Beispiel #1
0
void eval_log(T& result, const T& arg)
{
   BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log function is only valid for floating point types.");
   //
   // We use a variation of http://dlmf.nist.gov/4.45#i
   // using frexp to reduce the argument to x * 2^n,
   // then let y = x - 1 and compute:
   // log(x) = log(2) * n + log1p(1 + y)
   //
   typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
   typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
   typedef typename T::exponent_type exp_type;
   typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;
   typedef typename mpl::front<typename T::float_types>::type fp_type;

   exp_type e;
   T t;
   eval_frexp(t, arg, &e);
   bool alternate = false;

   if(t.compare(fp_type(2) / fp_type(3)) <= 0)
   {
      alternate = true;
      eval_ldexp(t, t, 1);
      --e;
   }
   
   eval_multiply(result, get_constant_ln2<T>(), canonical_exp_type(e));
   INSTRUMENT_BACKEND(result);
   eval_subtract(t, ui_type(1)); /* -0.3 <= t <= 0.3 */
   if(!alternate)
      t.negate(); /* 0 <= t <= 0.33333 */
   T pow = t;
   T lim;
   T t2;

   if(alternate)
      eval_add(result, t);
   else
      eval_subtract(result, t);

   eval_multiply(lim, result, std::numeric_limits<number<T, et_on> >::epsilon().backend());
   if(eval_get_sign(lim) < 0)
      lim.negate();
   INSTRUMENT_BACKEND(lim);

   ui_type k = 1;
   do
   {
      ++k;
      eval_multiply(pow, t);
      eval_divide(t2, pow, k);
      INSTRUMENT_BACKEND(t2);
      if(alternate && ((k & 1) != 0))
         eval_add(result, t2);
      else
         eval_subtract(result, t2);
      INSTRUMENT_BACKEND(result);
   }while(lim.compare(t2) < 0);
}
Beispiel #2
0
void calc_log2(T& num, unsigned digits)
{
   typedef typename geofeatures_boost::multiprecision::detail::canonical<geofeatures_boost::uint32_t, T>::type ui_type;
   typedef typename mpl::front<typename T::signed_types>::type si_type;

   //
   // String value with 1100 digits:
   //
   static const char* string_val = "0."
        "6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875"
        "4200148102057068573368552023575813055703267075163507596193072757082837143519030703862389167347112335"
        "0115364497955239120475172681574932065155524734139525882950453007095326366642654104239157814952043740"
        "4303855008019441706416715186447128399681717845469570262716310645461502572074024816377733896385506952"
        "6066834113727387372292895649354702576265209885969320196505855476470330679365443254763274495125040606"
        "9438147104689946506220167720424524529612687946546193165174681392672504103802546259656869144192871608"
        "2938031727143677826548775664850856740776484514644399404614226031930967354025744460703080960850474866"
        "3852313818167675143866747664789088143714198549423151997354880375165861275352916610007105355824987941"
        "4729509293113897155998205654392871700072180857610252368892132449713893203784393530887748259701715591"
        "0708823683627589842589185353024363421436706118923678919237231467232172053401649256872747782344535347"
        "6481149418642386776774406069562657379600867076257199184734022651462837904883062033061144630073719489";
   //
   // Check if we can just construct from string:
   //
   if(digits  < 3640)  // 3640 binary digits ~ 1100 decimal digits
   {
      num = string_val;
      return;
   }
   //
   // We calculate log2 from using the formula:
   //
   // ln(2) = 3/4 SUM[n>=0] ((-1)^n * N!^2 / (2^n(2n+1)!))
   //
   // Numerator and denominator are calculated separately and then 
   // divided at the end, we also precalculate the terms up to n = 5
   // since these fit in a 32-bit integer anyway.
   //
   // See Gourdon, X., and Sebah, P. The logarithmic constant: log 2, Jan. 2004.
   // Also http://www.mpfr.org/algorithms.pdf.
   //
   num = static_cast<ui_type>(1180509120uL);
   T denom, next_term, temp;
   denom = static_cast<ui_type>(1277337600uL);
   next_term = static_cast<ui_type>(120uL);
   si_type sign = -1;

   ui_type limit = digits / 3 + 1;

   for(ui_type n = 6; n < limit; ++n)
   {
      temp = static_cast<ui_type>(2);
      eval_multiply(temp, ui_type(2 * n));
      eval_multiply(temp, ui_type(2 * n + 1));
      eval_multiply(num, temp);
      eval_multiply(denom, temp);
      sign = -sign;
      eval_multiply(next_term, n);
      eval_multiply(temp, next_term, next_term);
      if(sign < 0)
         temp.negate();
      eval_add(num, temp);
   }
   eval_multiply(denom, ui_type(4));
   eval_multiply(num, ui_type(3));
   INSTRUMENT_BACKEND(denom);
   INSTRUMENT_BACKEND(num);
   eval_divide(num, denom);
   INSTRUMENT_BACKEND(num);
}