Beispiel #1
0
void dump_chip_info(HAL_VERSION	ChipVersion)
{
	if(IS_81XXC(ChipVersion)){
		DBG_871X("Chip Version Info: %s_",IS_92C_SERIAL(ChipVersion)?"CHIP_8192C":"CHIP_8188C");
	}
	else if(IS_92D(ChipVersion)){
		DBG_871X("Chip Version Info: CHIP_8192D_");
	}
	else if(IS_8723_SERIES(ChipVersion)){
		DBG_871X("Chip Version Info: CHIP_8723A_");
	}
	else if(IS_8188E(ChipVersion)){
		DBG_871X("Chip Version Info: CHIP_8188E_");
	}

	DBG_871X("%s_",IS_NORMAL_CHIP(ChipVersion)?"Normal_Chip":"Test_Chip");	
	DBG_871X("%s_",IS_CHIP_VENDOR_TSMC(ChipVersion)?"TSMC":"UMC");
	if(IS_A_CUT(ChipVersion)) DBG_871X("A_CUT_");	
	else if(IS_B_CUT(ChipVersion)) DBG_871X("B_CUT_");	
	else if(IS_C_CUT(ChipVersion)) DBG_871X("C_CUT_");	
	else if(IS_D_CUT(ChipVersion)) DBG_871X("D_CUT_");	
	else if(IS_E_CUT(ChipVersion)) DBG_871X("E_CUT_");	
	else DBG_871X("UNKNOWN_CUT(%d)_",ChipVersion.CUTVersion);
	
	if(IS_1T1R(ChipVersion))	DBG_871X("1T1R_");	
	else if(IS_1T2R(ChipVersion))	DBG_871X("1T2R_");	
	else if(IS_2T2R(ChipVersion))	DBG_871X("2T2R_");
	else DBG_871X("UNKNOWN_RFTYPE(%d)_",ChipVersion.RFType);

	
	DBG_871X("RomVer(%d)\n",ChipVersion.ROMVer);	
}
Beispiel #2
0
static int rtl92cu_init_sw_vars(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	int err;

	rtlpriv->dm.dm_initialgain_enable = true;
	rtlpriv->dm.dm_flag = 0;
	rtlpriv->dm.disable_framebursting = false;
	rtlpriv->dm.thermalvalue = 0;
	rtlpriv->dbg.global_debuglevel = rtlpriv->cfg->mod_params->debug;

	/* for firmware buf */
	rtlpriv->rtlhal.pfirmware = vzalloc(0x4000);
	if (!rtlpriv->rtlhal.pfirmware) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
			 "Can't alloc buffer for fw\n");
		return 1;
	}
	if (IS_VENDOR_UMC_A_CUT(rtlpriv->rtlhal.version) &&
	    !IS_92C_SERIAL(rtlpriv->rtlhal.version)) {
		rtlpriv->cfg->fw_name = "rtlwifi/rtl8192cufw_A.bin";
	} else if (IS_81xxC_VENDOR_UMC_B_CUT(rtlpriv->rtlhal.version)) {
		rtlpriv->cfg->fw_name = "rtlwifi/rtl8192cufw_B.bin";
	} else {
		rtlpriv->cfg->fw_name = "rtlwifi/rtl8192cufw_TMSC.bin";
	}
	/* provide name of alternative file */
	rtlpriv->cfg->alt_fw_name = "rtlwifi/rtl8192cufw.bin";
	pr_info("Loading firmware %s\n", rtlpriv->cfg->fw_name);
	rtlpriv->max_fw_size = 0x4000;
	err = request_firmware_nowait(THIS_MODULE, 1,
				      rtlpriv->cfg->fw_name, rtlpriv->io.dev,
				      GFP_KERNEL, hw, rtl_fw_cb);
	return err;
}
Beispiel #3
0
bool rtl92cu_phy_config_rf_with_headerfile( struct ieee80211_hw *hw,
					  enum radio_path rfpath )
{
	int i;
	u32 *radioa_array_table;
	u32 *radiob_array_table;
	u16 radioa_arraylen, radiob_arraylen;
	struct rtl_priv *rtlpriv = rtl_priv( hw );
	struct rtl_hal *rtlhal = rtl_hal( rtl_priv( hw ) );
	struct rtl_phy *rtlphy = &( rtlpriv->phy );

	if ( IS_92C_SERIAL( rtlhal->version ) ) {
		radioa_arraylen = rtlphy->hwparam_tables[RADIOA_2T].length;
		radioa_array_table = rtlphy->hwparam_tables[RADIOA_2T].pdata;
		radiob_arraylen = rtlphy->hwparam_tables[RADIOB_2T].length;
		radiob_array_table = rtlphy->hwparam_tables[RADIOB_2T].pdata;
		RT_TRACE( rtlpriv, COMP_INIT, DBG_TRACE,
			 "Radio_A:RTL8192CERADIOA_2TARRAY\n" );
		RT_TRACE( rtlpriv, COMP_INIT, DBG_TRACE,
			 "Radio_B:RTL8192CE_RADIOB_2TARRAY\n" );
	} else {
		radioa_arraylen = rtlphy->hwparam_tables[RADIOA_1T].length;
		radioa_array_table = rtlphy->hwparam_tables[RADIOA_1T].pdata;
		radiob_arraylen = rtlphy->hwparam_tables[RADIOB_1T].length;
		radiob_array_table = rtlphy->hwparam_tables[RADIOB_1T].pdata;
		RT_TRACE( rtlpriv, COMP_INIT, DBG_TRACE,
			 "Radio_A:RTL8192CE_RADIOA_1TARRAY\n" );
		RT_TRACE( rtlpriv, COMP_INIT, DBG_TRACE,
			 "Radio_B:RTL8192CE_RADIOB_1TARRAY\n" );
	}
	RT_TRACE( rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath );
	switch ( rfpath ) {
	case RF90_PATH_A:
		for ( i = 0; i < radioa_arraylen; i = i + 2 ) {
			rtl_rfreg_delay( hw, rfpath, radioa_array_table[i],
					RFREG_OFFSET_MASK,
					radioa_array_table[i + 1] );
		}
		break;
	case RF90_PATH_B:
		for ( i = 0; i < radiob_arraylen; i = i + 2 ) {
			rtl_rfreg_delay( hw, rfpath, radiob_array_table[i],
					RFREG_OFFSET_MASK,
					radiob_array_table[i + 1] );
		}
		break;
	case RF90_PATH_C:
		RT_TRACE( rtlpriv, COMP_ERR, DBG_EMERG,
			 "switch case not processed\n" );
		break;
	case RF90_PATH_D:
		RT_TRACE( rtlpriv, COMP_ERR, DBG_EMERG,
			 "switch case not processed\n" );
		break;
	default:
		break;
	}
	return true;
}
Beispiel #4
0
bool _rtl92cu_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
					    u8 configtype)
{
	int i;
	u32 *phy_regarray_table;
	u32 *agctab_array_table;
	u16 phy_reg_arraylen, agctab_arraylen;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	if (IS_92C_SERIAL(rtlhal->version)) {
		agctab_arraylen = rtlphy->hwparam_tables[AGCTAB_2T].length;
		agctab_array_table =  rtlphy->hwparam_tables[AGCTAB_2T].pdata;
		phy_reg_arraylen = rtlphy->hwparam_tables[PHY_REG_2T].length;
		phy_regarray_table = rtlphy->hwparam_tables[PHY_REG_2T].pdata;
	} else {
		agctab_arraylen = rtlphy->hwparam_tables[AGCTAB_1T].length;
		agctab_array_table =  rtlphy->hwparam_tables[AGCTAB_1T].pdata;
		phy_reg_arraylen = rtlphy->hwparam_tables[PHY_REG_1T].length;
		phy_regarray_table = rtlphy->hwparam_tables[PHY_REG_1T].pdata;
	}
	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_reg_arraylen; i = i + 2) {
			if (phy_regarray_table[i] == 0xfe)
				mdelay(50);
			else if (phy_regarray_table[i] == 0xfd)
				mdelay(5);
			else if (phy_regarray_table[i] == 0xfc)
				mdelay(1);
			else if (phy_regarray_table[i] == 0xfb)
				udelay(50);
			else if (phy_regarray_table[i] == 0xfa)
				udelay(5);
			else if (phy_regarray_table[i] == 0xf9)
				udelay(1);
			rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD,
				      phy_regarray_table[i + 1]);
			udelay(1);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
				 ("The phy_regarray_table[0] is %x"
				  " Rtl819XPHY_REGArray[1] is %x\n",
				  phy_regarray_table[i],
				  phy_regarray_table[i + 1]));
		}
	} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
		for (i = 0; i < agctab_arraylen; i = i + 2) {
			rtl_set_bbreg(hw, agctab_array_table[i], MASKDWORD,
				      agctab_array_table[i + 1]);
			udelay(1);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
				 ("The agctab_array_table[0] is "
				  "%x Rtl819XPHY_REGArray[1] is %x\n",
				  agctab_array_table[i],
				  agctab_array_table[i + 1]));
		}
	}
	return true;
}
Beispiel #5
0
bool rtl92c_phy_mac_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	bool is92c = IS_92C_SERIAL(rtlhal->version);
	bool rtstatus = _rtl92c_phy_config_mac_with_headerfile(hw);

	if (is92c)
		rtl_write_byte(rtlpriv, 0x14, 0x71);
	return rtstatus;
}
Beispiel #6
0
bool _rtl92ce_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
					    u8 configtype)
{
	int i;
	u32 *phy_regarray_table;
	u32 *agctab_array_table;
	u16 phy_reg_arraylen, agctab_arraylen;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));

	if (IS_92C_SERIAL(rtlhal->version)) {
		agctab_arraylen = AGCTAB_2TARRAYLENGTH;
		agctab_array_table = RTL8192CEAGCTAB_2TARRAY;
		phy_reg_arraylen = PHY_REG_2TARRAY_LENGTH;
		phy_regarray_table = RTL8192CEPHY_REG_2TARRAY;
	} else {
		agctab_arraylen = AGCTAB_1TARRAYLENGTH;
		agctab_array_table = RTL8192CEAGCTAB_1TARRAY;
		phy_reg_arraylen = PHY_REG_1TARRAY_LENGTH;
		phy_regarray_table = RTL8192CEPHY_REG_1TARRAY;
	}
	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_reg_arraylen; i = i + 2) {
			rtl_addr_delay(phy_regarray_table[i]);
			rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD,
				      phy_regarray_table[i + 1]);
			udelay(1);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
				 "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
				 phy_regarray_table[i],
				 phy_regarray_table[i + 1]);
		}
	} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
		for (i = 0; i < agctab_arraylen; i = i + 2) {
			rtl_set_bbreg(hw, agctab_array_table[i], MASKDWORD,
				      agctab_array_table[i + 1]);
			udelay(1);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
				 "The agctab_array_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
				 agctab_array_table[i],
				 agctab_array_table[i + 1]);
		}
	}
	return true;
}
Beispiel #7
0
static int rtl92cu_init_sw_vars(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	int err;
	char *fw_name;

	rtlpriv->dm.dm_initialgain_enable = true;
	rtlpriv->dm.dm_flag = 0;
	rtlpriv->dm.disable_framebursting = false;
	rtlpriv->dm.thermalvalue = 0;
	rtlpriv->cfg->mod_params->sw_crypto =
		rtlpriv->cfg->mod_params->sw_crypto;

	/* for firmware buf */
	rtlpriv->rtlhal.pfirmware = vzalloc(0x4000);
	if (!rtlpriv->rtlhal.pfirmware) {
		pr_err("Can't alloc buffer for fw\n");
		return 1;
	}
	if (IS_VENDOR_UMC_A_CUT(rtlpriv->rtlhal.version) &&
	    !IS_92C_SERIAL(rtlpriv->rtlhal.version)) {
		fw_name = "rtlwifi/rtl8192cufw_A.bin";
	} else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlpriv->rtlhal.version)) {
		fw_name = "rtlwifi/rtl8192cufw_B.bin";
	} else {
		fw_name = "rtlwifi/rtl8192cufw_TMSC.bin";
	}
	/* provide name of alternative file */
	rtlpriv->cfg->alt_fw_name = "rtlwifi/rtl8192cufw.bin";
	pr_info("Loading firmware %s\n", fw_name);
	rtlpriv->max_fw_size = 0x4000;
	err = request_firmware_nowait(THIS_MODULE, 1,
				      fw_name, rtlpriv->io.dev,
				      GFP_KERNEL, hw, rtl_fw_cb);
	if (err) {
		vfree(rtlpriv->rtlhal.pfirmware);
		rtlpriv->rtlhal.pfirmware = NULL;
	}
	return err;
}
Beispiel #8
0
VOID
odm_PathDiversityAfterLink_92C(
	IN	PADAPTER	Adapter
)
{
	HAL_DATA_TYPE		*pHalData = GET_HAL_DATA(Adapter);
	PDM_ODM_T		pDM_Odm = &pHalData->DM_OutSrc;
	pPD_T		pDM_PDTable = &Adapter->DM_PDTable;
	u1Byte		DefaultRespPath=0;

	if((!(pHalData->CVID_Version==VERSION_1_BEFORE_8703B && IS_92C_SERIAL(pHalData->VersionID))) || (pHalData->PathDivCfg != 1) || (pHalData->eRFPowerState == eRfOff))
	{
		if(pHalData->PathDivCfg == 0)
		{
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("No ODM_TXPathDiversity()\n"));
		}
		else
		{
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("2T ODM_TXPathDiversity()\n"));
		}
		return;
	}
	if(!odm_IsConnected_92C(Adapter))
	{
		RT_TRACE(	COMP_INIT, DBG_LOUD, ("ODM_TXPathDiversity(): No Connections\n"));
		return;
	}
	
	
	if(pDM_PDTable->TrainingState == 0)
	{
		RT_TRACE(	COMP_INIT, DBG_LOUD, ("ODM_TXPathDiversity() ==>\n"));
		odm_OFDMTXPathDiversity_92C(Adapter);

		if((pDM_PDTable->CCKPathDivEnable == TRUE) && (pDM_PDTable->OFDM_Pkt_Cnt < 100))
		{
			//RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_CCKTXPathDiversity_92C: TrainingState=0\n"));
			
			if(pDM_PDTable->CCK_Pkt_Cnt > 300)
				pDM_PDTable->Timer = 20;
			else if(pDM_PDTable->CCK_Pkt_Cnt > 100)
				pDM_PDTable->Timer = 60;
			else
				pDM_PDTable->Timer = 250;
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_CCKTXPathDiversity_92C: timer=%d\n",pDM_PDTable->Timer));

			PHY_SetBBReg(Adapter, rCCK0_AFESetting  , 0x0F000000, 0x00); // RX path = PathA
			pDM_PDTable->TrainingState = 1;
			pHalData->RSSI_test = TRUE;
			ODM_SetTimer( pDM_Odm, &pDM_Odm->CCKPathDiversityTimer, pDM_PDTable->Timer); //ms
		}
		else
		{
			pDM_PDTable->CCKTXPath = pDM_PDTable->OFDMTXPath;
			DefaultRespPath = pDM_PDTable->OFDMDefaultRespPath;
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_SetRespPath_92C: Skip odm_CCKTXPathDiversity_92C, DefaultRespPath is OFDM\n"));
			odm_SetRespPath_92C(Adapter, DefaultRespPath);
			odm_ResetPathDiversity_92C(Adapter);
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("ODM_TXPathDiversity() <==\n"));
		}
	}
	else if(pDM_PDTable->TrainingState == 1)
	{		
		//RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_CCKTXPathDiversity_92C: TrainingState=1\n"));
		PHY_SetBBReg(Adapter, rCCK0_AFESetting  , 0x0F000000, 0x05); // RX path = PathB
		pDM_PDTable->TrainingState = 2;
		ODM_SetTimer( pDM_Odm, &pDM_Odm->CCKPathDiversityTimer, pDM_PDTable->Timer); //ms
	}
	else
	{
		//RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_CCKTXPathDiversity_92C: TrainingState=2\n"));
		pDM_PDTable->TrainingState = 0;	
		odm_CCKTXPathDiversity_92C(Adapter); 
		if(pDM_PDTable->OFDM_Pkt_Cnt != 0)
		{
			DefaultRespPath = pDM_PDTable->OFDMDefaultRespPath;
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_SetRespPath_92C: DefaultRespPath is OFDM\n"));
		}
		else
		{
			DefaultRespPath = pDM_PDTable->CCKDefaultRespPath;
			RT_TRACE(	COMP_INIT, DBG_LOUD, ("odm_SetRespPath_92C: DefaultRespPath is CCK\n"));
		}
		odm_SetRespPath_92C(Adapter, DefaultRespPath);
		odm_ResetPathDiversity_92C(Adapter);
		RT_TRACE(	COMP_INIT, DBG_LOUD, ("ODM_TXPathDiversity() <==\n"));
	}

}
Beispiel #9
0
BOOLEAN
ODM_PathDiversityBeforeLink92C(
	//IN	PADAPTER	Adapter
	IN		PDM_ODM_T		pDM_Odm
	)
{
#if (RT_MEM_SIZE_LEVEL != RT_MEM_SIZE_MINIMUM)
	PADAPTER		Adapter = pDM_Odm->Adapter;
	HAL_DATA_TYPE*	pHalData = NULL;
	PMGNT_INFO		pMgntInfo = NULL;
	//pSWAT_T		pDM_SWAT_Table = &Adapter->DM_SWAT_Table;
	pPD_T			pDM_PDTable = NULL;

	s1Byte			Score = 0;
	PRT_WLAN_BSS	pTmpBssDesc;
	PRT_WLAN_BSS	pTestBssDesc;

	u1Byte			target_chnl = 0;
	u2Byte			index;

	if (pDM_Odm->Adapter == NULL)  //For BSOD when plug/unplug fast.  //By YJ,120413
	{	// The ODM structure is not initialized.
		return FALSE;
	}
	pHalData = GET_HAL_DATA(Adapter);
	pMgntInfo = &Adapter->MgntInfo;
	pDM_PDTable = &Adapter->DM_PDTable;
	
	// Condition that does not need to use path diversity.
	if((!(pHalData->CVID_Version==VERSION_1_BEFORE_8703B && IS_92C_SERIAL(pHalData->VersionID))) || (pHalData->PathDivCfg!=1) || pMgntInfo->AntennaTest )
	{
		RT_TRACE(COMP_INIT, DBG_LOUD, 
				("ODM_PathDiversityBeforeLink92C(): No PathDiv Mechanism before link.\n"));
		return FALSE;
	}

	// Since driver is going to set BB register, it shall check if there is another thread controlling BB/RF.
	PlatformAcquireSpinLock(Adapter, RT_RF_STATE_SPINLOCK);
	if(pHalData->eRFPowerState!=eRfOn || pMgntInfo->RFChangeInProgress || pMgntInfo->bMediaConnect)
	{
		PlatformReleaseSpinLock(Adapter, RT_RF_STATE_SPINLOCK);
	
		RT_TRACE(COMP_INIT, DBG_LOUD, 
				("ODM_PathDiversityBeforeLink92C(): RFChangeInProgress(%x), eRFPowerState(%x)\n", 
				pMgntInfo->RFChangeInProgress,
				pHalData->eRFPowerState));
	
		//pDM_SWAT_Table->SWAS_NoLink_State = 0;
		pDM_PDTable->PathDiv_NoLink_State = 0;
		
		return FALSE;
	}
	else
	{
		PlatformReleaseSpinLock(Adapter, RT_RF_STATE_SPINLOCK);
	}

	//1 Run AntDiv mechanism "Before Link" part.
	//if(pDM_SWAT_Table->SWAS_NoLink_State == 0)
	if(pDM_PDTable->PathDiv_NoLink_State == 0)
	{
		//1 Prepare to do Scan again to check current antenna state.

		// Set check state to next step.
		//pDM_SWAT_Table->SWAS_NoLink_State = 1;
		pDM_PDTable->PathDiv_NoLink_State = 1;
	
		// Copy Current Scan list.
		Adapter->MgntInfo.tmpNumBssDesc = pMgntInfo->NumBssDesc;
		PlatformMoveMemory((PVOID)Adapter->MgntInfo.tmpbssDesc, (PVOID)pMgntInfo->bssDesc, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC);

		// Switch Antenna to another one.
		if(pDM_PDTable->DefaultRespPath == 0)
		{
			PHY_SetBBReg(Adapter, rCCK0_AFESetting  , 0x0F000000, 0x05); // TRX path = PathB
			odm_SetRespPath_92C(Adapter, 1);
			pDM_PDTable->OFDMTXPath = 0xFFFFFFFF;
			pDM_PDTable->CCKTXPath = 0xFFFFFFFF;
		}
		else
		{
			PHY_SetBBReg(Adapter, rCCK0_AFESetting  , 0x0F000000, 0x00); // TRX path = PathA
			odm_SetRespPath_92C(Adapter, 0);
			pDM_PDTable->OFDMTXPath = 0x0;
			pDM_PDTable->CCKTXPath = 0x0;
		}
#if 0	

		pDM_SWAT_Table->PreAntenna = pDM_SWAT_Table->CurAntenna;
		pDM_SWAT_Table->CurAntenna = (pDM_SWAT_Table->CurAntenna==Antenna_A)?Antenna_B:Antenna_A;
		
		RT_TRACE(COMP_INIT, DBG_LOUD, 
			("ODM_SwAntDivCheckBeforeLink: Change to Ant(%s) for testing.\n", (pDM_SWAT_Table->CurAntenna==Antenna_A)?"A":"B"));
		//PHY_SetBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300, DM_SWAT_Table.CurAntenna);
		pDM_SWAT_Table->SWAS_NoLink_BK_Reg860 = ((pDM_SWAT_Table->SWAS_NoLink_BK_Reg860 & 0xfffffcff) | (pDM_SWAT_Table->CurAntenna<<8));
		PHY_SetBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, bMaskDWord, pDM_SWAT_Table->SWAS_NoLink_BK_Reg860);
#endif

		// Go back to scan function again.
		RT_TRACE(COMP_INIT, DBG_LOUD, ("ODM_PathDiversityBeforeLink92C: Scan one more time\n"));
		pMgntInfo->ScanStep=0;
		target_chnl = odm_SwAntDivSelectScanChnl(Adapter);
		odm_SwAntDivConstructScanChnl(Adapter, target_chnl);
		PlatformSetTimer(Adapter, &pMgntInfo->ScanTimer, 5);

		return TRUE;
	}
	else
	{
		//1 ScanComple() is called after antenna swiched.
		//1 Check scan result and determine which antenna is going
		//1 to be used.

		for(index=0; index<Adapter->MgntInfo.tmpNumBssDesc; index++)
		{
			pTmpBssDesc = &(Adapter->MgntInfo.tmpbssDesc[index]);
			pTestBssDesc = &(pMgntInfo->bssDesc[index]);

			if(PlatformCompareMemory(pTestBssDesc->bdBssIdBuf, pTmpBssDesc->bdBssIdBuf, 6)!=0)
			{
				RT_TRACE(COMP_INIT, DBG_LOUD, ("ODM_PathDiversityBeforeLink92C(): ERROR!! This shall not happen.\n"));
				continue;
			}

			if(pTmpBssDesc->RecvSignalPower > pTestBssDesc->RecvSignalPower)
			{
				RT_TRACE(COMP_INIT, DBG_LOUD, ("ODM_PathDiversityBeforeLink92C: Compare scan entry: Score++\n"));
				RT_PRINT_STR(COMP_INIT, DBG_LOUD, "SSID: ", pTestBssDesc->bdSsIdBuf, pTestBssDesc->bdSsIdLen);
				RT_TRACE(COMP_INIT, DBG_LOUD, ("Original: %d, Test: %d\n", pTmpBssDesc->RecvSignalPower, pTestBssDesc->RecvSignalPower));
			
				Score++;
				PlatformMoveMemory(pTestBssDesc, pTmpBssDesc, sizeof(RT_WLAN_BSS));
			}
			else if(pTmpBssDesc->RecvSignalPower < pTestBssDesc->RecvSignalPower)
			{
				RT_TRACE(COMP_INIT, DBG_LOUD, ("ODM_PathDiversityBeforeLink92C: Compare scan entry: Score--\n"));
				RT_PRINT_STR(COMP_INIT, DBG_LOUD, "SSID: ", pTestBssDesc->bdSsIdBuf, pTestBssDesc->bdSsIdLen);
				RT_TRACE(COMP_INIT, DBG_LOUD, ("Original: %d, Test: %d\n", pTmpBssDesc->RecvSignalPower, pTestBssDesc->RecvSignalPower));
				Score--;
			}

		}

		if(pMgntInfo->NumBssDesc!=0 && Score<=0)
		{
			RT_TRACE(COMP_INIT, DBG_LOUD,
				("ODM_PathDiversityBeforeLink92C(): DefaultRespPath=%d\n", pDM_PDTable->DefaultRespPath));

			//pDM_SWAT_Table->PreAntenna = pDM_SWAT_Table->CurAntenna;
		}
		else
		{
			RT_TRACE(COMP_INIT, DBG_LOUD, 
				("ODM_PathDiversityBeforeLink92C(): DefaultRespPath=%d\n", pDM_PDTable->DefaultRespPath));

			if(pDM_PDTable->DefaultRespPath == 0)
			{
				pDM_PDTable->OFDMTXPath = 0xFFFFFFFF;
				pDM_PDTable->CCKTXPath = 0xFFFFFFFF;
				odm_SetRespPath_92C(Adapter, 1);
			}
			else
			{
				pDM_PDTable->OFDMTXPath = 0x0;
				pDM_PDTable->CCKTXPath = 0x0;
				odm_SetRespPath_92C(Adapter, 0);
			}
			PHY_SetBBReg(Adapter, rCCK0_AFESetting  , 0x0F000000, 0x01); // RX path = PathAB

			//pDM_SWAT_Table->CurAntenna = pDM_SWAT_Table->PreAntenna;

			//PHY_SetBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, 0x300, DM_SWAT_Table.CurAntenna);
			//pDM_SWAT_Table->SWAS_NoLink_BK_Reg860 = ((pDM_SWAT_Table->SWAS_NoLink_BK_Reg860 & 0xfffffcff) | (pDM_SWAT_Table->CurAntenna<<8));
			//PHY_SetBBReg(Adapter, rFPGA0_XA_RFInterfaceOE, bMaskDWord, pDM_SWAT_Table->SWAS_NoLink_BK_Reg860);
		}

		// Check state reset to default and wait for next time.
		//pDM_SWAT_Table->SWAS_NoLink_State = 0;
		pDM_PDTable->PathDiv_NoLink_State = 0;

		return FALSE;
	}
#else
		return	FALSE;
#endif
	
}
Beispiel #10
0
Datei: mac.c Projekt: 7799/linux
void rtl92c_read_chip_version(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
	enum version_8192c chip_version = VERSION_UNKNOWN;
	const char *versionid;
	u32 value32;

	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
	if (value32 & TRP_VAUX_EN) {
		chip_version = (value32 & TYPE_ID) ? VERSION_TEST_CHIP_92C :
			       VERSION_TEST_CHIP_88C;
	} else {
		/* Normal mass production chip. */
		chip_version = NORMAL_CHIP;
		chip_version |= ((value32 & TYPE_ID) ? CHIP_92C : 0);
		chip_version |= ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0);
		/* RTL8723 with BT function. */
		chip_version |= ((value32 & BT_FUNC) ? CHIP_8723 : 0);
		if (IS_VENDOR_UMC(chip_version))
			chip_version |= ((value32 & CHIP_VER_RTL_MASK) ?
					 CHIP_VENDOR_UMC_B_CUT : 0);
		if (IS_92C_SERIAL(chip_version)) {
			value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
			chip_version |= ((CHIP_BONDING_IDENTIFIER(value32) ==
				 CHIP_BONDING_92C_1T2R) ? CHIP_92C_1T2R : 0);
		} else if (IS_8723_SERIES(chip_version)) {
			value32 = rtl_read_dword(rtlpriv, REG_GPIO_OUTSTS);
			chip_version |= ((value32 & RF_RL_ID) ?
					  CHIP_8723_DRV_REV : 0);
		}
	}
	rtlhal->version  = (enum version_8192c)chip_version;
	pr_info("Chip version 0x%x\n", chip_version);
	switch (rtlhal->version) {
	case VERSION_NORMAL_TSMC_CHIP_92C_1T2R:
		versionid = "NORMAL_B_CHIP_92C";
		break;
	case VERSION_NORMAL_TSMC_CHIP_92C:
		versionid = "NORMAL_TSMC_CHIP_92C";
		break;
	case VERSION_NORMAL_TSMC_CHIP_88C:
		versionid = "NORMAL_TSMC_CHIP_88C";
		break;
	case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
		versionid = "NORMAL_UMC_CHIP_i92C_1T2R_A_CUT";
		break;
	case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
		versionid = "NORMAL_UMC_CHIP_92C_A_CUT";
		break;
	case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
		versionid = "NORMAL_UMC_CHIP_88C_A_CUT";
		break;
	case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
		versionid = "NORMAL_UMC_CHIP_92C_1T2R_B_CUT";
		break;
	case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
		versionid = "NORMAL_UMC_CHIP_92C_B_CUT";
		break;
	case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
		versionid = "NORMAL_UMC_CHIP_88C_B_CUT";
		break;
	case VERSION_NORMA_UMC_CHIP_8723_1T1R_A_CUT:
		versionid = "NORMAL_UMC_CHIP_8723_1T1R_A_CUT";
		break;
	case VERSION_NORMA_UMC_CHIP_8723_1T1R_B_CUT:
		versionid = "NORMAL_UMC_CHIP_8723_1T1R_B_CUT";
		break;
	case VERSION_TEST_CHIP_92C:
		versionid = "TEST_CHIP_92C";
		break;
	case VERSION_TEST_CHIP_88C:
		versionid = "TEST_CHIP_88C";
		break;
	default:
		versionid = "UNKNOWN";
		break;
	}
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
		 "Chip Version ID: %s\n", versionid);

	if (IS_92C_SERIAL(rtlhal->version))
		rtlphy->rf_type =
			 (IS_92C_1T2R(rtlhal->version)) ? RF_1T2R : RF_2T2R;
	else
		rtlphy->rf_type = RF_1T1R;
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
		 "Chip RF Type: %s\n",
		 rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
	if (get_rf_type(rtlphy) == RF_1T1R)
		rtlpriv->dm.rfpath_rxenable[0] = true;
	else
		rtlpriv->dm.rfpath_rxenable[0] =
		    rtlpriv->dm.rfpath_rxenable[1] = true;
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
		 rtlhal->version);
}
Beispiel #11
0
int rtl92c_init_sw_vars(struct ieee80211_hw *hw)
{
	int err;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));

	rtl8192ce_bt_reg_init(hw);

	rtlpriv->dm.dm_initialgain_enable = true;
	rtlpriv->dm.dm_flag = 0;
	rtlpriv->dm.disable_framebursting = false;
	rtlpriv->dm.thermalvalue = 0;
	rtlpci->transmit_config = CFENDFORM | BIT(12) | BIT(13);

	/* compatible 5G band 88ce just 2.4G band & smsp */
	rtlpriv->rtlhal.current_bandtype = BAND_ON_2_4G;
	rtlpriv->rtlhal.bandset = BAND_ON_2_4G;
	rtlpriv->rtlhal.macphymode = SINGLEMAC_SINGLEPHY;

	rtlpci->receive_config = (RCR_APPFCS |
				  RCR_AMF |
				  RCR_ADF |
				  RCR_APP_MIC |
				  RCR_APP_ICV |
				  RCR_AICV |
				  RCR_ACRC32 |
				  RCR_AB |
				  RCR_AM |
				  RCR_APM |
				  RCR_APP_PHYST_RXFF | RCR_HTC_LOC_CTRL | 0);

	rtlpci->irq_mask[0] =
	    (u32) (IMR_ROK |
		   IMR_VODOK |
		   IMR_VIDOK |
		   IMR_BEDOK |
		   IMR_BKDOK |
		   IMR_MGNTDOK |
		   IMR_HIGHDOK | IMR_BDOK | IMR_RDU | IMR_RXFOVW | 0);

	rtlpci->irq_mask[1] = (u32) (IMR_CPWM | IMR_C2HCMD | 0);

	/* for debug level */
	rtlpriv->dbg.global_debuglevel = rtlpriv->cfg->mod_params->debug;
	/* for LPS & IPS */
	rtlpriv->psc.inactiveps = rtlpriv->cfg->mod_params->inactiveps;
	rtlpriv->psc.swctrl_lps = rtlpriv->cfg->mod_params->swctrl_lps;
	rtlpriv->psc.fwctrl_lps = rtlpriv->cfg->mod_params->fwctrl_lps;
	if (!rtlpriv->psc.inactiveps)
		pr_info("rtl8192ce: Power Save off (module option)\n");
	if (!rtlpriv->psc.fwctrl_lps)
		pr_info("rtl8192ce: FW Power Save off (module option)\n");
	rtlpriv->psc.reg_fwctrl_lps = 3;
	rtlpriv->psc.reg_max_lps_awakeintvl = 5;
	/* for ASPM, you can close aspm through
	 * set const_support_pciaspm = 0 */
	rtl92c_init_aspm_vars(hw);

	if (rtlpriv->psc.reg_fwctrl_lps == 1)
		rtlpriv->psc.fwctrl_psmode = FW_PS_MIN_MODE;
	else if (rtlpriv->psc.reg_fwctrl_lps == 2)
		rtlpriv->psc.fwctrl_psmode = FW_PS_MAX_MODE;
	else if (rtlpriv->psc.reg_fwctrl_lps == 3)
		rtlpriv->psc.fwctrl_psmode = FW_PS_DTIM_MODE;

	/* for firmware buf */
	rtlpriv->rtlhal.pfirmware = vzalloc(0x4000);
	if (!rtlpriv->rtlhal.pfirmware) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
			 "Can't alloc buffer for fw\n");
		return 1;
	}

	/* request fw */
	if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
	    !IS_92C_SERIAL(rtlhal->version)) {
		rtlpriv->cfg->fw_name = "rtlwifi/rtl8192cfwU.bin";
	} else if (IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version)) {
		rtlpriv->cfg->fw_name = "rtlwifi/rtl8192cfwU_B.bin";
		pr_info("****** This B_CUT device may not work with kernels 3.6 and earlier\n");
	}

	rtlpriv->max_fw_size = 0x4000;
	pr_info("Using firmware %s\n", rtlpriv->cfg->fw_name);
	err = request_firmware_nowait(THIS_MODULE, 1, rtlpriv->cfg->fw_name,
				      rtlpriv->io.dev, GFP_KERNEL, hw,
				      rtl_fw_cb);
	if (err) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
			 "Failed to request firmware!\n");
		return 1;
	}

	return 0;
}
//
//	Description:
//		Download 8192C firmware code.
//
//
int FirmwareDownload92C(
	IN	PADAPTER			Adapter
)
{	
	int	rtStatus = _SUCCESS;	
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);

	char 			R92CFwImageFileName_TSMC[] ={RTL8192C_FW_TSMC_IMG};
	char 			R92CFwImageFileName_UMC[] ={RTL8192C_FW_UMC_IMG};
	char 			R8723FwImageFileName_UMC[] ={RTL8723_FW_UMC_IMG};

	char *			FwImage;
	u32				FwImageLen;	
	
	char*			pFwImageFileName;	

	//vivi, merge 92c and 92s into one driver, 20090817
	//vivi modify this temply, consider it later!!!!!!!!
	//PRT_FIRMWARE	pFirmware = GET_FIRMWARE_819X(Adapter);	
	//PRT_FIRMWARE_92C	pFirmware = GET_FIRMWARE_8192C(Adapter);
	PRT_FIRMWARE_92C	pFirmware = NULL;
	PRT_8192C_FIRMWARE_HDR		pFwHdr = NULL;
	u8		*pFirmwareBuf;
	u32		FirmwareLen;

	pFirmware = (PRT_FIRMWARE_92C)_rtw_malloc(sizeof(RT_FIRMWARE_92C));
	if(!pFirmware)
	{
		rtStatus = _FAIL;
		goto Exit;
	}
	
	

	//RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> FirmwareDownload91C() fw:%s\n", pFwImageFileName));

#ifdef CONFIG_EMBEDDED_FWIMG
	pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
#else
	pFirmware->eFWSource = FW_SOURCE_IMG_FILE; 
#endif
	if(IS_NORMAL_CHIP(pHalData->VersionID))
	{
		if(IS_VENDOR_UMC_A_CUT(pHalData->VersionID) && !IS_92C_SERIAL(pHalData->VersionID))// UMC , 8188
		{						
			pFwImageFileName = R92CFwImageFileName_UMC;
			FwImage = Rtl819XFwUMCImageArray;
			FwImageLen = UMCImgArrayLength;
			DBG_871X(" ===> FirmwareDownload91C() fw:Rtl819XFwImageArray_UMC\n");
				
		}
		else
		{
			pFwImageFileName = R92CFwImageFileName_TSMC;
			FwImage = Rtl819XFwTSMCImageArray;
			FwImageLen = TSMCImgArrayLength;
			DBG_871X(" ===> FirmwareDownload91C() fw:Rtl819XFwImageArray_TSMC\n");
		}
	}
	else
	{
	#if 0
		pFwImageFileName = TestChipFwFile;
		FwImage = Rtl8192CTestFwImg;
		FwImageLen = Rtl8192CTestFwImgLen;
		RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> FirmwareDownload91C() fw:Rtl8192CTestFwImg\n"));
	#endif
	}
		

	switch(pFirmware->eFWSource)
	{
		case FW_SOURCE_IMG_FILE:
			//TODO:load fw bin file
			break;
		case FW_SOURCE_HEADER_FILE:
			if(TSMCImgArrayLength > FW_8192C_SIZE){
				rtStatus = _FAIL;
				//RT_TRACE(COMP_INIT, DBG_SERIOUS, ("Firmware size exceed 0x%X. Check it.\n", FW_8192C_SIZE) );
				DBG_871X("Firmware size exceed 0x%X. Check it.\n", FW_8192C_SIZE);
				goto Exit;
			}
			_rtw_memcpy(pFirmware->szFwBuffer, FwImage, FwImageLen);
			pFirmware->ulFwLength = FwImageLen;
			break;
	}

	pFirmwareBuf = pFirmware->szFwBuffer;
	FirmwareLen = pFirmware->ulFwLength;

	// To Check Fw header. 
	pFwHdr = (PRT_8192C_FIRMWARE_HDR)pFirmware->szFwBuffer;

	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->Version); 
	pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->Subversion); 

	//RT_TRACE(COMP_INIT, DBG_LOUD, (" FirmwareVersion(%#x), Signature(%#x)\n", 
	//	Adapter->MgntInfo.FirmwareVersion, pFwHdr->Signature));

	DBG_8192C("fw_ver=v%d, fw_subver=%d, sig=0x%x\n", 
		pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, le16_to_cpu(pFwHdr->Signature)&0xFFF0);

	if(IS_FW_HEADER_EXIST(pFwHdr))
	{
		//RT_TRACE(COMP_INIT, DBG_LOUD,("Shift 32 bytes for FW header!!\n"));
		pFirmwareBuf = pFirmwareBuf + 32;
		FirmwareLen = FirmwareLen -32;
	}
		
	// Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself,
	// or it will cause download Fw fail. 2010.02.01. by tynli.
	if(rtw_read8(Adapter, REG_MCUFWDL)&BIT7) //8051 RAM code
	{	
		DBG_8192C("8051 in Ram......prepare to reset by itself\n");
		_FirmwareSelfReset(Adapter);
		rtw_write8(Adapter, REG_MCUFWDL, 0x00);		
	}

		
	_FWDownloadEnable(Adapter, _TRUE);
	_WriteFW(Adapter, pFirmwareBuf, FirmwareLen);
	_FWDownloadEnable(Adapter, _FALSE);

	rtStatus = _FWFreeToGo(Adapter);
	if(_SUCCESS != rtStatus){
		//RT_TRACE(COMP_INIT, DBG_SERIOUS, ("DL Firmware failed!\n") );	
		goto Exit;
	}	
	//RT_TRACE(COMP_INIT, DBG_LOUD, (" Firmware is ready to run!\n"));

Exit:

	if(pFirmware)
		_rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_92C));

	//RT_TRACE(COMP_INIT, DBG_LOUD, (" <=== FirmwareDownload91C()\n"));
	return rtStatus;

}
Beispiel #13
0
int
phy_RF6052_Config_ParaFile(
	IN	PADAPTER		Adapter
	)
{
	u32					u4RegValue;
	u8					eRFPath;		
	BB_REGISTER_DEFINITION_T	*pPhyReg;	

	int				rtStatus = _SUCCESS;
	HAL_DATA_TYPE			*pHalData = GET_HAL_DATA(Adapter);
	static char				sz88CRadioAFile[] = RTL8188C_PHY_RADIO_A;	
	static char				sz88CRadioBFile[] = RTL8188C_PHY_RADIO_B;
	static char				sz92CRadioAFile[] = RTL8192C_PHY_RADIO_A;
	static char				sz92CRadioBFile[] = RTL8192C_PHY_RADIO_B;
	static char				sz88CTestRadioAFile[] = RTL8188C_PHY_RADIO_A;	
	static char				sz88CTestRadioBFile[] = RTL8188C_PHY_RADIO_B;
	static char				sz92CTestRadioAFile[] = RTL8192C_PHY_RADIO_A;	
	static char				sz92CTestRadioBFile[] = RTL8192C_PHY_RADIO_B;

	static char				sz92DRadioAFile[] = RTL8192D_PHY_RADIO_A;	
	static char				sz92DRadioBFile[] = RTL8192D_PHY_RADIO_B;
	static char				sz92DTestRadioAFile[] = RTL8192D_PHY_RADIO_A;	
	static char				sz92DTestRadioBFile[] = RTL8192D_PHY_RADIO_B;
	
	u8					*pszRadioAFile, *pszRadioBFile;
	u8			u1bTmp;
	BOOLEAN		bMac1NeedInitRadioAFirst = _FALSE;	
	BOOLEAN		bNeedPowerDownRadioA = _FALSE;

      // 92D RF config  zhiyuan 2010/04/07
      // Single phy mode: use radio_a radio_b config path_A path_B seperately by MAC0, and MAC1 needn't configure RF;
      // Dual PHY mode:MAC0 use radio_a config 1st phy path_A, MAC1 use radio_b config 2nd PHY path_A.
	if(IS_HARDWARE_TYPE_8192D(pHalData)){
		if(IS_NORMAL_CHIP(pHalData->VersionID))
		{
			pszRadioAFile = sz92DRadioAFile;
			pszRadioBFile = sz92DRadioBFile;

			if(pHalData->interfaceIndex==1)
			{
				if(pHalData->MacPhyMode92D==DUALMAC_DUALPHY)
					pszRadioAFile = sz92DRadioBFile;
				else
					return rtStatus;
			}
		}
		else
		{
			pszRadioAFile = sz92DTestRadioAFile;
			pszRadioBFile = sz92DTestRadioBFile;
			if(pHalData->interfaceIndex==1)
			{
				//
				// when 92D test chip dual mac dual phy mode, if enable MAC1 first, before init RF radio B,
				// also init RF radio A, and then let radio A go to power down mode.
				// Note: normal chip need do this or not will be considerred later.
				//
				if(pHalData->MacPhyMode92D==DUALMAC_DUALPHY)
				{
					u1bTmp = read8(Adapter, REG_MAC0);

					if (!(u1bTmp&MAC0_ON))
					{
						// MAC0 not enabled, also init radio A before init radio B.

						// Enable BB and RF
#if (DEV_BUS_TYPE == PCI_INTERFACE)                                
						//PlatformEFIOWrite1Byte(Adapter, REG_SYS_FUNC_EN, 0xE0);
#if  0
						MpWritePCIDwordDBI8192C(Adapter, 
											(REG_SYS_FUNC_EN - 2), 
											MpReadPCIDwordDBI8192C(Adapter, (REG_SYS_FUNC_EN - 2), BIT3)&0xFFFCFFFF,
											BIT3);
#endif
						//u2bTmp = PlatformEFIORead2Byte(Adapter, REG_SYS_FUNC_EN);
						//PlatformEFIOWrite2Byte(Adapter, REG_SYS_FUNC_EN, u2bTmp|BIT13|BIT0|BIT1);     
						MpWritePCIDwordDBI8192C(Adapter, 
											(REG_SYS_FUNC_EN - 2), 
											MpReadPCIDwordDBI8192C(Adapter, (REG_SYS_FUNC_EN - 2), BIT3)|BIT29|BIT16|BIT17,
											BIT3);
#elif (DEV_BUS_TYPE == USB_INTERFACE)
						pHalData->bDuringMac1InitRadioA = _TRUE;
						write16(Adapter, REG_SYS_FUNC_EN, read16(Adapter, REG_SYS_FUNC_EN)&0xFFFC); 
						write16(Adapter, REG_SYS_FUNC_EN, read16(Adapter, REG_SYS_FUNC_EN)|BIT13|BIT0|BIT1); 
						pHalData->bDuringMac1InitRadioA = _FALSE;
#endif
                                
						pHalData->NumTotalRFPath = 2;
						bMac1NeedInitRadioAFirst = _TRUE;
					}
					else
					{
						// MAC0 enabled, only init radia B.
						pszRadioAFile = sz92DTestRadioBFile;
					}
				}
				else
				{
					return rtStatus;
				}
			}
		}
	}
	else{
		if(IS_92C_SERIAL( pHalData->VersionID))// 88c's IPA  is different from 92c's
		{
			if(IS_NORMAL_CHIP(pHalData->VersionID))
			{
				pszRadioAFile = sz92CRadioAFile;
				pszRadioBFile = sz92CRadioBFile;
			}
			else
			{
				pszRadioAFile = sz92CTestRadioAFile;
				pszRadioBFile = sz92CTestRadioBFile;
			}
		}
		else
		{
			if(IS_NORMAL_CHIP(pHalData->VersionID))
			{
				pszRadioAFile = sz88CRadioAFile;
				pszRadioBFile = sz88CRadioBFile;
			}
			else
			{
				pszRadioAFile = sz88CTestRadioAFile;
				pszRadioBFile = sz88CTestRadioBFile;
			}
		}
	}

	//3//-----------------------------------------------------------------
	//3// <2> Initialize RF
	//3//-----------------------------------------------------------------
	//for(eRFPath = RF90_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
	for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
	{
		if (IS_HARDWARE_TYPE_8192D(pHalData) && bMac1NeedInitRadioAFirst)
		{
			if (eRFPath == RF90_PATH_A)
			{
				pHalData->bDuringMac1InitRadioA = _TRUE;
				bNeedPowerDownRadioA = _TRUE;
			}

			if (eRFPath == RF90_PATH_B)
			{
				pHalData->bDuringMac1InitRadioA = _FALSE;
				bMac1NeedInitRadioAFirst = _FALSE;
				eRFPath = RF90_PATH_A;
				pszRadioAFile = sz92DTestRadioBFile;
				pHalData->NumTotalRFPath = 1;                    
			}
		}

		pPhyReg = &pHalData->PHYRegDef[eRFPath];
		
		/*----Store original RFENV control type----*/		
		switch(eRFPath)
		{
		case RF90_PATH_A:
		case RF90_PATH_C:
			u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV);
			break;
		case RF90_PATH_B :
		case RF90_PATH_D:
			u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16);
			break;
		}

		/*----Set RF_ENV enable----*/		
		PHY_SetBBReg(Adapter, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1);
		udelay_os(1);//PlatformStallExecution(1);
		
		/*----Set RF_ENV output high----*/
		PHY_SetBBReg(Adapter, pPhyReg->rfintfo, bRFSI_RFENV, 0x1);
		udelay_os(1);//PlatformStallExecution(1);

		/* Set bit number of Address and Data for RF register */
		PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0); 	// Set 1 to 4 bits for 8255
		udelay_os(1);//PlatformStallExecution(1);

		PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0);	// Set 0 to 12  bits for 8255
		udelay_os(1);//PlatformStallExecution(1);

		/*----Initialize RF fom connfiguration file----*/
		switch(eRFPath)
		{
		case RF90_PATH_A:
#ifdef CONFIG_EMBEDDED_FWIMG
			rtStatus= PHY_ConfigRFWithHeaderFile(Adapter,(RF90_RADIO_PATH_E)eRFPath);
#else
			rtStatus = PHY_ConfigRFWithParaFile(Adapter, pszRadioAFile, (RF90_RADIO_PATH_E)eRFPath);
#endif
			break;
		case RF90_PATH_B:
#ifdef CONFIG_EMBEDDED_FWIMG
			rtStatus= PHY_ConfigRFWithHeaderFile(Adapter,(RF90_RADIO_PATH_E)eRFPath);
#else			
			rtStatus = PHY_ConfigRFWithParaFile(Adapter, pszRadioBFile, (RF90_RADIO_PATH_E)eRFPath);
#endif
			break;
		case RF90_PATH_C:
			break;
		case RF90_PATH_D:
			break;
		}

		/*----Restore RFENV control type----*/;
		switch(eRFPath)
		{
		case RF90_PATH_A:
		case RF90_PATH_C:
			PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue);
			break;
		case RF90_PATH_B :
		case RF90_PATH_D:
			PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue);
			break;
		}

		if(rtStatus != _SUCCESS){
			//RT_TRACE(COMP_FPGA, DBG_LOUD, ("phy_RF6052_Config_ParaFile():Radio[%d] Fail!!", eRFPath));
			goto phy_RF6052_Config_ParaFile_Fail;
		}

	}

	if (IS_HARDWARE_TYPE_8192D(pHalData) && bNeedPowerDownRadioA)
	{
		// check MAC0 enable or not again now, if enabled, not power down radio A.
		u1bTmp = read8(Adapter, REG_MAC0);

		if (!(u1bTmp&MAC0_ON))
		{
			// power down RF radio A according to YuNan's advice.
#if (DEV_BUS_TYPE == PCI_INTERFACE) 	        
			MpWritePCIDwordDBI8192C(Adapter, 
   						rFPGA0_XA_LSSIParameter, 
   						0x00000000,
   						BIT3);
#elif (DEV_BUS_TYPE == USB_INTERFACE)
			pHalData->bDuringMac1InitRadioA = _TRUE;
			write32(Adapter, rFPGA0_XA_LSSIParameter, 0x00000000); 
			pHalData->bDuringMac1InitRadioA = _FALSE;
#endif
		}
		bNeedPowerDownRadioA = _FALSE;
      }

	//RT_TRACE(COMP_INIT, DBG_LOUD, ("<---phy_RF6052_Config_ParaFile()\n"));
	return rtStatus;
	
phy_RF6052_Config_ParaFile_Fail:	
	return rtStatus;
}
Beispiel #14
0
int rtl92c_init_sw_vars(struct ieee80211_hw *hw)
{
	int err = 0;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	const struct firmware *firmware;
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	char *fw_name = NULL;

	rtl8192ce_bt_reg_init(hw);

	rtlpriv->dm.b_dm_initialgain_enable = 1;
	rtlpriv->dm.dm_flag = 0;
	rtlpriv->dm.b_disable_framebursting = 0;;
	rtlpriv->dm.thermalvalue = 0;
	rtlpci->transmit_config = CFENDFORM | BIT(12) | BIT(13);

	/* compatible 5G band 88ce just 2.4G band & smsp */
	rtlpriv->rtlhal.current_bandtype = BAND_ON_2_4G;
	rtlpriv->rtlhal.bandset = BAND_ON_2_4G;
	rtlpriv->rtlhal.macphymode = SINGLEMAC_SINGLEPHY;

	rtlpci->receive_config = (RCR_APPFCS |
				  RCR_AMF |
				  RCR_ADF |
				  RCR_APP_MIC |
				  RCR_APP_ICV |
				  RCR_AICV |
				  RCR_ACRC32 |
				  RCR_AB |
				  RCR_AM |
				  RCR_APM |
				  RCR_APP_PHYST_RXFF | RCR_HTC_LOC_CTRL | 0);

	rtlpci->irq_mask[0] =
	    (u32) (IMR_ROK |
		   IMR_VODOK |
		   IMR_VIDOK |
		   IMR_BEDOK |
		   IMR_BKDOK |
		   IMR_MGNTDOK |
		   IMR_HIGHDOK | IMR_BDOK | IMR_RDU | IMR_RXFOVW | 0);

	rtlpci->irq_mask[1] = (u32) (IMR_CPWM | IMR_C2HCMD | 0);

	/* for LPS & IPS */
	rtlpriv->psc.b_inactiveps = rtlpriv->cfg->mod_params->b_inactiveps;
	rtlpriv->psc.b_swctrl_lps = rtlpriv->cfg->mod_params->b_swctrl_lps;
	rtlpriv->psc.b_fwctrl_lps = rtlpriv->cfg->mod_params->b_fwctrl_lps;
	rtlpriv->psc.b_reg_fwctrl_lps = 3;
	rtlpriv->psc.reg_max_lps_awakeintvl = 5;
	/* for ASPM, you can close aspm through
	 * set const_support_pciaspm = 0 */
	rtl92c_init_aspm_vars(hw);

	if (rtlpriv->psc.b_reg_fwctrl_lps == 1)
		rtlpriv->psc.fwctrl_psmode = FW_PS_MIN_MODE;
	else if (rtlpriv->psc.b_reg_fwctrl_lps == 2)
		rtlpriv->psc.fwctrl_psmode = FW_PS_MAX_MODE;
	else if (rtlpriv->psc.b_reg_fwctrl_lps == 3)
		rtlpriv->psc.fwctrl_psmode = FW_PS_DTIM_MODE;

	/* for firmware buf */
	rtlpriv->rtlhal.pfirmware = (u8 *) vmalloc(0x4000);
	if (!rtlpriv->rtlhal.pfirmware) {
		RT_TRACE(COMP_ERR, DBG_EMERG,
			 ("Can't alloc buffer for fw.\n"));
		return 1;
	}
	
	if (IS_VENDOR_UMC_A_CUT(rtlhal->version) && !IS_92C_SERIAL(rtlhal->version))
		fw_name = "rtlwifi/rtl8192cfwU.bin";
	else if (IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version))
		fw_name = "rtlwifi/rtl8192cfwU_B.bin";
	else
		fw_name = rtlpriv->cfg->fw_name;
	err = request_firmware(&firmware, fw_name, rtlpriv->io.dev);

	if (err) {
		RT_TRACE(COMP_ERR, DBG_EMERG,
			 ("Failed to request firmware!\n"));
		return 1;
	}
	if (firmware->size > 0x4000) {
		RT_TRACE(COMP_ERR, DBG_EMERG,
			 ("Firmware is too big!\n"));
		release_firmware(firmware);
		return 1;
	}
	memcpy(rtlpriv->rtlhal.pfirmware, firmware->data, firmware->size);
	rtlpriv->rtlhal.fwsize = firmware->size;
	release_firmware(firmware);
	
	return err;
}
Beispiel #15
0
bool rtl92c_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
					  enum radio_path rfpath)
{

	int i;
	bool rtstatus = true;
	u32 *radioa_array_table;
	u32 *radiob_array_table;
	u16 radioa_arraylen, radiob_arraylen;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));

	if (IS_92C_SERIAL(rtlhal->version)) {
		radioa_arraylen = RADIOA_2TARRAYLENGTH;
		radioa_array_table = RTL8192CERADIOA_2TARRAY;
		radiob_arraylen = RADIOB_2TARRAYLENGTH;
		radiob_array_table = RTL8192CE_RADIOB_2TARRAY;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
			 ("Radio_A:RTL8192CERADIOA_2TARRAY\n"));
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
			 ("Radio_B:RTL8192CE_RADIOB_2TARRAY\n"));
	} else {
		radioa_arraylen = RADIOA_1TARRAYLENGTH;
		radioa_array_table = RTL8192CE_RADIOA_1TARRAY;
		radiob_arraylen = RADIOB_1TARRAYLENGTH;
		radiob_array_table = RTL8192CE_RADIOB_1TARRAY;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
			 ("Radio_A:RTL8192CE_RADIOA_1TARRAY\n"));
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
			 ("Radio_B:RTL8192CE_RADIOB_1TARRAY\n"));
	}
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, ("Radio No %x\n", rfpath));
	rtstatus = true;
	switch (rfpath) {
	case RF90_PATH_A:
		for (i = 0; i < radioa_arraylen; i = i + 2) {
			if (radioa_array_table[i] == 0xfe)
				mdelay(50);
			else if (radioa_array_table[i] == 0xfd)
				mdelay(5);
			else if (radioa_array_table[i] == 0xfc)
				mdelay(1);
			else if (radioa_array_table[i] == 0xfb)
				udelay(50);
			else if (radioa_array_table[i] == 0xfa)
				udelay(5);
			else if (radioa_array_table[i] == 0xf9)
				udelay(1);
			else {
				rtl_set_rfreg(hw, rfpath, radioa_array_table[i],
					      RFREG_OFFSET_MASK,
					      radioa_array_table[i + 1]);
				udelay(1);
			}
		}
		break;
	case RF90_PATH_B:
		for (i = 0; i < radiob_arraylen; i = i + 2) {
			if (radiob_array_table[i] == 0xfe) {
				mdelay(50);
			} else if (radiob_array_table[i] == 0xfd)
				mdelay(5);
			else if (radiob_array_table[i] == 0xfc)
				mdelay(1);
			else if (radiob_array_table[i] == 0xfb)
				udelay(50);
			else if (radiob_array_table[i] == 0xfa)
				udelay(5);
			else if (radiob_array_table[i] == 0xf9)
				udelay(1);
			else {
				rtl_set_rfreg(hw, rfpath, radiob_array_table[i],
					      RFREG_OFFSET_MASK,
					      radiob_array_table[i + 1]);
				udelay(1);
			}
		}
		break;
	case RF90_PATH_C:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
			 ("switch case not process\n"));
		break;
	case RF90_PATH_D:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
			 ("switch case not process\n"));
		break;
	}
	return true;
}
static int
phy_RF6052_Config_ParaFile(
	IN	PADAPTER		Adapter
	)
{
	u32					u4RegValue;
	u8					eRFPath;		
	BB_REGISTER_DEFINITION_T	*pPhyReg;	

	int					rtStatus = _SUCCESS;
	HAL_DATA_TYPE		*pHalData = GET_HAL_DATA(Adapter);
	static char			sz88CRadioAFile[] = RTL8188C_PHY_RADIO_A;	
	static char			sz88CRadioBFile[] = RTL8188C_PHY_RADIO_B;
#ifdef CONFIG_USB_HCI
	static char			sz88CRadioAFile_mCard[] = RTL8188C_PHY_RADIO_A_mCard;	
	static char			sz88CRadioBFile_mCard[] = RTL8188C_PHY_RADIO_B_mCard;
	static char			sz88CRadioAFile_HP[] = RTL8188C_PHY_RADIO_A_HP;	
#endif
	static char			sz92CRadioAFile[] = RTL8192C_PHY_RADIO_A;	
	static char			sz92CRadioBFile[] = RTL8192C_PHY_RADIO_B;
	static char			sz8723RadioAFile[] = RTL8723_PHY_RADIO_A;	
	static char			sz8723RadioBFile[] = RTL8723_PHY_RADIO_B;
	char					*pszRadioAFile, *pszRadioBFile;	


	if(IS_HARDWARE_TYPE_8192C(Adapter))
	{
		if(IS_92C_SERIAL( pHalData->VersionID))// 88c's IPA  is different from 92c's
		{
			if(IS_NORMAL_CHIP(pHalData->VersionID))
			{
				pszRadioAFile = sz92CRadioAFile;
				pszRadioBFile = sz92CRadioBFile;
			}
			else
			{
				rtStatus = _FAIL;
				return rtStatus;
			}
		}
		else
		{
			if(IS_NORMAL_CHIP(pHalData->VersionID))
			{
				pszRadioAFile = sz88CRadioAFile;
				pszRadioBFile = sz88CRadioBFile;
#ifdef CONFIG_USB_HCI
				if( BOARD_MINICARD == pHalData->BoardType)
				{
					pszRadioAFile = sz88CRadioAFile_mCard;
					pszRadioBFile = sz88CRadioBFile_mCard;
				}
				else if( BOARD_USB_High_PA == pHalData->BoardType)
				{
					pszRadioAFile = sz88CRadioAFile_HP;
				}
#endif	
			}
			else
			{
				rtStatus = _FAIL;
				return rtStatus;
			}
		}
	}
	else if(IS_HARDWARE_TYPE_8723(Adapter))
	{
		pszRadioAFile = sz8723RadioAFile;
		pszRadioBFile = sz8723RadioBFile;	
	}

	//3//-----------------------------------------------------------------
	//3// <2> Initialize RF
	//3//-----------------------------------------------------------------
	//for(eRFPath = RF90_PATH_A; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
	for(eRFPath = 0; eRFPath <pHalData->NumTotalRFPath; eRFPath++)
	{

		pPhyReg = &pHalData->PHYRegDef[eRFPath];
		
		/*----Store original RFENV control type----*/		
		switch(eRFPath)
		{
		case RF90_PATH_A:
		case RF90_PATH_C:
			u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV);
			break;
		case RF90_PATH_B :
		case RF90_PATH_D:
			u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16);
			break;
		}

		/*----Set RF_ENV enable----*/		
		PHY_SetBBReg(Adapter, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1);
		rtw_udelay_os(1);//PlatformStallExecution(1);
		
		/*----Set RF_ENV output high----*/
		PHY_SetBBReg(Adapter, pPhyReg->rfintfo, bRFSI_RFENV, 0x1);
		rtw_udelay_os(1);//PlatformStallExecution(1);

		/* Set bit number of Address and Data for RF register */
		PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0); 	// Set 1 to 4 bits for 8255
		rtw_udelay_os(1);//PlatformStallExecution(1);

		PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0);	// Set 0 to 12  bits for 8255
		rtw_udelay_os(1);//PlatformStallExecution(1);

		/*----Initialize RF fom connfiguration file----*/
		switch(eRFPath)
		{
		case RF90_PATH_A:
#ifdef CONFIG_EMBEDDED_FWIMG
			rtStatus= rtl8192c_PHY_ConfigRFWithHeaderFile(Adapter,(RF90_RADIO_PATH_E)eRFPath);
#else
			rtStatus = rtl8192c_PHY_ConfigRFWithParaFile(Adapter, pszRadioAFile, (RF90_RADIO_PATH_E)eRFPath);
#endif
			break;
		case RF90_PATH_B:
#ifdef CONFIG_EMBEDDED_FWIMG
			rtStatus = rtl8192c_PHY_ConfigRFWithHeaderFile(Adapter,(RF90_RADIO_PATH_E)eRFPath);
#else			
			rtStatus = rtl8192c_PHY_ConfigRFWithParaFile(Adapter, pszRadioBFile, (RF90_RADIO_PATH_E)eRFPath);
#endif
			break;
		case RF90_PATH_C:
			break;
		case RF90_PATH_D:
			break;
		}

		/*----Restore RFENV control type----*/;
		switch(eRFPath)
		{
		case RF90_PATH_A:
		case RF90_PATH_C:
			PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue);
			break;
		case RF90_PATH_B :
		case RF90_PATH_D:
			PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue);
			break;
		}

		if(rtStatus != _SUCCESS){
			//RT_TRACE(COMP_FPGA, DBG_LOUD, ("phy_RF6052_Config_ParaFile():Radio[%d] Fail!!", eRFPath));
			goto phy_RF6052_Config_ParaFile_Fail;
		}

	}

	//RT_TRACE(COMP_INIT, DBG_LOUD, ("<---phy_RF6052_Config_ParaFile()\n"));
	return rtStatus;
	
phy_RF6052_Config_ParaFile_Fail:	
	return rtStatus;
}
Beispiel #17
0
//-------------------------------------------------------------------
//
//	EEPROM/EFUSE Content Parsing
//
//-------------------------------------------------------------------
static VERSION_8192C
ReadChipVersion(
	IN	PADAPTER	Adapter
	)
{
	u32				value32;
	VERSION_8192C	version;
	u8				ChipVersion=0;	
	
	value32 = rtw_read32(Adapter, REG_SYS_CFG);

	if (value32 & TRP_VAUX_EN){		
		version = (value32 & TYPE_ID) ?VERSION_TEST_CHIP_92C :VERSION_TEST_CHIP_88C;		
	}
	else{		
		ChipVersion = NORMAL_CHIP;
		ChipVersion |= ((value32 & TYPE_ID) ? CHIP_92C : 0);
		ChipVersion |= ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0);
		ChipVersion |= ((value32 & BT_FUNC) ? CHIP_8723: 0); // RTL8723 with BT function.
#if 0
		if(IS_VENDOR_UMC(ChipVersion))
			ChipVersion |= ((value32 & CHIP_VER_RTL_MASK) ? CHIP_VENDOR_UMC_B_CUT : 0);
#else
		// 88/92C UMC B-cut IC will not set the SYS_CFG[19] to UMC
		// because we do not want the custmor to know. by tynli. 2011.01.17.		
		if((!IS_VENDOR_UMC(ChipVersion) )&& (value32 & CHIP_VER_RTL_MASK))
		{
			ChipVersion |= CHIP_VENDOR_UMC;
			ChipVersion |= CHIP_VENDOR_UMC_B_CUT;
		}
#endif
		if(IS_92C_SERIAL(ChipVersion))
		{
			value32 = rtw_read32(Adapter, REG_HPON_FSM);
			ChipVersion |= ((CHIP_BONDING_IDENTIFIER(value32) == CHIP_BONDING_92C_1T2R) ? CHIP_92C_1T2R : 0);			
		}
		else if(IS_8723_SERIES(ChipVersion))
		{
			value32 = rtw_read32(Adapter, REG_GPIO_OUTSTS);
			ChipVersion |= ((value32 & RF_RL_ID) ? CHIP_8723_DRV_REV : 0);			
		}
		version = (VERSION_8192C)ChipVersion;
	}


	switch(version)
	{
		case VERSION_NORMAL_TSMC_CHIP_92C_1T2R:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_TSMC_CHIP_92C_1T2R.\n");
			break;
		case VERSION_NORMAL_TSMC_CHIP_92C:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_TSMC_CHIP_92C.\n");
			break;
		case VERSION_NORMAL_TSMC_CHIP_88C:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_TSMC_CHIP_88C.\n");
			break;
		case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT.\n");
			break;
		case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_UMC_CHIP_92C_A_CUT.\n");
			break;
		case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_UMC_CHIP_88C_A_CUT.\n");
			break;			
		case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT.\n");
			break;
		case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_UMC_CHIP_92C_B_CUT.\n");
			break;
		case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMAL_UMC_CHIP_88C_B_CUT.\n");
			break;
		case VERSION_TEST_CHIP_92C:
			MSG_8192C("Chip Version ID: VERSION_TEST_CHIP_92C.\n");
			break;
		case VERSION_TEST_CHIP_88C:
			MSG_8192C("Chip Version ID: VERSION_TEST_CHIP_88C.\n");
			break;
		case VERSION_NORMA_UMC_CHIP_8723_1T1R_A_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMA_UMC_CHIP_8723_1T1R_A_CUT.\n");
			break;
		case VERSION_NORMA_UMC_CHIP_8723_1T1R_B_CUT:
			MSG_8192C("Chip Version ID: VERSION_NORMA_UMC_CHIP_8723_1T1R_B_CUT.\n");
			break;
		default:
			MSG_8192C("Chip Version ID: ???????????????.\n");
			break;
	}


	return version;
}