Beispiel #1
0
void FIDA_ROOTINIT(int *nrtfn, int *ier)
{
  *ier = IDARootInit(IDA_idamem, *nrtfn, (IDARootFn) FIDArootfunc);
  IDA_nrtfn = *nrtfn;

  return;
}
CAMLprim value sundials_ml_ida_init(value ida_solver, value ida_ctxt) {
  CAMLparam2(ida_solver, ida_ctxt);

  assert (Tag_val(ida_ctxt) == 0);
  assert (Tag_val(Field(ida_ctxt, 0)) == Closure_tag);
  assert (Tag_val(Field(ida_ctxt, 1)) == 0 );
  assert (Tag_val(Field(Field(ida_ctxt, 1), 0)) == Double_tag );

  IDA_CTXT(ida_solver) = ida_ctxt;
  caml_register_global_root(&IDA_CTXT(ida_solver));  

  const realtype rt_t0 = Double_val(NUMSTATE_T0(ida_solver));
  value y0 = NUMSTATE_YY(ida_solver);
  value yp0 = NUMSTATE_YP(ida_solver);

  BA_STACK_NVECTOR(y0, nv_y0);
  BA_STACK_NVECTOR(yp0, nv_yp0);

  value gi = Field(EVENTSTATE(ida_solver), 3);
  const intnat ev_len = Caml_ba_array_val(gi)->dim[0];
  
  const int ret = IDAInit(IDA_MEM(ida_solver), &sundials_ml_residual_wrapper, rt_t0, &nv_y0, &nv_yp0);

  if (ev_len > 0) {
    IDARootInit(IDA_MEM(ida_solver), ev_len, sundials_ml_event_wrapper);
  }

  CAMLreturn(Val_int(ret));   
}
void IdaSolver::initialize(const double &pVoiStart, const double &pVoiEnd,
                           const int &pStatesCount, const int &pCondVarCount,
                           double *pConstants, double *pRates, double *pStates,
                           double *pAlgebraic, double *pCondVar,
                           ComputeEssentialVariablesFunction pComputeEssentialVariables,
                           ComputeResidualsFunction pComputeResiduals,
                           ComputeRootInformationFunction pComputeRootInformation,
                           ComputeStateInformationFunction pComputeStateInformation)
{
    static const double VoiEpsilon = 1.0e-9;

    if (!mSolver) {
        // Initialise the ODE solver itself

        OpenCOR::CoreSolver::CoreDaeSolver::initialize(pVoiStart, pVoiEnd,
                                                       pStatesCount,
                                                       pCondVarCount,
                                                       pConstants, pRates,
                                                       pStates, pAlgebraic,
                                                       pCondVar,
                                                       pComputeEssentialVariables,
                                                       pComputeResiduals,
                                                       pComputeRootInformation,
                                                       pComputeStateInformation);

        // Retrieve some of the IDA properties

        if (mProperties.contains(MaximumStepProperty))
            mMaximumStep = mProperties.value(MaximumStepProperty).toDouble();
        else
            emit error(QObject::tr("the 'maximum step' property value could not be retrieved"));

        if (mProperties.contains(MaximumNumberOfStepsProperty))
            mMaximumNumberOfSteps = mProperties.value(MaximumNumberOfStepsProperty).toInt();
        else
            emit error(QObject::tr("the 'maximum number of steps' property value could not be retrieved"));

        if (mProperties.contains(RelativeToleranceProperty))
            mRelativeTolerance = mProperties.value(RelativeToleranceProperty).toDouble();
        else
            emit error(QObject::tr("the 'relative tolerance' property value could not be retrieved"));

        if (mProperties.contains(AbsoluteToleranceProperty))
            mAbsoluteTolerance = mProperties.value(AbsoluteToleranceProperty).toDouble();
        else
            emit error(QObject::tr("the 'absolute tolerance' property value could not be retrieved"));

        // Create the states vector

        mStatesVector = N_VMake_Serial(pStatesCount, pStates);
        mRatesVector  = N_VMake_Serial(pStatesCount, pRates);

        // Create the IDA solver

        mSolver = IDACreate();

        // Use our own error handler

        IDASetErrHandlerFn(mSolver, errorHandler, this);

        // Initialise the IDA solver

        IDAInit(mSolver, residualFunction, pVoiStart,
                mStatesVector, mRatesVector);

        IDARootInit(mSolver, pCondVarCount, rootFindingFunction);
        //---GRY--- NEED TO CHECK THAT OUR IDA CODE WORKS AS EXPECTED BY TRYING
        //          IT OUT ON A MODEL WHICH NEEDS ROOT FINDING (E.G. THE
        //          SAUCERMAN MODEL)...

        // Set some user data

        delete mUserData;   // Just in case the solver got initialised before

        mUserData = new IdaSolverUserData(pConstants, pAlgebraic, pCondVar,
                                          pComputeEssentialVariables,
                                          pComputeResiduals,
                                          pComputeRootInformation);

        IDASetUserData(mSolver, mUserData);

        // Set the linear solver

        IDADense(mSolver, pStatesCount);

        // Set the maximum step

        IDASetMaxStep(mSolver, mMaximumStep);

        // Set the maximum number of steps

        IDASetMaxNumSteps(mSolver, mMaximumNumberOfSteps);

        // Set the relative and absolute tolerances

        IDASStolerances(mSolver, mRelativeTolerance, mAbsoluteTolerance);

        // Compute the model's initial conditions
        // Note: this requires retrieving the model's state information, setting
        //       the IDA object's id vector and then calling IDACalcIC()...

        double *id = new double[pStatesCount];

        pComputeStateInformation(id);

        N_Vector idVector = N_VMake_Serial(pStatesCount, id);

        IDASetId(mSolver, idVector);
        IDACalcIC(mSolver, IDA_YA_YDP_INIT,
                  pVoiStart+((pVoiEnd-pVoiStart > 0)?VoiEpsilon:-VoiEpsilon));

        N_VDestroy_Serial(idVector);

        delete[] id;
    } else {
        // Reinitialise the IDA object

        IDAReInit(mSolver, pVoiStart, mStatesVector, mRatesVector);

        // Compute the model's new initial conditions

        IDACalcIC(mSolver, IDA_YA_YDP_INIT,
                  pVoiStart+((pVoiEnd-pVoiStart > 0)?VoiEpsilon:-VoiEpsilon));
    }
}
Beispiel #4
0
void FIDA_ROOTFREE(void)
{
  IDARootInit(IDA_idamem, 0, NULL);

  return;
}
Beispiel #5
0
int main(void)
{
  void *mem;
  N_Vector yy, yp, avtol;
  realtype rtol, *yval, *ypval, *atval;
  realtype t0, tout1, tout, tret;
  int iout, retval, retvalr;
  int rootsfound[2];

  int nnz;

  mem = NULL;
  yy = yp = avtol = NULL;
  yval = ypval = atval = NULL;

  /* Allocate N-vectors. */
  yy = N_VNew_Serial(NEQ);
  if(check_flag((void *)yy, "N_VNew_Serial", 0)) return(1);
  yp = N_VNew_Serial(NEQ);
  if(check_flag((void *)yp, "N_VNew_Serial", 0)) return(1);
  avtol = N_VNew_Serial(NEQ);
  if(check_flag((void *)avtol, "N_VNew_Serial", 0)) return(1);

  /* Create and initialize  y, y', and absolute tolerance vectors. */
  yval  = NV_DATA_S(yy);
  yval[0] = ONE;
  yval[1] = ZERO;
  yval[2] = ZERO;

  ypval = NV_DATA_S(yp);
  ypval[0]  = RCONST(-0.04);
  ypval[1]  = RCONST(0.04);
  ypval[2]  = ZERO;  

  rtol = RCONST(1.0e-4);

  atval = NV_DATA_S(avtol);
  atval[0] = RCONST(1.0e-8);
  atval[1] = RCONST(1.0e-6);
  atval[2] = RCONST(1.0e-6);

  /* Integration limits */
  t0 = ZERO;
  tout1 = RCONST(0.4);

  PrintHeader(rtol, avtol, yy);

  /* Call IDACreate and IDAMalloc to initialize IDA memory */
  mem = IDACreate();
  if(check_flag((void *)mem, "IDACreate", 0)) return(1);
  retval = IDAInit(mem, resrob, t0, yy, yp);
  if(check_flag(&retval, "IDAInit", 1)) return(1);
  retval = IDASVtolerances(mem, rtol, avtol);
  if(check_flag(&retval, "IDASVtolerances", 1)) return(1);

  /* Free avtol */
  N_VDestroy_Serial(avtol);

  /* Call IDARootInit to specify the root function grob with 2 components */
  retval = IDARootInit(mem, 2, grob);
  if (check_flag(&retval, "IDARootInit", 1)) return(1);

  /* Call IDASuperLUMT and set up the linear solver. */
  nnz = NEQ * NEQ;
  retval = IDASuperLUMT(mem, 1, NEQ, nnz);
  if(check_flag(&retval, "IDASuperLUMT", 1)) return(1);
  retval = IDASlsSetSparseJacFn(mem, jacrob);
  if(check_flag(&retval, "IDASlsSetSparseJacFn", 1)) return(1);

  /* In loop, call IDASolve, print results, and test for error.
     Break out of loop when NOUT preset output times have been reached. */

  iout = 0; tout = tout1;
  while(1) {

    retval = IDASolve(mem, tout, &tret, yy, yp, IDA_NORMAL);

    PrintOutput(mem,tret,yy);

    if(check_flag(&retval, "IDASolve", 1)) return(1);

    if (retval == IDA_ROOT_RETURN) {
      retvalr = IDAGetRootInfo(mem, rootsfound);
      check_flag(&retvalr, "IDAGetRootInfo", 1);
      PrintRootInfo(rootsfound[0],rootsfound[1]);
    }

    if (retval == IDA_SUCCESS) {
      iout++;
      tout *= RCONST(10.0);
    }

    if (iout == NOUT) break;
  }

  PrintFinalStats(mem);

  /* Free memory */

  IDAFree(&mem);
  N_VDestroy_Serial(yy);
  N_VDestroy_Serial(yp);

  return(0);
  
}
Beispiel #6
0
int main(void)
{
  void *mem;
  N_Vector yy, yp, avtol;
  realtype rtol, *yval, *ypval, *atval;
  realtype t0, tout1, tout, tret;
  int iout, retval, retvalr;
  int rootsfound[2];
  SUNMatrix A;
  SUNLinearSolver LS;
  sunindextype nnz;

  mem = NULL;
  yy = yp = avtol = NULL;
  yval = ypval = atval = NULL;
  A = NULL;
  LS = NULL;

  /* Allocate N-vectors. */
  yy = N_VNew_Serial(NEQ);
  if(check_retval((void *)yy, "N_VNew_Serial", 0)) return(1);
  yp = N_VNew_Serial(NEQ);
  if(check_retval((void *)yp, "N_VNew_Serial", 0)) return(1);
  avtol = N_VNew_Serial(NEQ);
  if(check_retval((void *)avtol, "N_VNew_Serial", 0)) return(1);

  /* Create and initialize  y, y', and absolute tolerance vectors. */
  yval  = N_VGetArrayPointer(yy);
  yval[0] = ONE;
  yval[1] = ZERO;
  yval[2] = ZERO;

  ypval = N_VGetArrayPointer(yp);
  ypval[0]  = RCONST(-0.04);
  ypval[1]  = RCONST(0.04);
  ypval[2]  = ZERO;

  rtol = RCONST(1.0e-4);

  atval = N_VGetArrayPointer(avtol);
  atval[0] = RCONST(1.0e-8);
  atval[1] = RCONST(1.0e-6);
  atval[2] = RCONST(1.0e-6);

  /* Integration limits */
  t0 = ZERO;
  tout1 = RCONST(0.4);

  PrintHeader(rtol, avtol, yy);

  /* Call IDACreate and IDAInit to initialize IDA memory */
  mem = IDACreate();
  if(check_retval((void *)mem, "IDACreate", 0)) return(1);
  retval = IDAInit(mem, resrob, t0, yy, yp);
  if(check_retval(&retval, "IDAInit", 1)) return(1);
  /* Call IDASVtolerances to set tolerances */
  retval = IDASVtolerances(mem, rtol, avtol);
  if(check_retval(&retval, "IDASVtolerances", 1)) return(1);

  /* Free avtol */
  N_VDestroy(avtol);

  /* Call IDARootInit to specify the root function grob with 2 components */
  retval = IDARootInit(mem, 2, grob);
  if (check_retval(&retval, "IDARootInit", 1)) return(1);

  /* Create sparse SUNMatrix for use in linear solves */
  nnz = NEQ * NEQ;
  A = SUNSparseMatrix(NEQ, NEQ, nnz, CSC_MAT);
  if(check_retval((void *)A, "SUNSparseMatrix", 0)) return(1);

  /* Create SuperLUMT SUNLinearSolver object (one thread) */
  LS = SUNLinSol_SuperLUMT(yy, A, 1);
  if(check_retval((void *)LS, "SUNLinSol_SuperLUMT", 0)) return(1);

  /* Attach the matrix and linear solver */
  retval = IDASetLinearSolver(mem, LS, A);
  if(check_retval(&retval, "IDASetLinearSolver", 1)) return(1);

  /* Set the user-supplied Jacobian routine */
  retval = IDASetJacFn(mem, jacrob);
  if(check_retval(&retval, "IDASetJacFn", 1)) return(1);

  /* In loop, call IDASolve, print results, and test for error.
     Break out of loop when NOUT preset output times have been reached. */

  iout = 0; tout = tout1;
  while(1) {

    retval = IDASolve(mem, tout, &tret, yy, yp, IDA_NORMAL);

    PrintOutput(mem,tret,yy);

    if(check_retval(&retval, "IDASolve", 1)) return(1);

    if (retval == IDA_ROOT_RETURN) {
      retvalr = IDAGetRootInfo(mem, rootsfound);
      check_retval(&retvalr, "IDAGetRootInfo", 1);
      PrintRootInfo(rootsfound[0],rootsfound[1]);
    }

    if (retval == IDA_SUCCESS) {
      iout++;
      tout *= RCONST(10.0);
    }

    if (iout == NOUT) break;
  }

  PrintFinalStats(mem);

  /* Free memory */

  IDAFree(&mem);
  SUNLinSolFree(LS);
  SUNMatDestroy(A);
  N_VDestroy(yy);
  N_VDestroy(yp);

  return(0);

}
Beispiel #7
0
void Ida::initialize()
{
  _properties = dynamic_cast<ISystemProperties*>(_system);
  _continuous_system = dynamic_cast<IContinuous*>(_system);
  _event_system = dynamic_cast<IEvent*>(_system);
  _mixed_system = dynamic_cast<IMixedSystem*>(_system);
  _time_system = dynamic_cast<ITime*>(_system);
  IGlobalSettings* global_settings = dynamic_cast<ISolverSettings*>(_idasettings)->getGlobalSettings();
  // Kennzeichnung, dass initialize()() (vor der Integration) aufgerufen wurde
  _idid = 5000;
  _tLastEvent = 0.0;
  _event_n = 0;
  SolverDefaultImplementation::initialize();

  _dimStates = _continuous_system->getDimContinuousStates();
  _dimZeroFunc = _event_system->getDimZeroFunc()+_event_system->getDimClock();
  _dimAE = _continuous_system->getDimAE();
   if(_dimAE>0)
		_dimSys=_dimAE+ _dimStates;
	else
		_dimSys=_dimStates;
  if (_dimStates <= 0)

  {
    _idid = -1;
    throw std::invalid_argument("Ida::initialize()");
  }
  else
  {
    // Allocate state vectors, stages and temporary arrays

   /*if (_z)
      delete[] _z;
    if (_zInit)
      delete[] _zInit;
    if (_zWrite)
      delete[] _zWrite;*/
    if (_y)
      delete[] _y;
    if (_yInit)
      delete[] _yInit;
    if (_yWrite)
      delete[] _yWrite;
    if (_ypWrite)
      delete[] _ypWrite;
    if (_yp)
      delete[] _yp;
    if (_dae_res)
      delete[] _dae_res;
    if (_zeroSign)
      delete[] _zeroSign;
    if (_absTol)
      delete[] _absTol;
    if(_delta)
      delete [] _delta;
    if(_deltaInv)
      delete [] _deltaInv;
    if(_ysave)
      delete [] _ysave;


	_y = new double[_dimSys];
	_yp = new double[_dimSys];
    _yInit = new double[_dimSys];
    _yWrite = new double[_dimSys];
	_ypWrite = new double[_dimSys];
	_dae_res = new double[_dimSys];
	/*
	_z = new double[_dimSys];
    _zInit = new double[_dimSys];
    _zWrite = new double[_dimSys];
	*/

    _zeroSign = new int[_dimZeroFunc];
    _absTol = new double[_dimSys];
    _delta =new double[_dimSys];
    _deltaInv =new double[_dimSys];
    _ysave =new double[_dimSys];

    memset(_y, 0, _dimSys * sizeof(double));
	memset(_yp, 0, _dimSys * sizeof(double));
    memset(_yInit, 0, _dimSys * sizeof(double));
    memset(_ysave, 0, _dimSys * sizeof(double));
	 std::fill_n(_absTol, _dimSys, 1.0);
    // Counter initialisieren
    _outStps = 0;

    if (_idasettings->getDenseOutput())
    {
      // Ausgabeschrittweite
      _hOut = global_settings->gethOutput();

    }

    // Allocate memory for the solver
    _idaMem = IDACreate();
    if (check_flag((void*) _idaMem, "IDACreate", 0))
    {
      _idid = -5;
      throw std::invalid_argument(/*_idid,_tCurrent,*/"Ida::initialize()");
    }

    //
    // Make Ida ready for integration
    //

    // Set initial values for IDA
    //_continuous_system->evaluateAll(IContinuous::CONTINUOUS);
   _continuous_system->getContinuousStates(_yInit);
    memcpy(_y, _yInit, _dimStates * sizeof(double));
    if(_dimAE>0)
	{
       _mixed_system->getAlgebraicDAEVars(_yInit+_dimStates);
	    memcpy(_y+_dimStates, _yInit+_dimStates, _dimAE * sizeof(double));
	  _continuous_system->getContinuousStates(_yp);
	}
    // Get nominal values
	 _continuous_system->getNominalStates(_absTol);
    for (int i = 0; i < _dimStates; i++)
	    _absTol[i] = dynamic_cast<ISolverSettings*>(_idasettings)->getATol();

    _CV_y0 = N_VMake_Serial(_dimSys, _yInit);
    _CV_y = N_VMake_Serial(_dimSys, _y);
    _CV_yp = N_VMake_Serial(_dimSys, _yp);
    _CV_yWrite = N_VMake_Serial(_dimSys, _yWrite);
	_CV_ypWrite = N_VMake_Serial(_dimSys, _ypWrite);
    _CV_absTol = N_VMake_Serial(_dimSys, _absTol);

    if (check_flag((void*) _CV_y0, "N_VMake_Serial", 0))
    {
      _idid = -5;
      throw std::invalid_argument("Ida::initialize()");
    }

	//is already initialized: calcFunction(_tCurrent, NV_DATA_S(_CV_y0), NV_DATA_S(_CV_yp),NV_DATA_S(_CV_yp));

    // Initialize Ida (Initial values are required)
    _idid = IDAInit(_idaMem, rhsFunctionCB, _tCurrent, _CV_y0, _CV_yp);
    if (_idid < 0)
    {
      _idid = -5;
      throw std::invalid_argument("Ida::initialize()");
    }
	_idid = IDASetErrHandlerFn(_idaMem, errOutputIDA, _data);
	 if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");
    // Set Tolerances
    _idid = IDASVtolerances(_idaMem, dynamic_cast<ISolverSettings*>(_idasettings)->getRTol(), _CV_absTol);    // RTOL and ATOL
    if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");

    // Set the pointer to user-defined data
    _idid = IDASetUserData(_idaMem, _data);
    if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");

    _idid = IDASetInitStep(_idaMem, 1e-6);    // INITIAL STEPSIZE
    if (_idid < 0)
      throw std::invalid_argument("Ida::initialize()");


    _idid = IDASetMaxStep(_idaMem, global_settings->getEndTime() / 10.0);       // MAXIMUM STEPSIZE
    if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");

    _idid = IDASetMaxNonlinIters(_idaMem, 5);      // Max number of iterations
    if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");
    _idid = IDASetMaxErrTestFails(_idaMem, 100);
    if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");

    _idid = IDASetMaxNumSteps(_idaMem, 1e3);            // Max Number of steps
    if (_idid < 0)
      throw std::invalid_argument(/*_idid,_tCurrent,*/"IDA::initialize()");

    // Initialize linear solver
    _idid = IDADense(_idaMem, _dimSys);
    if (_idid < 0)
      throw std::invalid_argument("IDA::initialize()");
    if(_dimAE>0)
	{
	    _idid = IDASetSuppressAlg(_idaMem, TRUE);
        double* tmp = new double[_dimSys];
	    std::fill_n(tmp, _dimStates, 1.0);
	    std::fill_n(tmp+_dimStates, _dimAE, 0.0);
	   _idid = IDASetId(_idaMem, N_VMake_Serial(_dimSys,tmp));
	    delete [] tmp;
	    if (_idid < 0)
         throw std::invalid_argument("IDA::initialize()");
	}

  // Use own jacobian matrix
  //_idid = CVDlsSetDenseJacFn(_idaMem, &jacobianFunctionCB);
  //if (_idid < 0)
  //    throw std::invalid_argument("IDA::initialize()");

    if (_dimZeroFunc)
    {
      _idid = IDARootInit(_idaMem, _dimZeroFunc, &zeroFunctionCB);

      memset(_zeroSign, 0, _dimZeroFunc * sizeof(int));
      _idid = IDASetRootDirection(_idaMem, _zeroSign);
      if (_idid < 0)
        throw std::invalid_argument(/*_idid,_tCurrent,*/"IDA::initialize()");
      memset(_zeroSign, -1, _dimZeroFunc * sizeof(int));
      memset(_zeroVal, -1, _dimZeroFunc * sizeof(int));

    }


    _ida_initialized = true;

    //
    // IDA is ready for integration
    //
    // BOOST_LOG_SEV(ida_lg::get(), ida_info) << "IDA initialized";
  }
}
Beispiel #8
0
void SundialsIda::initialize()
{
    sundialsMem = IDACreate();
    if (check_flag((void *)sundialsMem, "IDACreate", 0)) {
        throw DebugException("SundialsIda::initialize: error in IDACreate");
    }

    IDASetUserData(sundialsMem, theDAE);

    int flag;
    if (calcIC)    {
        // Pick an appropriate initial condition for ydot and algebraic components of y
        flag = IDASetId(sundialsMem, componentId.forSundials());
    }

    flag = IDAInit(sundialsMem, f, t0, y.forSundials(), ydot.forSundials());
    if (check_flag(&flag, "IDAMalloc", 1)) {
        throw DebugException("SundialsIda::initialize: error in IDAInit");
    }

    IDASVtolerances(sundialsMem, reltol, abstol.forSundials());

    if (findRoots) {
        rootsFound.resize(nRoots);
        // Call IDARootInit to specify the root function g with nRoots components
        flag = IDARootInit(sundialsMem, nRoots, g);
        if (check_flag(&flag, "IDARootInit", 1)) {
            throw DebugException("SundialsIda::initialize: error in IDARootInit");
        }
    }

    // Call IDASpbcg to specify the IDASpbcg dense linear solver
    flag = IDASpbcg(sundialsMem, 0);
    if (check_flag(&flag, "IDASpbcg", 1)) {
        throw DebugException("SundialsIda::initialize: error in IDASpbcg");
    }

    if (imposeConstraints) {
        flag = IDASetConstraints(sundialsMem, constraints.forSundials());
        if (check_flag(&flag, "IDASetConstraints", 1)) {
            throw DebugException("SundialsIda::initialize: error in IDASetConstraints");
        }
    }

    // this seems to work better using the default J-v function rather than specifying our own...
    //flag = IDASpilsSetJacTimesVecFn(sundialsMem, JvProd, theDAE);
    //if (check_flag(&flag, "IDASpilsSetJacTimesVecFn", 1)) {
    //    throw myException("SundialsIda::initialize: error in IDASpilsSetJacTimesVecFn");
    //}

    flag = IDASpilsSetPreconditioner(sundialsMem, preconditionerSetup, preconditionerSolve);
    if (check_flag(&flag, "IDASpilsSetPreconditioner", 1)) {
        throw DebugException("SundialsIda::initialize: error in IDASpilsSetPreconditioner");
    }

    if (calcIC) {
        flag = IDACalcIC(sundialsMem, IDA_YA_YDP_INIT, t0+1e-4);
        if (check_flag(&flag, "IDACalcIC", 1)) {
            logFile.write("IDACalcIC Error");
            throw DebugException("SundialsIda::initialize: error in IDACalcIC");
        }

        flag = IDAGetConsistentIC(sundialsMem, y0.forSundials(), ydot0.forSundials());
        if (check_flag(&flag, "IDAGetConsistentIC", 1)) {
            throw DebugException("SundialsIda::initialize: error in IDAGetConsistentIC");
        }
    }

}