfAccel[0], pfAccel[1],
					pfAccel[2]);
			CompDCMGyroUpdate(&g_sCompDCMInst, pfGyro[0], pfGyro[1], pfGyro[2]);
			CompDCMStart(&g_sCompDCMInst);
		} else {
			//
			// DCM Is already started.  Perform the incremental update.
			//
			CompDCMMagnetoUpdate(&g_sCompDCMInst, pfMag[0], pfMag[1], pfMag[2]);
			CompDCMAccelUpdate(&g_sCompDCMInst, pfAccel[0], pfAccel[1],
					pfAccel[2]);
			CompDCMGyroUpdate(&g_sCompDCMInst, -pfGyro[0], -pfGyro[1],
					-pfGyro[2]);
			CompDCMUpdate(&g_sCompDCMInst);
		}

		//
		// Increment the skip counter.  Skip counter is used so we do not
		// overflow the UART with data.
		//
		g_ui32PrintSkipCounter++;
		if (g_ui32PrintSkipCounter >= PRINT_SKIP_COUNT) {
			//
			// Reset skip counter.
			//
			g_ui32PrintSkipCounter = 0;

			//
			// Get Euler data. (Roll Pitch Yaw)
			//
			CompDCMComputeEulers(&g_sCompDCMInst, pfEulers, pfEulers + 1,
					pfEulers + 2);

			//
			// Get Quaternions.
			//
			CompDCMComputeQuaternion(&g_sCompDCMInst, pfQuaternion);

			//
			// convert mag data to micro-tesla for better human interpretation.
			//
			pfMag[0] *= 1e6;
			pfMag[1] *= 1e6;
			pfMag[2] *= 1e6;

			//
			// Convert Eulers to degrees. 180/PI = 57.29...
			// Convert Yaw to 0 to 360 to approximate compass headings.
			//
			pfEulers[0] *= 57.295779513082320876798154814105f;
			pfEulers[1] *= 57.295779513082320876798154814105f;
			pfEulers[2] *= 57.295779513082320876798154814105f;
			if (pfEulers[2] < 0) {
				pfEulers[2] += 360.0f;
			}

			// Use pfMag to display degrees of the Magnetomer's x-axis
			// (y-axis of accelerometer and gyroscope) to the east of
			// magnetic north pole
//			direction[0] = 0;
//			if (pfMag[1] == 0) {
//				if (pfMag[0] > 0) {
//					direction[0] = 0;
//				} else {
//					direction[0] = 180;
//				}
//			} else if (pfMag[1] > 0) {
//				direction[0] = 90 - atan2f(pfMag[0], pfMag[1]) * 180 / 3.14159265359;
//			} else if (pfMag[1] < 0) {
//				direction[0] = 270 - atan2f(pfMag[0], pfMag[1]) * 180 / 3.14159265359;
//			}

			//
			// Now drop back to using the data as a single array for the
			// purpose of decomposing the float into a integer part and a
			// fraction (decimal) part.
			//
			for (ui32Idx = 0; ui32Idx < 17; ui32Idx++) {
				//
				// Conver float value to a integer truncating the decimal part.
				//
				i32IPart[ui32Idx] = (int32_t) pfData[ui32Idx];

				//
				// Multiply by 1000 to preserve first three decimal values.
				// Truncates at the 3rd decimal place.
				//
				i32FPart[ui32Idx] = (int32_t) (pfData[ui32Idx] * 1000.0f);

				//
				// Subtract off the integer part from this newly formed decimal
				// part.
				//
				i32FPart[ui32Idx] = i32FPart[ui32Idx]
						- (i32IPart[ui32Idx] * 1000);

				//
				// make the decimal part a positive number for display.
				//
				if (i32FPart[ui32Idx] < 0) {
					i32FPart[ui32Idx] *= -1;
				}
			}

			if (g_bleUserFlag == 1) {
				g_bleFlag = 0;
				ble_cmd_attributes_write(58, 0, 12, (uint8_t*)pfEuler);
				while (g_bleFlag == 0) {
				}
			} else if (g_bleDisconnectFlag == 1) {
				ConfigureBLE();
			}

			//
			// Print the acceleration numbers in the table.
			//
//			UARTprintf("%3d.%03d, ", i32IPart[0], i32FPart[0]);
//			UARTprintf("%3d.%03d, ", i32IPart[1], i32FPart[1]);
//			UARTprintf("%3d.%03d\n", i32IPart[2], i32FPart[2]);
//
//			//
//			// Print the angular velocities in the table.
//			//
//			UARTprintf("%3d.%03d, ", i32IPart[3], i32FPart[3]);
//			UARTprintf("%3d.%03d, ", i32IPart[4], i32FPart[4]);
//			UARTprintf("%3d.%03d\n", i32IPart[5], i32FPart[5]);
//
//			//
//			// Print the magnetic data in the table.
//			//
//			UARTprintf("%3d.%03d, ", i32IPart[6], i32FPart[6]);
//			UARTprintf("%3d.%03d, ", i32IPart[7], i32FPart[7]);
//			UARTprintf("%3d.%03d\n", i32IPart[8], i32FPart[8]);
//
//			//
//			// Print the direction in the table.
//			//
//			UARTprintf("%3d.%03d\n", i32IPart[16], i32FPart[16]);
//			//
//			// Print the Eulers in a table.
//			//
//			UARTprintf("%3d.%03d, ", i32IPart[9], i32FPart[9]);
//			UARTprintf("%3d.%03d, ", i32IPart[10], i32FPart[10]);
//			UARTprintf("%3d.%03d\n", i32IPart[11], i32FPart[11]);
//
//			//
//			// Print the quaternions in a table format.
//			//
//			UARTprintf("\033[19;14H%3d.%03d", i32IPart[12], i32FPart[12]);
//			UARTprintf("\033[19;32H%3d.%03d", i32IPart[13], i32FPart[13]);
//			UARTprintf("\033[19;50H%3d.%03d", i32IPart[14], i32FPart[14]);
//			UARTprintf("\033[19;68H%3d.%03d", i32IPart[15], i32FPart[15]);

		}
	}
}
Beispiel #14
0
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{

	const uint8_t bufLength=10;
	char inputBuf[1];

	//
	// Configure the system frequency.
	//
	g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
			SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
			SYSCTL_CFG_VCO_480), 120000000);

	//
	// Configure the device pins for this board.
	//
	PinoutSet(false, false);

	//
	// Initialize the UART.
	//
	ConfigureUART();

	//
	// Print the welcome message to the terminal.
	//
	UARTprintf("\033[2J\033[H");
	UARTprintf("SHT21 Example\n");

	//
	// The I2C7 peripheral must be enabled before use.
	//
	// Note: For BoosterPack 2 interface use I2C8.
	//
	ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C8);
	//ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

	//
	// Configure the pin muxing for I2C7 functions on port D0 and D1.
	// This step is not necessary if your part does not support pin muxing.
	//
	// Note: For BoosterPack 2 interface use PA2 and PA3.
	//
	ROM_GPIOPinConfigure(GPIO_PA2_I2C8SCL);
	ROM_GPIOPinConfigure(GPIO_PA3_I2C8SDA);

	//
	// Select the I2C function for these pins.  This function will also
	// configure the GPIO pins pins for I2C operation, setting them to
	// open-drain operation with weak pull-ups.  Consult the data sheet
	// to see which functions are allocated per pin.
	//
	// Note: For BoosterPack 2 interface use PA2 and PA3.
	//
	ROM_GPIOPinTypeI2CSCL(GPIO_PORTA_BASE, GPIO_PIN_2);
	ROM_GPIOPinTypeI2C(GPIO_PORTA_BASE, GPIO_PIN_3);

	//
	// Keep only some parts of the systems running while in sleep mode.
	// GPIOE is for the ISL29023 interrupt pin.
	// UART0 is the virtual serial port.
	// I2C7 is the I2C interface to the ISL29023.
	//
	// Note: For BoosterPack 2 change this to I2C8.
	//
	ROM_SysCtlPeripheralClockGating(true);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOE);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
	ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C8);

	//
	// Enable interrupts to the processor.
	//
	ROM_IntMasterEnable();

	//
	// Initialize I2C7 peripheral.
	//
	// Note: For BoosterPack 2 use I2C8.
	//
	I2CMInit(&g_sI2CInst, I2C8_BASE, INT_I2C8, 0xff, 0xff, g_ui32SysClock);

	//
	// Turn on D2 to show we are starting an I2C transaction with the sensor.
	// This is turned off in the application callback.
	//
	LEDWrite(CLP_D1 | CLP_D2 , CLP_D2);

	//
	// Initialize the SHT21.
	//
	SHT21Init(&g_sSHT21Inst, &g_sI2CInst, SHT21_I2C_ADDRESS,
			SHT21AppCallback, &g_sSHT21Inst);

	//
	// Initialize the TMP006
	//
	TMP006Init(&g_sTMP006Inst, &g_sI2CInst, TMP006_I2C_ADDRESS,
			TMP006AppCallback, &g_sTMP006Inst);

	//
	// Wait for the I2C transactions to complete before moving forward.
	//
	SHT21AppI2CWait(__FILE__, __LINE__);

	//
	// Delay for 20 milliseconds for SHT21 reset to complete itself.
	// Datasheet says reset can take as long 15 milliseconds.
	//
	ROM_SysCtlDelay(g_ui32SysClock / (50 * 3));

	UARTprintf("Menu:\n");
	UARTprintf("h for Humidity \n");
	UARTprintf("t for Temperature \n");


	//
	// Loop Forever.
	//
	while(1)
	{
		if(UARTgets(inputBuf,bufLength)){
			if(inputBuf[0]=='h'){
				UARTprintf("Sensing Humidity Data:\n");
				printHumidityData();

			}
			else if(inputBuf[0]=='t'){
				UARTprintf("Sensing Temperature Data:\n");
				printTemperatureData();

			}

		}

	}
}
void MPU6050_Init(void){
		ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0);
		ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
		ROM_SysCtlDelay(3);
		ROM_GPIOPinConfigure(GPIO_PB2_I2C0SCL);
    ROM_GPIOPinConfigure(GPIO_PB3_I2C0SDA);
	
		ROM_GPIOPinTypeI2CSCL(GPIO_PORTB_BASE, GPIO_PIN_2);
		ROM_GPIOPinTypeI2C(GPIO_PORTB_BASE, GPIO_PIN_3);
	
		//ROM_GPIOPinTypeGPIOInput(GPIO_PORTB_BASE, GPIO_PIN_0);
    //GPIOIntEnable(GPIO_PORTB_BASE, GPIO_PIN_0);
    //ROM_GPIOIntTypeSet(GPIO_PORTB_BASE, GPIO_PIN_0, GPIO_FALLING_EDGE);
    //ROM_IntEnable(INT_GPIOB);
		ROM_I2CMasterEnable(I2C0_BASE);
		I2CMInit(&sI2CInst, I2C0_BASE, INT_I2C0, 0xff, 0xff, ROM_SysCtlClockGet());
		
		g_bMPU6050Done = false;
		MPU6050Init(&sMPU6050, &sI2CInst, 0x68, MPU6050_Callback, 0);
		while(!g_bMPU6050Done);
		
		g_bMPU6050Done = false;
		MPU6050ReadModifyWrite(&sMPU6050, MPU6050_O_PWR_MGMT_1,
		~MPU6050_PWR_MGMT_1_SLEEP,
		0, MPU6050_Callback,
		0);//从Sleep模式中激活设备,否则无法写入寄存器
		while(!g_bMPU6050Done);
		
		// Configure the MPU6050 for +/- 4 g accelerometer range.
		//
		g_bMPU6050Done = false;
		//先读取寄存器的值,再与上Mask,然后再或上Value,将得到的值写入寄存器
		MPU6050ReadModifyWrite(&sMPU6050, MPU6050_O_PWR_MGMT_1,
		~MPU6050_PWR_MGMT_1_CLKSEL_M,
		MPU6050_PWR_MGMT_1_CLKSEL_XG, MPU6050_Callback,
		0);
		while(!g_bMPU6050Done);
		
		g_bMPU6050Done = false;
		MPU6050ReadModifyWrite(&sMPU6050, MPU6050_O_ACCEL_CONFIG,
		~MPU6050_ACCEL_CONFIG_AFS_SEL_M,
		MPU6050_ACCEL_CONFIG_AFS_SEL_4G, MPU6050_Callback,
		0);
		while(!g_bMPU6050Done);
		
		g_bMPU6050Done = false;
		MPU6050ReadModifyWrite(&sMPU6050, MPU6050_O_CONFIG,
		~MPU6050_CONFIG_DLPF_CFG_M,
		MPU6050_CONFIG_DLPF_CFG_44_42, MPU6050_Callback,
		0);
		while(!g_bMPU6050Done);
		
		g_bMPU6050Done = false;
		MPU6050ReadModifyWrite(&sMPU6050, MPU6050_O_GYRO_CONFIG,
		~MPU6050_GYRO_CONFIG_FS_SEL_M,
		MPU6050_GYRO_CONFIG_FS_SEL_2000, MPU6050_Callback,
		0);
		while(!g_bMPU6050Done);
		
		MPU6050Read(&sMPU6050,MPU6050_O_WHO_AM_I,&deviceID,1,MPU6050_Callback,0);//MPU-60X0设备号默认0x68
		ROM_SysCtlDelay(ROM_SysCtlClockGet()/(3*1000));
		MPU6050Read(&sMPU6050,MPU6050_O_PWR_MGMT_1,&PowerInfo,1,MPU6050_Callback,0);//若读到的值是0x00,则设备处于激活状态。0x40则为休眠状态

}
//*****************************************************************************
//
// MPU9150 I2C pheripheral set up and sensor/compdcm initialization.
//
// Created by Bill Yiqiu Wang 2015/7/27
//
//*****************************************************************************
void
MPU9150Config(void *pvCallbackData, uint_fast8_t ui8Status)
{
    //
    // Enable port B used for motion interrupt.
    // Enable port E used for I2C communication
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE);


    //
    // The I2C2 peripheral must be enabled before use.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C2);

    //
    // Configure the pin muxing for I2C2 functions on port D0 and D1.
    //
    ROM_GPIOPinConfigure(GPIO_PE4_I2C2SCL);
    ROM_GPIOPinConfigure(GPIO_PE5_I2C2SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    GPIOPinTypeI2CSCL(GPIO_PORTE_BASE, GPIO_PIN_4);
    ROM_GPIOPinTypeI2C(GPIO_PORTE_BASE, GPIO_PIN_5);

    //
    // Configure and Enable the GPIO interrupt. Used for INT signal from the
    // MPU9150
    //
    ROM_GPIOPinTypeGPIOInput(GPIO_PORTB_BASE, GPIO_PIN_2);
    GPIOIntEnable(GPIO_PORTB_BASE, GPIO_PIN_2);
    ROM_GPIOIntTypeSet(GPIO_PORTB_BASE, GPIO_PIN_2, GPIO_FALLING_EDGE);
    ROM_IntEnable(INT_GPIOB);


    //
    // Keep the following function running even when system is sleeping (optional)
    // GPIOB is for the MPU9150 interrupt pin.
    // GPIOE is for I2C pin.
    // I2C2 is the I2C interface
    // TIMER0, TIMER1 and WTIMER5 are used by the RGB driver
    //
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOB);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_GPIOE);
    ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_I2C2);
    ROM_SysCtlPeripheralClockGating(true);

    //
    // Initialize I2C2 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C2_BASE, INT_I2C2, 0xff, 0xff,
             ROM_SysCtlClockGet());

    //
    // Initialize the MPU9150 Driver.
    //
    MPU9150Init(&g_sMPU9150Inst, &g_sI2CInst, MPU9150_I2C_ADDRESS,
                MPU9150AppCallback, &g_sMPU9150Inst);

	//
    // Wait for transaction to complete
    //
    MPU9150AppI2CWait(__FILE__, __LINE__);

    //
    // Write application specifice sensor configuration such as filter settings
    // and sensor range settings.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_CONFIG_DLPF_CFG_94_98;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_GYRO_CONFIG_FS_SEL_250;
    g_sMPU9150Inst.pui8Data[2] = (MPU9150_ACCEL_CONFIG_ACCEL_HPF_5HZ |
                                  MPU9150_ACCEL_CONFIG_AFS_SEL_2G);
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_CONFIG, g_sMPU9150Inst.pui8Data, 3,
                 MPU9150AppCallback, &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MPU9150AppI2CWait(__FILE__, __LINE__);

    //
    // Configure the data ready interrupt pin output of the MPU9150.
    //
    g_sMPU9150Inst.pui8Data[0] = MPU9150_INT_PIN_CFG_INT_LEVEL |
                                    MPU9150_INT_PIN_CFG_INT_RD_CLEAR |
                                    MPU9150_INT_PIN_CFG_LATCH_INT_EN;
    g_sMPU9150Inst.pui8Data[1] = MPU9150_INT_ENABLE_DATA_RDY_EN;
    MPU9150Write(&g_sMPU9150Inst, MPU9150_O_INT_PIN_CFG,
                 g_sMPU9150Inst.pui8Data, 2, MPU9150AppCallback,
                 &g_sMPU9150Inst);

    //
    // Wait for transaction to complete
    //
    MPU9150AppI2CWait(__FILE__, __LINE__);

    //
    // Initialize the DCM system. 50 hz sample rate.
    // accel weight = .2, gyro weight = .8, mag weight = .2
    //
    CompDCMInit(&g_sCompDCMInst, 1.0f / 50.0f, 0.2f, 0.6f, 0.2f);

}